Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Among Advanced oxidation processes, heterogeneous photocatalysis have a great interest, because it uses only light has a source of energy. One of the main limiting processes in photocatalysis is the high probability of electron-hole pair’s recombination in the volume or at the surface of the photocatalyst particles. TiO nanotubes grown by anodic synthesis are widely studied because of the large number of potential practical applications especially in photocatalytic or photoelectrochemical applications. However, the preparation of these electrodes at large scale is still challenging due to some technological obstacles such as the electrochemical cell design or the precise control of nanotubes morphology, especially regarding electrolyte ageing and overheating during the synthesis.

This study examines the electrochemical synthesis of TiO nanotubes supported on large titanium electrodes.

By understanding heat dissipation phenomenon during the synthesis, an optimized electrochemical cell was designed to prepare 6x4 cm 2 anodes. Then we aimed to control precisely the length of the nanotubes independently of electrolyte ageing. Indeed, It was previously observed that the electrolyte composition evolves (ageing) during the nanotubes synthesis and hence leads to non-reproducible nanotubes morphologies under time-controlled potentiostatic anodization conditions.

To overcome this issue, we developed a Coulometric approach that allows to synthesize, reusing the same electrolyte, several electrodes with a great precision and reproducibility on the length of the nanotubes (2,7 µm ± 160 nm) despite electrolyte ageing. Subsequently, these electrodes can be integrated in a photocatalytic or photoelectrocatalytic process in a real wastewater treatment sector would be very relevant.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/2665976X01999200603164023
2020-05-01
2024-11-26
Loading full text...

Full text loading...

References

  1. NozikA.J. MemmingR. Physical chemistry of semiconductor-liquid interfaces.J. Phys. Chem.1996100130611307810.1021/jp953720e
    [Google Scholar]
  2. FujishimaA. HondaK. Electrochemical Photolysis of Water at a Semiconductor Electrode.Nature19722383738
    [Google Scholar]
  3. DaghrirR. DroguiP. RobertD. Photoelectrocatalytic technologies for environmental applications.J. Photoch. Photobio. A20122384152
    [Google Scholar]
  4. LaiY. LinL. PanF. HuangJ. SongR. HuangY. LinC. FuchsH. ChiL. Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications.Small20139172945295310.1002/smll.201300187 23420792
    [Google Scholar]
  5. DasK. BoseS. BandyopadhyayA. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.J. Biomed. Mater. Res. A200990122523710.1002/jbm.a.32088 18496867
    [Google Scholar]
  6. RonzaniC. CottineauT. Gonzalez-VallsI. KellerV. PicaudS. KellerN. RouxM.J. High-frequency stimulation of normal and blind mouse retinas using TiO2 nanotubes.Adv. Funct. Mater.201828 180463910.1002/adfm.201804639
    [Google Scholar]
  7. ChenB. HouJ. LuK. Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors.Langmuir201329195911591910.1021/la400586r 23594047
    [Google Scholar]
  8. SalianG.D. KooB.M. LefevreC. CottineauT. LebouinC. TesfayeA.T. KnauthP. Niobium alloying of self-organized TiO2 nanotubes as an anode for lithium-ion microbatteries.Adv. Mater. Technol.20173 1700274
    [Google Scholar]
  9. LuH.F. LiF. LiuG. ChenZ.G. WangD.W. FangH.T. LuG.Q. JiangZ.H. ChengH.M. Amorphous TiO(2) nanotube arrays for low-temperature oxygen sensors.Nanotechnology20081940 40550410.1088/0957‑4484/19/40/405504 21832620
    [Google Scholar]
  10. LiuH. DingD. NingC. LiZ. Wide-range hydrogen sensing with Nb-doped TiO2 nanotubes.Nanotechnology2012231 01550210.1088/0957‑4484/23/1/015502 22156054
    [Google Scholar]
  11. SpitzerD. CottineauT. PiazzonN. JossetS. SchnellF. PronkinS.N. SavinovaE.R. KellerV. Bio-inspired nanostructured sensor for the detection of ultralow concentrations of explosives.Angew. Chem. Int. Ed. Engl.201251225334533810.1002/anie.201108251 22544684
    [Google Scholar]
  12. BiapoU. GhisolfiA. GererG. SpitzerD. KellerV. CottineauT. Functionalized TiO2 nanorods on a microcantilever for the detection of organophosphorus chemical agents in air.ACS Appl. Mater. Interfaces20191138351223513110.1021/acsami.9b11504 31468957
    [Google Scholar]
  13. MorG.K. ShankarK. PauloseM. VargheseO.K. GrimesC.A. Enhanced photocleavage of water using titania nanotube arrays.Nano Lett.20055119119510.1021/nl048301k 15792438
    [Google Scholar]
  14. FavetT. KellerV. CottineauT. El KhakaniM.A. Enhanced visible-light-photoconversion efficiency of TiO2 nanotubes decorated by pulsed laser deposited CoNi nanoparticles Inter.J. of Hydrogen Energy201944286562866710.1016/j.ijhydene.2019.08.179
    [Google Scholar]
  15. VargheseO.K. Maggie PauloseM. GrimesC.A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells.Nature Nanotech.20094592597
    [Google Scholar]
  16. Gonzalez-VallsI. MirloupA. Le BahersT. KellerN. CottineauT. SautetP. Characterization and charge transfer properties of organic BODIPY dyes integrated in TiO2 nanotube based dye-sensitized solar cells.RSC Ad201669152991540
    [Google Scholar]
  17. WangW. LiF. ZhangD. LeungD.Y.C. LiG. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays.Appl. Surf. Sci.201636249049710.1016/j.apsusc.2015.11.228
    [Google Scholar]
  18. ParamasivamI. JhaH. A review of photocatalysis using self‐organized TiO2 nanotubes and journal ordered oxide nanostructures.Small2012830733103
    [Google Scholar]
  19. ZhouX. LiuN. SchmukiP. Photocatalysis with TiO2 Nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes.ACS Catal.201773210323510.1021/acscatal.6b03709
    [Google Scholar]
  20. RoyP. BergerS. SchmukiP. TiO2 nanotubes: synthesis and applications.Angew. Chem. Int. Ed. Engl.201150132904293910.1002/anie.201001374 21394857
    [Google Scholar]
  21. LeeK. MazareA. SchmukiP. One-dimensional titanium dioxide nanomaterials: nanotubes.Chem. Rev.2014114199385945410.1021/cr500061m 25121734
    [Google Scholar]
  22. MorG.K. GrimesC.A. TiO2 Nanotube arrays: Synthesis, Properties and Applications.Boston, MASpringer2009
    [Google Scholar]
  23. GhicovA. SchmukiP. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures.Chem. Commun. (Camb.)200928202791280810.1039/b822726h 19436878
    [Google Scholar]
  24. SongY.Y. LynchR. KimD. RoyP. SchmukiP. TiO2 nanotubes: efficient suppression of top etching during anodic growth key to improved high aspect ratio geometries.Electrochem. Solid-State Lett.200912C17C2010.1149/1.3126500
    [Google Scholar]
  25. RajaK.S. MisraM. ParamguruK. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium.Electrochim. Acta20055115416510.1016/j.electacta.2005.04.011
    [Google Scholar]
  26. PauloseM. PrakasamH.E. VargheseO.K. PengL. PopatK.C. MorG.K. DesaiT.A. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion.J. Phys. Chem. C2007111149921499710.1021/jp075258r
    [Google Scholar]
  27. PathinettamP.D. HenryR.D. Synthesis of various generations titania nanotube arrays by electrochemical anodization for H2 production.Energy Procedia2011228895
    [Google Scholar]
  28. BergerS. KunzeJ. SchmukiP. ValotaA.T. LeClereD.J. SkeldonP. ThompsonG.E. Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes.J. Electrochem. Soc.2010157C18C2310.1149/1.3251338
    [Google Scholar]
  29. MarienC.B.D. CottineauT. RobertD. DroguiP. TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of paraquat Appl.Catal. Biol. Environ.201619416
    [Google Scholar]
  30. BergerS. HahnR. RoyP. SchmukiP. Self-organized TiO2 nanotubes: factors affecting their morphology and properties.Phys. Status Solidi Basic Res.20102472424243610.1002/pssb.201046373
    [Google Scholar]
  31. SulkaG.D. Kapusta-KołodziejJ. BrzózkaA. JaskułaM. Anodic growth of TiO2 nanopore arrays at various temperatures.Electrochim. Acta201310452653510.1016/j.electacta.2012.12.121
    [Google Scholar]
  32. YangS. AokiY. HabazakiH. Effect of electrolyte temperature on the formation of self- organized anodic niobium oxide microcones in hot phosphate–glycerol electrolyte.Appl. Surf. Sci.20112578190819510.1016/j.apsusc.2011.01.041
    [Google Scholar]
  33. ZhongX. YuD. SongY. LiD. XiaoH. YangC. LuL. MaW. ZhuX. Fabrication of large diameter TiO2 nanotubes for improved photoelectrochemical performance mater.Res. Bull. (Int. Comm. Northwest Atl. Fish.)201460348352
    [Google Scholar]
  34. KimH.I. KimD. KimK. HaY.C. SimS.J. KimS. ChoiW. Anodic TiO2 nanotube layer directly formed on the inner surface of Ti pipe for a tubular photocatalytic reactor.Appl. Catal. A Gen.201652117418110.1016/j.apcata.2015.10.039
    [Google Scholar]
  35. MenaE. Martin de VidalesM.J. MesonesS. MaruganJ. Influence of anodization mode on the morphology and photocatalytic activity of TiO2-NT array large size electrodes.Catal. Today2018313333910.1016/j.cattod.2017.12.036
    [Google Scholar]
  36. SophaH. BaudysM. KrbalM. ZazpeR. PrikrylJ. KrysaJ. MacakJ.M. Scaling up anodic TiO2 nanotube layers for gas phase photocatalysis.Electrochem. Commun.201897919510.1016/j.elecom.2018.10.025
    [Google Scholar]
  37. SophaH. HromadkoL. NechvilovaK. MacakJ.M. Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes.J. Electroanal. Chem. (Lausanne Switz.)201575912212810.1016/j.jelechem.2015.11.002
    [Google Scholar]
  38. MacakJ.M. AlbuS.P. SchmukiP. Towards ideal hexagonal self‐ordering of TiO2 nanotubes.Phys. Status Solidi Rapid Res. Lett.2007118118310.1002/pssr.200701148
    [Google Scholar]
/content/journals/photocat/10.2174/2665976X01999200603164023
Loading
/content/journals/photocat/10.2174/2665976X01999200603164023
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anodization; coulometric; electrolyte aging; ph; TiO2 nanotubes; upscaling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test