Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Background

Photocatalysis is of particular importance in the oxidation of alcohols to aldehydes to increase the conversion of benzyl alcohol oxidation to benzaldehyde at high selectivity, which could be useful for the pharmaceutical and perfumery industries.

Objective

The oxidation of benzyl alcohol over P25 was investigated in various solvents (water, benzotrifluoride, toluene and acetonitrile).

Methods

The reaction was performed in an isothermal slurry batch reactor in the presence and absence of UV-light. The products were analysed using GC-FID; the deposits formed on the catalyst was analysed using TGA and FTIR.

Results

In the presence of light, the reaction was very selective for the formation of benzaldehyde (., 99% selectivity at 53% conversion using acetonitrile as a solvent), whereas, in the absence of light, the formation of higher molecular weight products was observed (., 22% selectivity at 1.7% conversion using acetonitrile as a solvent). It was observed that the activity in the absence of oxygen was initially high, but it dropped rapidly from initially 0.4 to 0 mmol g-1 h-1 after 2-4 h (using acetonitrile as a solvent). This was attributed to the activity of the few oxidized sites present on P25.

Conclusion

Acetonitrile appears to be the most effective solvent, as it seems to interact least with the catalytically active sites. The photocatalytic oxidation of benzyl alcohol over P25 does not only yield products in the solution, but also deposits on the surface. The deposits can be removed in an oxidative environment or an inert environment.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/012665976X272707231206063253
2024-01-12
2025-01-31
Loading full text...

Full text loading...

References

  1. AugugliaroV. KischH. LoddoV. López-MuñozM.J. Márquez-ÁlvarezC. PalmisanoG. PalmisanoL. ParrinoF. YurdakalS. Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide.Appl. Catal. A Gen.20083491-218919710.1016/j.apcata.2008.07.038
    [Google Scholar]
  2. LiC.J. XuG.R. ZhangB. GongJ.R. High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods.Appl. Catal. B2012115-11620120810.1016/j.apcatb.2011.12.003
    [Google Scholar]
  3. AugugliaroV. PalmisanoL. Green oxidation of alcohols to carbonyl compounds by heterogeneous photocatalysis.ChemSusChem20103101135113810.1002/cssc.20100015620830724
    [Google Scholar]
  4. RütherT. BondA.M. JacksonW.R. Solar light induced photocatalytic oxidation of benzyl alcohol using heteropolyoxometalate catalysts of the type [S 2 M 18 O 62] 4−.Green Chem.20035436436610.1039/B306521A
    [Google Scholar]
  5. KuneneA. LetebaG. van SteenE. Liquid phase oxidation of benzyl alcohol over pt and pt–ni alloy supported on TiO2: Using O2 or H2O2 as oxidant?Catal. Lett.202215261760176810.1007/s10562‑021‑03760‑z
    [Google Scholar]
  6. MalatoS. Fernández-IbáñezP. MaldonadoM.I. BlancoJ. GernjakW. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends.Catal. Today2009147115910.1016/j.cattod.2009.06.018
    [Google Scholar]
  7. GogateP.R. PanditA.B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions.Adv. Environ. Res.200483-450155110.1016/S1093‑0191(03)00032‑7
    [Google Scholar]
  8. IbhadonA. FitzpatrickP. Heterogeneous photocatalysis: Recent advances and applications.Catalysts20133118921810.3390/catal3010189
    [Google Scholar]
  9. JoW.K. TayadeR.J. New generation energy-efficient light source for photocatalysis: LEDs for environmental applications.Ind. Eng. Chem. Res.20145362073208410.1021/ie404176g
    [Google Scholar]
  10. PirolaC. BianchiC.L. GattoS. ArdizzoneS. CappellettiG. Pressurized photo-reactor for the degradation of the scarcely biodegradable DPC cationic surfactant in water.Chem. Eng. J.201322541642210.1016/j.cej.2013.03.116
    [Google Scholar]
  11. JoW.K. TayadeR.J. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes.Chin. J. Catal.201435111781179210.1016/S1872‑2067(14)60205‑9
    [Google Scholar]
  12. OngC.B. NgL.Y. MohammadA.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications.Renew. Sustain. Energy Rev.20188153655110.1016/j.rser.2017.08.020
    [Google Scholar]
  13. Capelo-MartínezJ.L. Ximénez-EmbúnP. MadridY. CámaraC. Advanced oxidation processes for sample treatment in atomic spectrometry.Trends Analyt. Chem.200423433134010.1016/S0165‑9936(04)00401‑7
    [Google Scholar]
  14. PieraJ. BäckvallJ.E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer--a biomimetic approach.Angew. Chem. Int. Ed.200847193506352310.1002/anie.20070060418383499
    [Google Scholar]
  15. TzirakisM. LykakisI. PanagiotouG. BourikasK. LycourghiotisA. KordulisC. OrfanopoulosM. Decatungstate catalyst supported on silica and γ-alumina: Efficient photocatalytic oxidation of benzyl alcohols.J. Catal.2007252217818910.1016/j.jcat.2007.09.023
    [Google Scholar]
  16. LoddoV. RodaG.C. ParrinoF. Kinetic Aspects of Heterogeneous Catalytic versus Photocatalytic Reactions.Elsevier B.V.201910.1016/B978‑0‑444‑64015‑4.00007‑9
    [Google Scholar]
  17. LarsonS.A. FalconerJ.L. Initial reaction steps in photocatalytic oxidation of aromatics.Catal. Lett.1997441/2576510.1023/A:1018920907725
    [Google Scholar]
  18. BlountM.C. FalconerJ.L. Steady-state surface species during toluene photocatalysis.Appl. Catal. B2002391395010.1016/S0926‑3373(01)00152‑7
    [Google Scholar]
  19. AugugliaroV. PalmisanoG. PalmisanoL. SoriaJ. Heterogeneous photocatalysis and catalysis: An overview of their distinctive features.Heterogeneous Photocatalysis Relationships with Heterogeneous Catalysis and Perspectives. MarinakisK.K. Palermo, ItalyJoseph P. Hayton2019124
    [Google Scholar]
  20. MarugánJ. López-MuñozM.J. GernjakW. MalatoS. Fe/TiO 2/pH Interactions in Solar Degradation of Imidacloprid with TiO 2/SiO 2 Photocatalysts at Pilot-Plant Scale.Ind. Eng. Chem. Res.200645268900890810.1021/ie061033b
    [Google Scholar]
  21. YurdakalS. PalmisanoG. LoddoV. AlagözO. AugugliaroV. PalmisanoL. Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature.Green Chem.200911451051610.1039/b819862d
    [Google Scholar]
  22. ZhangY. Modeling and design of photocatalytic reactors for air purification., theses and dissertations.University of South Florida2013
    [Google Scholar]
  23. GassimF.A.Z.G. AlkhateebA.N. HusseinF.H. Photocatalytic oxidation of benzyl alcohol using pure and sensitized anatase.Desalination20072091-334234910.1016/j.desal.2007.04.049
    [Google Scholar]
  24. XieM. DaiX. MengS. FuX. ChenS. Selective oxidation of aromatic alcohols to corresponding aromatic aldehydes using In2S3 microsphere catalyst under visible light irradiation.Chem. Eng. J.201424510711610.1016/j.cej.2014.02.029
    [Google Scholar]
  25. SongH. LiuZ. WangY. ZhangN. QuX. GuoK. XiaoM. GaiH. Template-free synthesis of hollow TiO2 nanospheres supported Pt for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde.GEE20194327828610.1016/j.gee.2018.09.001
    [Google Scholar]
  26. SheH. ZhouH. LiL. WangL. HuangJ. WangQ. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol.ACS Sustain. Chem.& Eng.201869119391194810.1021/acssuschemeng.8b02217
    [Google Scholar]
  27. OuyangW. KunaE. YepezA. BaluA. RomeroA. ColmenaresJ. LuqueR. Mechanochemical synthesis of TiO2 nanocomposites as photocatalysts for benzyl alcohol photo-oxidation.Nanomaterials2016659310.3390/nano605009328335221
    [Google Scholar]
  28. TamiolakisI. LykakisI.N. ArmatasG.S. Mesoporous CdS-sensitized TiO2 nanoparticle assemblies with enhanced photocatalytic properties: Selective aerobic oxidation of benzyl alcohols.Catal. Today201525018018610.1016/j.cattod.2014.03.047
    [Google Scholar]
  29. ImamuraK. TsukaharaH. HamamichiK. SetoN. HashimotoK. KominamiH. Simultaneous production of aromatic aldehydes and dihydrogen by photocatalytic dehydrogenation of liquid alcohols over metal-loaded titanium(IV) oxide under oxidant- and solvent-free conditions.Appl. Catal. A Gen.2013450283310.1016/j.apcata.2012.09.051
    [Google Scholar]
  30. LinsebiglerA.L. LuG. YatesJ.T. Jr Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results.Chem. Rev.199595373575810.1021/cr00035a013
    [Google Scholar]
  31. FurukawaS. OhnoY. ShishidoT. TeramuraK. TanakaT. Selective amine oxidation using Nb 2 O 5 photocatalyst and O 2.ACS Catal.20111101150115310.1021/cs200318n
    [Google Scholar]
  32. LeongK.H. MonashP. IbrahimS. SaravananP. Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method.Sol. Energy201410132133210.1016/j.solener.2014.01.006
    [Google Scholar]
  33. SchneiderJ. MatsuokaM. TakeuchiM. ZhangJ. HoriuchiY. AnpoM. BahnemannD.W. Understanding TiO2 photocatalysis: Mechanisms and materials.Chem. Rev.2014114199919998610.1021/cr500189225234429
    [Google Scholar]
  34. OuidriS. KhalafH. Synthesis of benzaldehyde from toluene by a photocatalytic oxidation using TiO2-pillared clays.J. Photochem. Photobiol. Chem.20092072-326827310.1016/j.jphotochem.2009.07.019
    [Google Scholar]
  35. PanR. PanS. ZhouJ. WuY. Surface-modification of indium tin oxide nanoparticles with titanium dioxide by a nonaqueous process and its photocatalytic properties.Appl. Surf. Sci.200925563642364710.1016/j.apsusc.2008.10.010
    [Google Scholar]
  36. HigashimotoS. SuetsuguN. AzumaM. OhueH. SakataY. Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity.J. Catal.20102741768310.1016/j.jcat.2010.06.006
    [Google Scholar]
  37. ChenX. ZhengZ. KeX. JaatinenE. XieT. WangD. GuoC. ZhaoJ. ZhuH. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation.Green Chem.201012341441910.1039/b921696k
    [Google Scholar]
  38. ZhengC. HeG. XiaoX. LuM. ZhongH. ZuoX. NanJ. Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation.Appl. Catal. B201720520121010.1016/j.apcatb.2016.12.026
    [Google Scholar]
  39. BellarditaM. García-LópezE.I. MarcìG. KrivtsovI. GarcíaJ.R. PalmisanoL. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4.Appl. Catal. B201822022223310.1016/j.apcatb.2017.08.033
    [Google Scholar]
  40. WangY. HangK. AndersonN.A. LianT. Comparison of electron transfer dynamics in molecule-to-nanoparticle and intramolecular charge transfer complexes.J. Phys. Chem. B2003107359434944010.1021/jp034935o
    [Google Scholar]
  41. TachikawaT. TojoS. FujitsukaM. MajimaT. Photocatalytic one-electron oxidation of biphenyl derivatives strongly coupled with the TiO2 surface.Langmuir20042072753275910.1021/la036126215835148
    [Google Scholar]
  42. HigashimotoS. KitaoN. YoshidaN. SakuraT. AzumaM. OhueH. SakataY. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation.J. Catal.2009266227928510.1016/j.jcat.2009.06.018
    [Google Scholar]
  43. ZhangP. WuP. BaoS. WangZ. TianB. ZhangJ. Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes.Chem. Eng. J.20163061151116110.1016/j.cej.2016.08.015
    [Google Scholar]
  44. KuneneA. van HeerdenT. GambuT.G. van SteenE. Liquid phase, aerobic oxidation of benzyl alcohol over the catalyst system (Pt/TiO 2 +H 2 O).ChemCatChem202012194760476410.1002/cctc.202000759
    [Google Scholar]
  45. TripathyJ. LogetG. AltomareM. SchmukiP. Polydopamine-coated TiO<SUB>2</SUB> nanotubes for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde under visible light.J. Nanosci. Nanotechnol.20161655353535810.1166/jnn.2016.1259527483930
    [Google Scholar]
  46. TongJ. ZhangQ. BoL. SuL. WangQ. Effectively photocatalytic aerobic oxidation of benzyl alcohol catalyzed by spinel Co–Ni ferrite under visible light irradiation.J. Sol-Gel Sci. Technol.2015761192610.1007/s10971‑015‑3745‑x
    [Google Scholar]
  47. YeX. DaiX. MengS. FuX. ChenS. A Novel CDS/g- C3N4 composite photocatalyst: Preparation, characterization and photocatalytic performance with different reaction solvents under visible light irradiation.Chin. J. Chem.201735221722510.1002/cjoc.201600251
    [Google Scholar]
  48. LiX. YuJ. JaroniecM. ChenX. Cocatalysts for selective photoreduction of CO 2 into solar fuels.Chem. Rev.201911963962417910.1021/acs.chemrev.8b0040030763077
    [Google Scholar]
  49. JingY. JiangJ. YanB. LuS. JiaoJ. XueH. YangG. ZhengG. Activation of dioxygen by cobaloxime and nitric oxide for efficient tempo-catalyzed oxidation of alcohols.Adv. Synth. Catal.201135371146115210.1002/adsc.201100067
    [Google Scholar]
  50. ZhangM. WangQ. ChenC. ZangL. MaW. ZhaoJ. Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies.Angew. Chem. Int. Ed.200948336081608410.1002/anie.20090032219343745
    [Google Scholar]
  51. HaoH. ZhangL. WangW. QiaoS. LiuX. Photocatalytic hydrogen evolution coupled with efficient selective benzaldehyde production from benzyl alcohol aqueous solution over ZnS-Nix Sy composites.ACS Sustain. Chem.& Eng.2019712105011050810.1021/acssuschemeng.9b01017
    [Google Scholar]
  52. JingK. MaW. RenY. XiongJ. GuoB. SongY. LiangS. WuL. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol.Appl. Catal. B2019243101810.1016/j.apcatb.2018.10.027
    [Google Scholar]
  53. ZhangB. LiJ. GaoY. ChongR. WangZ. GuoL. ZhangX. LiC. To boost photocatalytic activity in selective oxidation of alcohols on ultrathin Bi2MoO6 nanoplates with Pt nanoparticles as cocatalyst.J. Catal.20173459610310.1016/j.jcat.2016.11.023
    [Google Scholar]
  54. SheH. LiL. SunY. WangL. HuangJ. ZhuG. WangQ. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation.Appl. Surf. Sci.20184571167117310.1016/j.apsusc.2018.07.045
    [Google Scholar]
  55. ZhangN. FuX. XuY.J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst.J. Mater. Chem.201121228152815810.1039/c1jm10100e
    [Google Scholar]
  56. Hosseini MonfaredH. AbbasiV. RezaeiA. GhorbanlooM. AghaeiA. A heterogenized vanadium oxo-aroylhydrazone catalyst for efficient and selective oxidation of hydrocarbons with hydrogen peroxide.Trans. Met. Chem.2012371859210.1007/s11243‑011‑9561‑4
    [Google Scholar]
  57. MobinikhalediA. ZendehdelM. SafariP. Effect of substituents and encapsulation on the catalytic activity of copper(II) complexes of two tridentate Schiff base ligands based on thiophene: benzyl alcohol and phenol oxidation reactions.Trans. Met. Chem.201439443144210.1007/s11243‑014‑9817‑x
    [Google Scholar]
  58. MaJ. YuX. LiuX. LiH. HaoX. LiJ. The preparation and photocatalytic activity of Ag-Pd/g-C3N4 for the coupling reaction between benzyl alcohol and aniline.Molecular Catalysis201947611053310.1016/j.mcat.2019.110533
    [Google Scholar]
  59. HaynesW.M. LideD.R. BrunoT.J. Eds.; Chemistry and Physics, 95th ed.; CRC Press: Oakville,2014
    [Google Scholar]
  60. JakobA. GrilcM. TeržanJ. LikozarB. Solubility temperature dependence of bio-based levulinic acid, furfural, and hydroxymethylfurfural in water, nonpolar, polar aprotic and protic solvents.Processes20219692410.3390/pr9060924
    [Google Scholar]
  61. SchirmerR.E. Modern Methods of Pharmaceutical Analysis.2nd edCRC Press1990
    [Google Scholar]
  62. ReichardtC. WeltonT. Solvents and Solvent Effects in Organic Chemistry.4th edWeinheimWILE Y-VCH Verlag GmbH & Co2011
    [Google Scholar]
  63. FrancoC. OlmstedJ.III Photochemical determination of the solubility of oxygen in various media.Talanta199037990590910.1016/0039‑9140(90)80251‑A18965040
    [Google Scholar]
  64. YalkowskyS.H. HeY. JainP. Handbook of Aqueous Solubility Data.Boca RatonCRC Press2010
    [Google Scholar]
  65. PásztóiB. TrötschlerT.M. SzabóÁ. KerscherB. TenhuH. MülhauptR. IvánB. Quasiliving cationic ring-opening polymerization of 2-ethyl-2-oxazoline in benzotrifluoride, as an alternative reaction medium.Polymer2021212123165
    [Google Scholar]
  66. Liquids-Dielectric ConstantsAvailable from: https://www.engineeringtoolbox.com/liquid-dielectric-constants-d_1263.html
  67. LiA. TangS. TanP. LiuC. LiangB. Measurement and prediction of oxygen solubility in toluene at temperatures from 298.45 K to 393.15 K and pressures up to 1.0 MPa.J. Chem. Eng. Data20075262339234410.1021/je700330c
    [Google Scholar]
  68. YangY. MillerD.J. HawthorneS.B. Toluene solubility in water and organic partitioning from gasoline and diesel fuel into water at elevated temperatures and pressures.J. Chem. Eng. Data199742590891310.1021/je960395v
    [Google Scholar]
  69. GengM. DuanZ. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures.Geochim. Cosmochim. Acta201074195631564010.1016/j.gca.2010.06.034
    [Google Scholar]
  70. WuG. CaoE. KuhnS. GavriilidisA. A novel approach for measuring gas solubility in liquids using a tube‐in‐tube membrane contactor.Chem. Eng. Technol.201740122346235010.1002/ceat.201700196
    [Google Scholar]
  71. BanerjeeS. Solubility Mixtures Water.198418587591
    [Google Scholar]
  72. NosakaY. NosakaA.Y. Reconsideration of Intrinsic Band Alignments within Anatase and Rutile TiO 2.J. Phys. Chem. Lett.20167343143410.1021/acs.jpclett.5b0280426842358
    [Google Scholar]
  73. GuoT. BaiZ. WuC. ZhuT. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation.Appl. Catal. B200879217117810.1016/j.apcatb.2007.09.033
    [Google Scholar]
  74. Ultra Vitalux 300 W 230 V E27.Technical Data2008
    [Google Scholar]
  75. PrausnitzJ.M. Regular solution theory for gas‐liquid solutions.AIChE J.19584326927210.1002/aic.690040307
    [Google Scholar]
  76. del Carmen GrandeM. JuliáJ.A. BarreroC.R. MarschoffC.M. BianchiH.L. The (water+acetonitrile) mixture revisited: A new approach for calculating partial molar volumes.J. Chem. Thermodyn.200638676076810.1016/j.jct.2005.08.009
    [Google Scholar]
  77. GöksuH. BurhanH. MustafovS.D. ŞenF. Oxidation of benzyl alcohol compounds in the presence of carbon hybrid supported platinum nanoparticles (Pt@CHs) in oxygen atmosphere.Sci. Rep.2020101543910.1038/s41598‑020‑62400‑532214224
    [Google Scholar]
  78. LiH. LiuR. LianS. LiuY. HuangH. KangZ. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction.Nanoscale2013583289329710.1039/c3nr00092c23467384
    [Google Scholar]
  79. AugugliaroV. ColucciaS. LoddoV. MarcheseL. MartraG. PalmisanoL. SchiavelloM. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: Mechanistic aspects and FT-IR investigation.Appl. Catal. B1999201152710.1016/S0926‑3373(98)00088‑5
    [Google Scholar]
  80. SleimanM. ConchonP. FerronatoC. ChovelonJ.M. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization.Appl. Catal. B2009863-415916510.1016/j.apcatb.2008.08.003
    [Google Scholar]
  81. MaoY. BakacA. Photocatalytic oxidation of toluene to benzaldehyde by molecular oxygen.J. Phys. Chem.1996100104219422310.1021/jp9529376
    [Google Scholar]
  82. MarcìG. AddamoM. AugugliaroV. ColucciaS. García-LópezE. LoddoV. MartraG. PalmisanoL. SchiavelloM. Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant.J. Photochem. Photobiol. Chem.20031601-210511410.1016/S1010‑6030(03)00228‑4
    [Google Scholar]
  83. MuellerR. KammlerH.K. WegnerK. PratsinisS.E. OH surface density of SiO 2 and TiO 2 by thermogravimetric analysis.Langmuir200319116016510.1021/la025785w
    [Google Scholar]
  84. MathewT. VijayarajM. PaiS. TopeB. HegdeS. RaoB. GopinathC. A mechanistic approach to phenol methylation on Cu1−xCoxFe2O4: FTIR study.J. Catal.2004227117518510.1016/j.jcat.2004.07.005
    [Google Scholar]
  85. BratožS. HadžiD. SheppardN. The infra-red absorption bands associated with the COOH and COOD Groups in dimeric carboxylic acid-II. The Region from 3700 to 1500 Cm-1.Spectrochim. Acta19568249261
    [Google Scholar]
  86. WangL.Y. ZhangY.H. ZhaoL.J. Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate.J. Phys. Chem. A2005109460961410.1021/jp045881116833386
    [Google Scholar]
/content/journals/photocat/10.2174/012665976X272707231206063253
Loading
/content/journals/photocat/10.2174/012665976X272707231206063253
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): benzaldehyde; benzyl alcohol; deposits; Photo-oxidation; solvent effects; TiO2-P25
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test