Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Photocatalytic oxidation is a promising tool for waste water treatment and decomposition of biologically non digestible substances. Immersed nanoscale catalyst particles from semiconductor materials such as TiO and ZnO can be excited by absorbed UV radiation, leading to hydroxyl-ion formation at the surface of the semiconductor and oxidative degradation of pollutants.

This contribution deals with reactors equipped with catalyst coated light guides to combine the advantages of immobilized catalysts with nearly homogeneous irradiation. With experimental and theoretical methods the coupling and decoupling of radiation were investigated and the performance of catalyst coated light guides was tested by means of methylene-blue degradation.

Radiation models, known from the recent literature, use single ray, parallel ray or multi ray models to approximate the light transmission. These models neglect Fresnel reflection and consider only coupling into the light guide. In this study, the LED was simulated as a Lambertian radiator using 10 4 rays with angle dependent intensities. This well-known model was extended with Fresnel-reflection, which predicted the measured coupling efficiencies accurately. The simulations predict the decoupling and catalyst activation at the lateral surface of the light guide for two boundary cases, ideal matt and ideal reflective surfaces. To generate matt surfaces, the light guides were either scratched or coated with TiO p25 nanopowder. Sol-gel coating methods were used, to create reflective surfaces.

When using matt surfaces, the decoupling rate is very high: 80% of the radiant flux exits the light guide in less than 10 cm. If light guides with reflective surfaces are used, the radiant flux leaving the light guide is low: less than 10% of the radiation exited the light conductor in the first 10 cm. Methylene-blue degradation, seen as a model reaction, was used to determine the reactor performance by comparing the pseudo first order reaction coefficients. Due to the uniform light distribution along the length of the light guides and the resulting even formation of reactive radicals, the quantum yield was increased by a factor of 3, using sol-gel coated light guides, rather than powder coated light guides.

The effectiveness of LED driven optical fiber reactors was intensified, if reflective surfaces are used instead of matt surfaces. These surfaces are achieved by sol gel chemistry. However, to use the complete amount of photons, which entered the optical fiber, very long light guides are needed.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/2665976X01999200617112504
2020-05-01
2024-11-26
Loading full text...

Full text loading...

References

  1. KabirE.R. RahmanM.S. RahmanI. A review on endocrine disruptors and their possible impacts on human health.Environ. Toxicol. Pharmacol.201540124125810.1016/j.etap.2015.06.009 26164742
    [Google Scholar]
  2. SchriewerA. OdagiriM. WuertzS. MisraP.R. PanigrahiP. ClasenT. JenkinsM.W. Human and animal fecal contamination of community water sources, stored drinking water and hands in rural india measured with validated microbial source tracking assays.Am. J. Trop. Med. Hyg.201593350951610.4269/ajtmh.14‑0824 26149868
    [Google Scholar]
  3. SkariyachanS. MahajanakattiA.B. GrandhiN.J. PrasannaA. SenB. SharmaN. VasistK.S. NarayanappaR. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India.Environ. Monit. Assess.2015187527910.1007/s10661‑015‑4488‑4 25896199
    [Google Scholar]
  4. KostylaC. BainR. CronkR. BartramJ. Seasonal variation of fecal contamination in drinking water sources in developing countries: a systematic review.Sci. Total Environ.201551433334310.1016/j.scitotenv.2015.01.018 25676921
    [Google Scholar]
  5. KunduA. SmithW.A. HarveyD. WuertzS. Drinking water safety: Role of hand hygiene, sanitation facility, and water system in semi-urban areas of India.Am. J. Trop. Med. Hyg.201899488989810.4269/ajtmh.16‑0819 30062991
    [Google Scholar]
  6. HeitzingerK. RochaC.A. QuickR.E. MontanoS.M. TilleyD.H.Jr MockC.N. CarrascoA.J. CabreraR.M. HawesS.E. “Improved” but not necessarily safe: an assessment of fecal contamination of household drinking water in rural Peru.Am. J. Trop. Med. Hyg.201593350150810.4269/ajtmh.14‑0802 26195455
    [Google Scholar]
  7. BainR. CronkR. WrightJ. YangH. SlaymakerT. BartramJ. Fecal contamination of drinking-water in low- and middle-income countries: a systematic review and meta-analysis.PLoS Med.2014115 e100164410.1371/journal.pmed.1001644 24800926
    [Google Scholar]
  8. XuH. LiY. DingM. ChenW. WangK. LuC. Engineered photocatalytic material membrane assemblies for removing nitrate from water.ACS Sustain. Chem.& Eng.201867042705110.1021/acssuschemeng.8b00917
    [Google Scholar]
  9. SnyderS.A. WesterhoffP. YoonY. SedlakD.L. Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry.Environ. Eng. Sci.20032044946910.1089/109287503768335931
    [Google Scholar]
  10. VälitaloP. PerkolaN. SeilerT-B. SillanpääM. KuckelkornJ. MikolaA. HollertH. SchultzE. Estrogenic activity in Finnish municipal wastewater effluents.Water Res.20168874074910.1016/j.watres.2015.10.05626584345
    [Google Scholar]
  11. PatroleccoL. CapriS. AdemolloN. Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters.Environ. Sci. Pollut. Res. Int.20152285864587610.1007/s11356‑014‑3765‑z 25352396
    [Google Scholar]
  12. PurdomC.E. HardimanP.A. ByeV.V.J. EnoN.C. TylerC.R. SumpterJ.P. Estrogenic effects of effluents from sewage treatment works.Chem. Ecol.1994827528510.1080/02757549408038554
    [Google Scholar]
  13. KiddK.A. BlanchfieldP.J. MillsK.H. PalaceV.P. EvansR.E. LazorchakJ.M. FlickR.W. Collapse of a fish population after exposure to a synthetic estrogen.Proc. Natl. Acad. Sci. USA2007104218897890110.1073/pnas.0609568104 17517636
    [Google Scholar]
  14. DeeganA.M. ShaikB. NolanK. UrellK. OelgemöllerM. TobinJ. MorrisseyA. Treatment options for wastewater effluents from pharmaceutical companies.Int. J. Environ. Sci. Technol.2011864966610.1007/BF03326250
    [Google Scholar]
  15. BonvinF. JostL. RandinL. BonvinE. KohnT. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.Water Res.201690909910.1016/j.watres.2015.12.001 26724443
    [Google Scholar]
  16. AltmannJ. RehfeldD. TräderK. SperlichA. JekelM. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.Water Res.20169213113910.1016/j.watres.2016.01.051 26849316
    [Google Scholar]
  17. MaillerR. GasperiJ. CoquetY. DeromeC. BuletéA. VullietE. BressyA. VarraultG. ChebboG. RocherV. Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater.J. Environ. Chem. Eng.201641102110910.1016/j.jece.2016.01.018
    [Google Scholar]
  18. MaillerR. GasperiJ. CoquetY. BuletÃl, A.; Vulliet, E.; Deshayes, S.; Zedek, S.; Mirande-Bret, C.; Eudes, V.; Bressy, A.; Caupos, E.; Moilleron, R.; Chebbo, G.; Rocher, V. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale.Sci. Total Environ.2016542Pt A98399610.1016/j.scitotenv.2015.10.15326571333
    [Google Scholar]
  19. SnyderS.A. AdhamS. ReddingA.M. CannonF.S. DeCarolisJ. OppenheimerJ. WertE.C. YoonY. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals.Desalination2007202156181[Wastewater Reclamation and Reuse for Sustainability.]10.1016/j.desal.2005.12.052
    [Google Scholar]
  20. WatkinsonA.J. MurbyE.J. CostanzoS.D. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling.Water Res.200741184164417610.1016/j.watres.2007.04.005 17524445
    [Google Scholar]
  21. XuP. DrewesJ.E. BellonaC. AmyG. KimT-U. AdamM. HebererT. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.Water Environ. Res.2005771404810.2175/106143005X41609 15765934
    [Google Scholar]
  22. KimS. ChuK.H. Al-HamadaniY.A. ParkC.M. JangM. KimD-H. YuM. HeoJ. YoonY. Removal of contaminants of emerging concern by membranes in water and wastewater: A review.Chem. Eng. J.201833589691410.1016/j.cej.2017.11.044
    [Google Scholar]
  23. ClaraM. StrennB. GansO. MartinezE. KreuzingerN. KroissH. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants.Water Res.200539194797480710.1016/j.watres.2005.09.015 16242170
    [Google Scholar]
  24. YaoL. ZhangL. WangR. ChouS. DongZ. A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes.J. Hazard. Mater.201630146247010.1016/j.jhazmat.2015.09.027 26410275
    [Google Scholar]
  25. NoutsopoulosC. KoumakiE. MamaisD. NikaM-C. BletsouA.A. ThomaidisN.S. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.Chemosphere2015119Suppl.S109S114[Emerging Pollutants.]10.1016/j.chemosphere.2014.04.107 24927696
    [Google Scholar]
  26. PeillN.J. HoffmannM.R. Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis.Environ. Sci. Technol.19983239840410.1021/es960874e
    [Google Scholar]
  27. PeillN.J. HoffmannM.R. Chemical and physical characterization of a TiO2-coated fiber optic cable reactor.Environ. Sci. Technol.1996302806281210.1021/es960047d
    [Google Scholar]
  28. LingL. TugaoenH. BrameJ. SinhaS. LiC. SchoepfJ. HristovskiK. KimJ.H. ShangC. WesterhoffP. coupling light emitting diodes with photocatalyst-coated optical fibers improves 60 Journal of Photocatalysis, 2020, Vol. 1, No. 1 Robert et al. quantum yield of pollutant oxidation.Environ. Sci. Technol.20175122133191332610.1021/acs.est.7b03454 29028332
    [Google Scholar]
  29. O’Neal TugaoenH. Garcia-SeguraS. HristovskiK. WesterhoffP. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment.Sci. Total Environ.2018613-6141331133810.1016/j.scitotenv.2017.09.242] 28968936
    [Google Scholar]
  30. HouW-M. KuY. Photocatalytic decomposition of gaseous isopropanol in a tubular optical fiber reactor under periodic UV-LED illumination.J. Mol. Catal. Chem.2013374-37571110.1016/j.molcata.2013.03.016
    [Google Scholar]
  31. SpigulisJ. PfafrodsD. StafeckisM. Jelinska-PlataceW. Glowing optical fiber designs and parameters. SPIE Proc,1997296710.1117/12.266542
    [Google Scholar]
  32. WangW. KuY. The light transmission and distribution in an optical fiber coated with TiO2 particles.Chemosphere2003508999100610.1016/S0045‑6535(02)00641‑0 12531705
    [Google Scholar]
  33. BrueggemannD. Entwicklung und Aufbau eines medizinischen Videoendoskops mit integrierten LED-Lichtquellen. Ph.D. thesis, Technische Universitaet Berlin2016
    [Google Scholar]
  34. WetchakunN. PhanichphantS. Effect of temperature on the degree of anatase and rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol-gel method.Current Applied Physics,20088343346 AMN-3 (Third International Conference on Advanced Materials and Nanotechnology)10.1016/j.cap.2007.10.028
    [Google Scholar]
  35. WetchakunN. IncessungvornB. WetchakunK. PhanichphantS. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified solâASgel method.Mater. Lett.20128219519810.1016/j.matlet.2012.05.092
    [Google Scholar]
  36. PadmanabhanS.C. PillaiS.C. ColreavyJ. BalakrishnanS. McCormackD.E. PerovaT.S. Hinder, S. J.; Kelly, J.M. A Simple sol-gel processing for the development of high-temperature stable photoactive anatase titania.Chem. Mater.2007194474448110.1021/cm070980n
    [Google Scholar]
  37. KimD.J. HahnS.H. OhS.H. KimE.J. Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol--gel dip coating.Mater. Lett.20025735536010.1016/S0167‑577X(02)00790‑5
    [Google Scholar]
  38. OhkoY. HashimotoK. FujishimaA. Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films.J. Phys. Chem. A19971018057806210.1021/jp972002k
    [Google Scholar]
  39. HouasA. LachhebH. KsibiM. ElalouiE. GuillardC. HerrmannJ-M. Photocatalytic degradation pathway of methylene blue in water.Appl. Catal. B20013114515710.1016/S0926‑3373(00)00276‑9
    [Google Scholar]
  40. ZhangT. OyamaT. AoshimaA. HidakaH. ZhaoJ. SerponeN. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation.J. Photochem. Photobiol. Chem.200114016317210.1016/S1010‑6030(01)00398‑7
    [Google Scholar]
/content/journals/photocat/10.2174/2665976X01999200617112504
Loading
/content/journals/photocat/10.2174/2665976X01999200617112504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test