Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Background

From an industries and academic perspective, there is a need for a method for producing 3-nitro-4-aryl-2H-chromen-2-ones from aryl alkynoate esters that is both economic and environmental benign. In this context, superoxide ion-assisted radical cascade reaction can be an efficient and greener protocol.

Objective

Herein, we have demonstrated an unprecedented methylene blue (MB) visible light photocatalysis for the production of a series of 3-nitro-4-aryl-2H-chromen-2-ones from readily available aryl alkynoate esters and a nitrating agent in solution.

Methods

Synthesis of 3-nitro-4-aryl-2H-chromen-2-ones has been performed in the presence of aryl alkynoate ester, TBAN, DIPEA, solvent, catalyst and molecular oxygen under visible light irradiation at room temperature. The products were purified by column chromatography using silica gel, and the mixture of ethyl acetate/petroleum ether as an eluting solvent and characterized by IR, NMR and mass spectroscopic analysis.

Results

A series of aryl alkynoate esters were successfully nitrated into corresponding 3-nitro-4-aryl-2H-chromen-2-ones with good isolated yields by this protocol, in which the key NO-radicals formed by the action of superoxide ion (O−∙).

Conclusion

In contrast to the literature-reported methods of synthesis of 3-nitro-4-aryl-2H-chromen-2-ones, the process described here for making 3-nitro-4-aryl-2H-chromen-2-ones uses methylene blue visible light photocatalysis, is inexpensive, mild, does not require a metal precursor or high temperatures, and is successful when using the direct sunlight.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/012665976X295034240529130434
2024-06-11
2025-04-13
Loading full text...

Full text loading...

References

  1. (a FascoM.J. HildebrandtE.F. SuttieJ.W. Evidence that warfarin anticoagulant action involves two distinct reductase activities.J. Biol. Chem.198225719112101121210.1016/S0021‑9258(18)33742‑66811577
    [Google Scholar]
  2. (b YuD. SuzukiM. XieL. Morris-NatschkeS.L. LeeK.H. Recent progress in the development of coumarin derivatives as potent anti‐HIV agents.Med. Res. Rev.200323332234510.1002/med.1003412647313
    [Google Scholar]
  3. (c Le BrasG. RadanyiC. PeyratJ.F. BrionJ.D. AlamiM. MarsaudV. StellaB. RenoirJ.M. New novobiocin analogues as antiproliferative agents in breast cancer cells and potential inhibitors of heat shock protein 90.J. Med. Chem.200750246189620010.1021/jm070777417979263
    [Google Scholar]
  4. (d GroverJ. JachakS.M. Coumarins as privileged scaffold for anti-inflammatory drug development.RSC Advances2015549388923890510.1039/C5RA05643H
    [Google Scholar]
  5. (e EmamiS. DadashpourS. Current developments of coumarin-based anti-cancer agents in medicinal chemistry.Eur. J. Med. Chem.201510261163010.1016/j.ejmech.2015.08.03326318068
    [Google Scholar]
  6. (f UtrejaD. JainN. SharmaS. Advances in synthesis and potentially bioactive of coumarin derivatives.Curr. Org. Chem.20182225092536
    [Google Scholar]
  7. (g GillesP. VeryserC. VangrunderbeeckS. CeustersS. Van MeerveltL. De BorggraeveW.M. Synthesis of N -acyl sulfamates from fluorosulfates and amides.J. Org. Chem.20198421070107810.1021/acs.joc.8b0278530582333
    [Google Scholar]
  8. (h JamesM.L. FultonR.R. HendersonD.J. EberlS. MeikleS.R. ThomsonS. AllanR.D. DolleF. FulhamM.J. KassiouM. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand.Bioorg. Med. Chem.200513226188619410.1016/j.bmc.2005.06.03016039131
    [Google Scholar]
  9. (i DasP. AlmondD.W. TumbeltyL.N. AustinB.E. Moura-LettsG. From heterocycles to carbacycles: Synthesis of carbocyclic nucleoside analogues from enals and hydroxylamines.Org. Lett.202022145491549510.1021/acs.orglett.0c0184632602726
    [Google Scholar]
  10. (j HaunG. PanequeA.N. AlmondD.W. AustinB.E. Moura-LettsG. Synthesis of chromenoisoxazolidines from substituted salicylic nitrones via visible-light photocatalysis.Org. Lett.20192151388139210.1021/acs.orglett.9b0009730779582
    [Google Scholar]
  11. (a Floc’hF. MaugerF. DesmursJ-R. GardA. BagnerisF. CarltonB. Coumarin in plants and fruits: Implications in perfumery.Perfum. Flavor.2002273236
    [Google Scholar]
  12. (b WangY.H. AvulaB. NanayakkaraN.P.D. ZhaoJ. KhanI.A. Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States.J. Agric. Food Chem.201361184470447610.1021/jf400586223627682
    [Google Scholar]
  13. (c StiefelC. SchubertT. MorlockG.E. Bioprofiling of cosmetics with focus on streamlined coumarin analysis.ACS Omega2017285242525010.1021/acsomega.7b0056230023744
    [Google Scholar]
  14. (d GualandiA. RodeghieroG. Della RoccaE. BertoniF. MarchiniM. PerciaccanteR. JansenT.P. CeroniP. CozziP.G. Application of coumarin dyes for organic photoredox catalysis.Chem. Commun.20185472100441004710.1039/C8CC04048F30039815
    [Google Scholar]
  15. (e CaoD. LiuZ. VerwilstP. KooS. JangjiliP. KimJ.S. LinW. Coumarin-based small-molecule fluorescent chemosensors.Chem. Rev.201911918104031051910.1021/acs.chemrev.9b0014531314507
    [Google Scholar]
  16. SinghJ. SharmaA. Visible light mediated synthesis of oxindoles.Adv. Synth. Catal.2021363184284430810.1002/adsc.202100515
    [Google Scholar]
  17. LiuW. ZhangY. GuoH. Nitration and cyclization of arene-alkynes: An access to 9-nitrophenathrenes.J. Org. Chem.20188317105181052410.1021/acs.joc.8b0120130074780
    [Google Scholar]
  18. SauS. MalP. 3-Nitro-coumarin synthesis via nitrative cyclization of aryl alkynoates using tert -butyl nitrite.Chem. Commun.202157739228923110.1039/D1CC03415D34519303
    [Google Scholar]
  19. Natarajan, P.; Priya; Chuskit, D. Persulfate-nitrogen doped graphene mixture as an oxidant for the synthesis of 3-nitro-4-aryl-2 H -chromen-2-ones from aryl alkynoate esters and nitrite.Org. Biomol. Chem.202220224616462410.1039/D2OB00827K35608321
    [Google Scholar]
  20. SawyerD.T. Oxygen Chemistry.Oxford University Press19912628
    [Google Scholar]
  21. Afanas’evI.B. Superoxide Ion: Chemistry and Biological Implications.CRC Press199128
    [Google Scholar]
  22. HayyanM. HashimM.A. AlNashefI.M. Superoxide Ion: Generation and chemical implications.Chem. Rev.201611653029308510.1021/acs.chemrev.5b0040726875845
    [Google Scholar]
  23. (a NatarajanP. Partigya; Pooja, A photocatalyst-free method for the synthesis of 6-alkyl(aryl)phenanthridines under visible light irradiation.New J. Chem.20224647228622286810.1039/D2NJ04414E
    [Google Scholar]
  24. (b NatarajanP. Pooja; Meena, Pooja; Meena. 2‐Arylbenzyl methyl ethers as precursors for the tandem synthesis of benzo [c] coumarins over heterogeneous visible‐light photoredox catalysis with graphitic carbon nitride (g‐C3N4).Asian J. Org. Chem.2023122e20220064310.1002/ajoc.202200643
    [Google Scholar]
  25. (c NatarajanP. ChuskitD. Priya, Readily available alkylbenzenes as precursors for the one-pot preparation of buta-1,3-dienes under DDQ visible-light photocatalysis in benzotrifluoride.Org. Chem. Front.2022951395140210.1039/D1QO01869H
    [Google Scholar]
  26. (d NatarajanP. ChuskitD. Priya; Manjeet, Transition-metal-free synthesis of trifluoromethylated benzoxazines via a visible-light-promoted tandem difunctionalization of o -vinylanilides with trifluoromethylsulfinate.New J. Chem.202146132232710.1039/D1NJ04548B
    [Google Scholar]
  27. (e NatarajanP. Meena; Partigya; Pooja, Visible-light-induced photocatalytic C H arylation-oxidation of vinylarenes: Facile access to (un)symmetrical 1,2-diarylethane-1,2-diones in water.J. Photochem. Photobiol. Chem.202343611437210.1016/j.jphotochem.2022.114372
    [Google Scholar]
  28. (a ChaudharyR. NatarajanP. Visible light photoredox activation of sulfonyl chlorides: applications in organic synthesis.ChemistrySelect20172226458647910.1002/slct.201701156
    [Google Scholar]
  29. (b NatarajanP. KönigB. Excited‐State 2,3‐Dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ*) initiated organic synthetic transformations under visible‐light irradiation.Eur. J. Org. Chem.20212021152145216110.1002/ejoc.202100011
    [Google Scholar]
  30. (c ShanX. WangX. ChenE. LiuJ. LuK. ZhaoX. Visible-light-promoted trifluoromethylthiolation and trifluoromethylselenolation of 1,4-dihydropyridines.J. Org. Chem.202388131932810.1021/acs.joc.2c0234836573495
    [Google Scholar]
  31. (d YanC.Y. WuZ.W. HeX.Y. MaY.H. PengX.R. WangL. YangQ.Q. Visible-light-induced tandem radical brominative addition/cyclization of activated alkynes with CBr 4 for the synthesis of 3-bromocoumarins.J. Org. Chem.202388164765210.1021/acs.joc.2c0172136480338
    [Google Scholar]
  32. (e LiuR. ZhouN. ZhaoT. ZhangY. WangK. ZhaoX. LuK. Visible-light-induced difluoroalkylation of alkenes and alkynes with fluoro-containing hypervalent iodane (III) reagents under photo-catalyst-free conditions.J. Org. Chem.202388148349210.1021/acs.joc.2c0248836563003
    [Google Scholar]
  33. (f LiY. WiseD.E. MitchellJ.K. ParasramM. Cascade synthesis of phenanthrenes under photoirradiation.J. Org. Chem.202388171772110.1021/acs.joc.2c0220236525632
    [Google Scholar]
  34. PatelR.I. SharmaA. SharmaS. SharmaA. Visible light-mediated applications of methylene blue in organic synthesis.Org. Chem. Front.2021871694171810.1039/D0QO01182G
    [Google Scholar]
  35. YangJ. CaoY. ZhangN. Spectrophotometric method for superoxide anion radical detection in a visible light (400–780 nm) system.Spectrochim. Acta A Mol. Biomol. Spectrosc.202023911855610.1016/j.saa.2020.11855632502811
    [Google Scholar]
  36. KumarT.U. BobdeY. PulyaS. RanganK. GhoshB. BhattacharyaA. Fused chromeno‐thieno/furo‐pyridines as potential analogs of lamellarin D and their anticancer activity evaluation.ChemistrySelect2019436107261073010.1002/slct.201902946
    [Google Scholar]
/content/journals/photocat/10.2174/012665976X295034240529130434
Loading
/content/journals/photocat/10.2174/012665976X295034240529130434
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test