Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

The necessity to have green and sustainable industrial processes has promoted new technologies for air and water purification together with the research of new energy sources. In this contest, the TiO-based photocatalysis can be considered a promising route for both environmental applications and hydrogen production through water splitting.

In this work, we have investigated the photocatalytic performance of TiO-CoO composites on both photooxidation and photoreduction reactions. Specifically, we have compared the performance of the composites in the thermo-catalytic, photo-catalytic and photothermal-catalytic oxidation of ethanol chosen as model volatile organic compound (VOC) and in the photocatalytic hydrogen production by simulated solar light from aqueous solution of ethanol.

The samples were prepared with a simple impregnation method, and were characterized by Scanning Electron (SEM) and Transmission Electron (TEM) microscopies, X-ray powder diffraction (XRD), N adsorption-desorption measurements, Temperature Programmed Reduction in hydrogen (H-TPR) and X-ray Photoelectron (XPS), Raman, UV-Vis Diffuse Reflectance (UV-Vis DRS) and Photoluminescence (PL) spectroscopies. The catalytic and photocatalytic activity were carried out on pyrex reactors irradiated with a solar lamp and analyzing the reactions products through gas chromatography.

The presence and the amount of cobalt oxide were found crucial in determining the performance of the TiO-based composites for both the catalytic and photocatalytic processes. In particular, the addition of 1 weight percent of CoO led to the best performance in the photocatalytic processes, whereas a higher amount was beneficial in the thermo-catalytic tests. The multi-catalytic approach based on the synergistic effect of photocatalysis and thermocatalysis in the presence of the TiO-1%CoO sample allowed the temperature necessary to obtain 50% ethanol conversion and 50% yield in CO to be reduced by 40°C and 50°C, respectively. The same sample was also the best catalyst for photocatalytic solar H production.

The presence of small amounts of cobalt oxide leads to an efficient composite with TiO facilitating the space charge separation and increasing the lifetime of the generated photoholes and electrons. The wide versatility of TiO-CoO catalysts both for photooxidation and photoreduction reactions motivates to further exploit the use of these systems in real solar-driven photocatalysis.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/2665976X01666200219113505
2020-05-01
2024-11-22
Loading full text...

Full text loading...

References

  1. PatilS.B. BasavarajappaP.S. GanganagappaN. JyothiM.S. RaghuA.V. ReddyK.R. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification.Int. J. Hydrogen Energy201944130221303910.1016/j.ijhydene.2019.03.164
    [Google Scholar]
  2. ArenaF. Di ChioR. GuminaB. SpadaroL. TrunfioG. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters.Inorg. Chim. Acta201543110110910.1016/j.ica.2014.12.017
    [Google Scholar]
  3. LazarM. VargheseS. NairS. Photocatalytic water treatment by titanium dioxide: Recent Updates.Catalysts2012257260110.3390/catal2040572
    [Google Scholar]
  4. FiorenzaR. Di MauroA. CantarellaM. IariaC. ScalisiE.M. BrundoM.V. GulinoA. ImpellizzeriG. Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts.Chem. Eng. J.2020 37912230910.1016/j.cej.2019.122309
    [Google Scholar]
  5. BellarditaM. El NazerH.A. LoddoV. ParrinoF. VeneziaA.M. PalmisanoL. Photoactivity under visible light of metal loaded TiO2 catalysts prepared by low frequency ultrasound treatment.Catal. Today2017284929910.1016/j.cattod.2016.11.026
    [Google Scholar]
  6. KanakarajuD. GlassB.D. OelgemöllerM. Titanium dioxide photocatalysis for pharmaceutical wastewater treatment.Environ. Chem. Lett.201412274710.1007/s10311‑013‑0428‑0
    [Google Scholar]
  7. KumaravelV. MathewS. BartlettJ. PillaiS.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances.Appl. Catal. B20192441021106410.1016/j.apcatb.2018.11.080
    [Google Scholar]
  8. FiorenzaR. SciréS. D’UrsoL. CompagniniG. BellarditaM. PalmisanoL. Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts.Int. J. Hydrogen Energy201944148961480710.1016/j.ijhydene.2019.04.035
    [Google Scholar]
  9. MiquelotA. DebieuO. RouessacV. VilleneuveC. Prud’hommeN. CureJ. ConstantoudisV. PapavierosG. RoualdesS. VahlasC. TiO2 nanotree films for the production of green H2 by solar water splitting: From microstructural and optical characteristics to the photocatalytic properties.Appl. Surf. Sci.20194941127113710.1016/j.apsusc.2019.07.191
    [Google Scholar]
  10. BellarditaM. García-LópezE. MarcìG. NasilloG. PalmisanoL. Photocatalytic solar light H2 production by aqueous glucose reforming.Eur. J. Inorg. Chem.201820184522453210.1002/ejic.201800663
    [Google Scholar]
  11. FiorenzaR. BellarditaM. D’UrsoL. CompagniniG. PalmisanoL. ScirèS. Au/TiO2-CeO2 catalysts for photocatalytic water splitting and VOCs oxidation reactions.Catalysts2016612110.3390/catal6080121
    [Google Scholar]
  12. VikrantK. ParkC.M. KimK-H. KumarS. JeonE.C. Recent advancements in photocatalyst-based platforms for the destruction of gaseous benzene: Performance evaluation of different modes of photocatalytic operations and against adsorption techniques.J. Photochem. Photobiol. Chem.201941 10031610.1016/j.jphotochemrev.2019.08.003
    [Google Scholar]
  13. PetronellaF. TruppiA. Dell’EderaM. AgostianoA. CurriM.L. ComparelliR. Scalable Synthesis of Mesoporous TiO2 for Environmental Photocatalytic Applications.Materials (Basel)20191211185310.3390/ma12111853 31181637
    [Google Scholar]
  14. FiorenzaR. BellarditaM. ScirèS. PalmisanoL. Effect of the addition of different doping agents on visible light activity of porous TiO2 photocatalysts.Molecular Catal201845510812010.1016/j.mcat.2018.06.002
    [Google Scholar]
  15. AmadelliR. SamioloL. BorsaM. BellarditaM. PalmisanoL. N-TiO2 Photocatalysts highly active under visible irradiation for NOX abatement and 2-propanol oxidation.Catal. Today2013206192510.1016/j.cattod.2011.11.031
    [Google Scholar]
  16. FiliceS. CompagniniG. FiorenzaR. ScirèS. D’UrsoL. FragalàM.E. RussoP. FazioE. ScaleseS. Laser processing of TiO2 colloids for an enhanced photocatalytic water splitting activity.J. Colloid Interface Sci.201748913113710.1016/j.jcis.2016.08.013 27554175
    [Google Scholar]
  17. MizukoshiY. OhwadaM. SeinoS. HoribeH. NishimuraY. TerashimaC. Synthesis of oxygen-deficient blue titanium oxide by discharge plasma generated in aqueous ammonia solution.Appl. Surf. Sci.201948925526110.1016/j.apsusc.2019.05.353
    [Google Scholar]
  18. FiorenzaR. Di MauroA. CantarellaM. PriviteraV. ImpellizzeriG. Selective photodegradation of 2,4-D pesticide from water by molecularly imprinted TiO2.J. Photochem. Photobiol. Chem.2019 38011187210.1016/j.jphotochem.2019.111872
    [Google Scholar]
  19. SinghJ. SahuK. SatpatiB. ShahJ. KotnalaR.K. MohapatraS. Facile synthesis, structural and optical properties of Au-TiO2 plasmonic nanohybrids for photocatalytic applications.J. Phys. Chem. Solids2019 13510910010.1016/j.jpcs.2019.109100
    [Google Scholar]
  20. DaiX. LuG. HaY. XieX. WangX. SunJ. Reversible redox behavior of Fe2O3/TiO2 composites in the gaseous photodegradation process.Ceram. Int.201945131871319210.1016/j.ceramint.2019.03.255
    [Google Scholar]
  21. ChenM-H. LuC-S. WuR-J. Novel Pt/TiO2–WO3 materials irradiated by visible light used in a photoreductive ozone sensor.J. Taiwan Inst. Chem. Eng2014451043104810.1016/j.jtice.2013.08.020
    [Google Scholar]
  22. FiorenzaR. BellarditaM. ScirèS. PalmisanoL. Photocatalytic H2 production over inverse opal TiO2 catalysts.Catal. Today2019321-32211311910.1016/j.cattod.2017.12.011
    [Google Scholar]
  23. YuJ. HaiY. JaroniecM. Photocatalytic hydrogen production over CuO-modified titania.J. Colloid Interface Sci.2011357122322810.1016/j.jcis.2011.01.101 21345445
    [Google Scholar]
  24. BellarditaM. FiorenzaR. PalmisanoL. SciréS. Photo-catalytic and photo-thermo-catalytic applications of cerium oxide-based materials.Cerium Oxide (CeO2): Synthesis, Properties and Applications; Metal Oxides series; Scirè, S. PalmisanoL. AmsterdamElsevier Science B.V202010916710.1016/B978‑0‑12‑815661‑2.00004‑9
    [Google Scholar]
  25. SadanandamG. LalithaK. Durga KumariV. ShankarM.V. SubrahmanyamM. Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation.Int. J. Hydrogen Energy2013389655966410.1016/j.ijhydene.2013.05.116
    [Google Scholar]
  26. SavioA.K.P.D. FletcherJ. SmithK. IyerR. BaoJ.M. Robles HernándezF.C. Environmentally effective photocatalyst CoO–TiO2 synthesized by thermal precipitation of Co in amorphous TiO2.Appl. Catal. B201618244945510.1016/j.apcatb.2015.09.047
    [Google Scholar]
  27. ChangT-Y. LiuC-L. HuangK-H. KuoH-W. Indoor and outdoor exposure to volatile organic compounds and health risk assessment in residents living near an optoelectronics industrial park.Atmosphere20191038010.3390/atmos10070380
    [Google Scholar]
  28. JanssonJ. PalmqvistA.E.C. FridellE. SkoglundhM. ÖsterlundL. ThormählenP. LangerV. Show more on the catalytic activity of Co3O4 in low‐temperature CO oxidation.J. Catal.200221138739710.1016/S0021‑9517(02)93738‑3
    [Google Scholar]
  29. FiorenzaR. ScirèS. VeneziaA.M. Carbon supported Ru-Co bimetallic catalysts for the H2 production through NaBH4 and NH3BH3 hydrolysis.Int. J. Energy Res.2018421183119510.1002/er.3918
    [Google Scholar]
  30. OhsakaT. IzumiF. FujikiY. Raman spectrum of anatase, TiO2.J. Raman Spectrosc.1978732132410.1002/jrs.1250070606
    [Google Scholar]
  31. SuW. ZhangJ. FengZ. ChenT. YingP. LiC. UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk.J. Phys. Chem. C20081127710771610.1021/jp7118422
    [Google Scholar]
  32. KhanW. AhmadS. HassanM.M. NaqviA.H. Structural phase analysis, band gap tuning and fluorescence properties of Co doped TiO2 nanoparticles.Opt. Mater.20143827828510.1016/j.optmat.2014.10.054
    [Google Scholar]
  33. AkshayV.R. ArunB. MandalG. MuttaG.R. ChandaA. VasundharaM. Observation of optical band-gap narrowing and enhanced magnetic moment in Co-Doped Sol-Gel-Derived anatase TiO2 nanocrystals.J. Phys. Chem. C2018122265922660410.1021/acs.jpcc.8b06646
    [Google Scholar]
  34. ChoudhuryB. BorahB. ChoudhuryA. Ce-Nd codoping effect on the structural and optical properties of TiO2 nanoparticles.Mater. Sci. Eng. B201317823924710.1016/j.mseb.2012.11.017
    [Google Scholar]
  35. TangC-W. WangC-B. ChienS-H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS.Thermochim. Acta2008473687310.1016/j.tca.2008.04.015
    [Google Scholar]
  36. LoriteI. RomeroJ.J. FernándezJ.F. Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles.J. Raman Spectrosc.2012431443144810.1002/jrs.4098
    [Google Scholar]
  37. Amorós-PérezA. Cano-CasanovaL. Castillo-DeltellA. Lillo-RódenasM.Á. del Carmen Román-MartínezM. TiO2 modification with transition metallic species (Cr, Co, Ni, and Cu) for photocatalytic abatement of acetic acid in liquid phase and propene in gas phase.Materials (Basel)2019124010.3390/ma12010040
    [Google Scholar]
  38. TayadeR.J. KulkarniR.G. JasraR.V. Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water.Ind. Eng. Chem. Res.2006455231523810.1021/ie051362o
    [Google Scholar]
  39. Di PaolaA. MarcìG. PalmisanoL. SchiavelloM. UosakiK. IkedaS. OhtaniB. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: Characterization and photocatalytic activity for the degradation of 4-nitrophenol.J. Phys. Chem. B200210663764510.1021/jp013074l
    [Google Scholar]
  40. Kerkez-KuyumcuÖ. KibarE. DayıoğluK. GedikF. AkınA.N. Özkara-AydınoğluS. A comparative study for removal of different dyes over M/TiO2 (M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation.J. Photochem. Photobiol. Chem.201531117618510.1016/j.jphotochem.2015.05.037
    [Google Scholar]
  41. GuF. LiC. HuY. ZhangL. Synthesis and optical characterization of Co3O4 nanocrystals.J. Cryst. Growth200730436937310.1016/j.jcrysgro.2007.03.040
    [Google Scholar]
  42. SethiD. SakthivelR. ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli.J. Photochem. Photobiol. B201716811712310.1016/j.jphotobiol.2017.02.005 28212518
    [Google Scholar]
  43. Van de KrolR. LiangY. SchoonmanJ. Solar hydrogen production with nanostructured metal oxides.J. Mater. Chem.20081823112320210.1039/b718969a
    [Google Scholar]
  44. LongM. CaiW. CaiJ. ZhouB. ChaiX. WuY. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation.J. Phys. Chem. B200611041202112021610.1021/jp063441z 17034198
    [Google Scholar]
  45. KobylańskiaM.P. MazierskiP. MalankowskaA. KozakM. DiakM. WiniarskiM.J. KlimczukT. LisowskiW. Nowaczyk, G.; Zaleska-Medynska, A. TiO2-CoxOy composite nanotube arrays via one step electrochemical anodization for visible light–induced photocatalytic reaction.Surf. Interfaces20181217918910.1016/j.surfin.2018.06.001
    [Google Scholar]
  46. LiqiangJ. YichunQ. BaiqiW. ShudanL. BaojiangJ. LibinY. WeiF. HonggangF. JiazhongS. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity.Sol. Energy Mater. Sol. Cells2006901773178710.1016/j.solmat.2005.11.007
    [Google Scholar]
  47. KernazhitskyL. ShymanovskaV. GavrilkoT. NaumovV. FedorenkoL. KshnyakinV. BaranJ. Room temperature photoluminescence of anatase and rutile TiO2 powders.J. Lumin.201414619920410.1016/j.jlumin.2013.09.068
    [Google Scholar]
  48. LoanT.T. LongN.N. Effect of Co2+ doping on Raman spectra and the phase transformation of TiO2:Co2+ nanowires.J. Phys. Chem. Solids201912433634210.1016/j.jpcs.2018.09.007
    [Google Scholar]
  49. LenziG.G. FáveroC.V.B. ColpiniL.M.S. BernabeH. BaessoM.L. SpecchiaS. SantosO.A.A. Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods.Desalination201127024124710.1016/j.desal.2010.11.051
    [Google Scholar]
  50. MichalakA. NowosielskaM. JóźwiakW.K. Physico-Chemical properties of cobalt–ruthenium (10% Co–0.5% Ru) catalysts supported on binary oxides 8.5%ZrO2/support (SiO2, Al2O3, TiO2) for fischer-tropsch synthesis.Top. Catal.2009521044105010.1007/s11244‑009‑9259‑4
    [Google Scholar]
  51. CrisafulliC. MaggioreR. ScirèS. SolarinoL. GalvagnoS. Effect of precursor on the catalytic behaviour of Ru‐Cu/MgO.J. Mol. Catal. Chem.199063556310.1016/0304‑5102(90)85169‑I
    [Google Scholar]
  52. ScirèS. FiorenzaR. GulinoA. CristaldiA. RiccobeneP.M. Selective oxidation of CO in H2‐rich stream over ZSM5 zeolites supported Ru catalysts: an investigation on the role of the support and the Ru particle size.Appl. Catal. A Gen.2016520829110.1016/j.apcata.2016.04.011
    [Google Scholar]
  53. LiX. ZengC. FanG. Magnetic RuCo nanoparticles supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane.Int. J. Hydrogen Energy2015409217922410.1016/j.ijhydene.2015.05.168
    [Google Scholar]
  54. WangY-F. HsiehM-C. LeeJ-F. YangC-M. Nonaqueous synthesis of CoOx/TiO2 nanocomposites showing high photocatalytic activity of hydrogen generation.Appl. Catal. B2013142-14362663210.1016/j.apcatb.2013.05.073
    [Google Scholar]
  55. ZhangJ.D. FungS. LinL.B. LiaoZ.J. Ti ion valence variation induced by ionizing radiation at TiO2/Si interface.Surf. Coat. Tech.200223815815910.1016/S0257‑8972(02)00218‑9
    [Google Scholar]
  56. VorontsovA.V. DubovitskayaV.P. Selectivity of photocatalytic oxidation of gaseous ethanol over pure and modified TiO2.J. Catal.200422110210910.1016/j.jcat.2003.09.011
    [Google Scholar]
  57. BellarditaM. García-LópezE. MarcìG. PalmisanoL. Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension.Int. J. Hydrogen Energy2016415934594710.1016/j.ijhydene.2016.02.103
    [Google Scholar]
  58. PapaefthimiouP. IoannidesT. VerykiosX.E. Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs).Appl. Catal. B199815759210.1016/S0926‑3373(97)00038‑6
    [Google Scholar]
  59. YangC. MiaoG. PiY. XiaQ. WuJ. LiZ. XiaoJ. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review.Chem. Eng. J.20193701128115310.1016/j.cej.2019.03.232
    [Google Scholar]
  60. HeC. ChengJ. ZhangX. DouthwaiteM. PattissonS. HaoZ. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources.Chem. Rev.201911974471456810.1021/acs.chemrev.8b00408 30811934
    [Google Scholar]
  61. ZhuS. LiaoW. ZhangM. LiangS. Design of spatially separated Au and CoO dual cocatalysts on hollow TiO2 for enhanced photocatalytic activity towards the reduction of CO2 to CH4.Chem. Eng. J.201936146146910.1016/j.cej.2018.12.095
    [Google Scholar]
  62. YanZ. WuH. HanA. YuX. DuP. Noble metal-free cobalt oxide (CoOx) nanoparticles loaded on titanium dioxide/cadmium sulfide composite for enhanced photocatalytic hydrogen production from water.Int. J. Hydrogen Energy201439133531336010.1016/j.ijhydene.2014.04.121
    [Google Scholar]
  63. JensenS. KilinD. Cobalt-doped TiO2: a computational analysis of dopant placement and charge transfer direction on thin film anatase.Mol. Phys.201611434, 469-483
    [Google Scholar]
  64. JiangP. XiangW. KuangJ. LiuW. CaoW. Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2.Solid State Sci.201546273210.1016/j.solidstatesciences.2015.05.007
    [Google Scholar]
  65. ScirèS. MinicòS. CrisafulliC. SatrianoC. PistoneA. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts.Appl. Catal. B200340434910.1016/S0926‑3373(02)00127‑3
    [Google Scholar]
  66. BahlawaneN. NgamouP.H. VannierV. KottkeT. HeberleJ. Kohse-HöinghausK. Tailoring the properties and the reactivity of the spinel cobalt oxide.Phys. Chem. Chem. Phys.200911409224923210.1039/b910707j 19812843
    [Google Scholar]
  67. DaimonT. HirakawaT. KitazawaM. SuetakeJ. NosakaY. Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts.Appl. Catal. A200834016917510.1016/j.apcata.2008.02.012
    [Google Scholar]
  68. FujishimaA. HashimotoK. WatanabeT. TiO2 Photocatalysis: Fundamentals and Applications.TokyoBKC, Incorporated1999
    [Google Scholar]
/content/journals/photocat/10.2174/2665976X01666200219113505
Loading
/content/journals/photocat/10.2174/2665976X01666200219113505
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cobalt oxide; composites; hydrogen production; photo-thermocatalysis; photocatalysis; TiO2; VOCs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test