Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

The influence of the potassium metal cation on the graphitic carbon nitride (g-CN) photocatalyst has been studied in the partial oxidation of 5-hydroxymethyl-2-furfural (HMF) to 2,5-furandicarboxaldehyde (FDC).

The aim of this study was to understand if the presence of K in CN could increase the oxidative conversion of HMF to high added value species.

Two sets of photocatalysts were prepared by following two different methodologies. In both series of the materials, the precursor of CN was melamine with different types of the K containing species including KCl and KOH in one case and KNO alone in the other case. However, for both series of photocatalysts, materials were prepared with different amounts of potassium.

The results obtained by using materials prepared by the two different methodologies indicate that in both cases the presence of K was almost irrelevant at least for the lower amounts of potassium content. On the contrary, its presence was beneficial for the activity the photocatalytic partial oxidation reaction of the alcohol for the highest K content.

Some of the prepared K containing g-CN materials showed increased photocatalytic activity for the partial oxidation reaction of HMF in water, particularly by using natural solar light as the irradiation source.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/2665976X01666191127152926
2020-05-01
2024-11-22
Loading full text...

Full text loading...

References

  1. ParrinoF. BellarditaM. García-LópezE.I. MarcìG. LoddoV. PalmisanoL. Heterogeneous Photocatalysis for selective formation of high-value-added molecules: Some chemical and engineering aspects.ACS Catal.20188111911122510.1021/acscatal.8b03093
    [Google Scholar]
  2. HaoH. ZhangL. WangW. ZengS. Modification of heterogeneous photocatalysts for selective organic synthesis.Catal. Sci. Technol.201881229125010.1039/C7CY01853C
    [Google Scholar]
  3. GoettmannF. FischerA. AntoniettiM. ThomasA. Metal-free catalysis of sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds.Chem. Commun. (Camb.)2006434530453210.1039/B608532F 17283808
    [Google Scholar]
  4. WangK. Maeda, A. Thomas, K. Takanabe, G. Xin, K. Domen, M.Antonietti. Nat. Mater.20098768010.1038/nmat2317 18997776
    [Google Scholar]
  5. HollmannD. KarnahlM. TschierleiS. KailasamK. SchneiderM. RadnikJ. GrabowK. BentrupU. JungeH. BellerM. LochbrunnerS. ThomasA. BrücknerA. Structure activity relationships in bulk polymeric and sol-gel derived carbon nitrides during photocatalytic hydrogen production.Chem. Mater.2014261727173310.1021/cm500034p
    [Google Scholar]
  6. WangX. BlechertS. AntoniettiM. Polymeric graphitic carbon nitride for heterogeneous photocatalysis.ACS Catal.201221596160610.1021/cs300240x
    [Google Scholar]
  7. VermaS. BaigR.B.N. NadagoudaM.N. VarmaR.S. Selective oxidation of alcohols using photoactive VO@g-C3N4.ACS Sustain. Chem.& Eng.201641094109810.1021/acssuschemeng.5b01163
    [Google Scholar]
  8. SuF. MathewS.C. LipnerG. FuX. AntoniettiM. BlechertS. WangX. mgp-C3N4-Catalyzed selective oxidation of alcohols using O2 and visible light.J. Am. Chem. Soc.201013246162991630110.1021/ja102866p 21043489
    [Google Scholar]
  9. JiangL. YuanY. PanY. LiangJ. ZengG. WuZ. WangH. Doping of graphitic carbon nitride for photocatalysis: A review.Appl. Catal. B201821738840610.1016/j.apcatb.2017.06.003
    [Google Scholar]
  10. HuS. LiF. FanZ. WangF. ZhaoY. LvZ. Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability.Dalton Trans.20154431084109210.1039/C4DT02658F 25409884
    [Google Scholar]
  11. ZhangM. BaiX. LiuD. WangJ. ZhuY. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position.Appl. Catal. B2015164778110.1016/j.apcatb.2014.09.020
    [Google Scholar]
  12. XiongT. CenW.L. ZhangY.X. DongF. Bridging the g-C3N4 interlayers for enhanced photocatalysis.ACS Catal.201662462247210.1021/acscatal.5b02922
    [Google Scholar]
  13. WangY. ZhaoS. ZhangY. FangJ. ZhouY. YuanS. ZhangC. ChenW. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation.Appl. Surf. Sci.201844025826510.1016/j.apsusc.2018.01.091
    [Google Scholar]
  14. WangW. XuP. ChenM. ZengG. ZhangC. ZhouC. YangY. HuangD. LaiC. ChengM. HuL. XiongW. GuoH. ZhouM. Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance.ACS Sustain. Chem.& Eng.2018611155031551610.1021/acssuschemeng.8b03965
    [Google Scholar]
  15. SunX. JiangD. ZhangL. WangW. Alkaline modified g-C3N4 photocatalyst for high selective oxide coupling of benzyl alcohol to benzoin.Appl. Catal. B201822055356010.1016/j.apcatb.2017.08.057
    [Google Scholar]
  16. ChenZ. SavateevA. PronkinS. PapaefthimiouV. WolffC. WillingerM.G. WillingerE. NeherD. AntoniettiM. DontsovaD. “The Easier the Better” preparation of efficient photocatalysts-metastable poly(heptazine imide) salts.Adv. Mater.201729321700555170056310.1002/adma.201700555 28632318
    [Google Scholar]
  17. SavateevA. PronkinS. EppingD. WillingerM.G. WolffC. NeherD. AntoniettiM. DontsovaD. Potassium poly(heptazine imides) from aminotetrazoles: Shifting band gaps of carbon nitride‐like materials for more efficient solar hydrogen and oxygen evolution.ChemCatChem201791610.1002/cctc.201601165
    [Google Scholar]
  18. García-LópezE.I. MarcìG. PalmisanoL. Polymeric carbon nitride (C3N4) as heterogeneous photocatalyst for selective oxidation of alcohols to aldehydes.Catal. Today201831512613710.1016/j.cattod.2018.03.038
    [Google Scholar]
  19. BellarditaM. García-LópezE.I. MarcìG. KrivtsovI. GarcíaJ.R. PalmisanoL. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4.Appl. Catal. B201822022223310.1016/j.apcatb.2017.08.033
    [Google Scholar]
  20. KrivtsovI. García-LópezE.I. MarcìG. PalmisanoL. AmghouzZ. GarcíaJ.R. OrdóñezS. DíazE. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehy-de in aqueous suspension of g-C3N4.Appl. Catal. B201720443043910.1016/j.apcatb.2016.11.049
    [Google Scholar]
  21. IlkaevaM. KrivtsovI. GarcíaJ.R. DíazE. OrdóñezS. García-LópezE.I. MarcìG. PalmisanoL. MaldonadoM.I. MalatoS. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant.Catal. Today201831513814810.1016/j.cattod.2018.03.013
    [Google Scholar]
  22. LiY. OuyangS. XuH. WangX. BiY. ZhangY. YeJ. Constructing solid-gas-interfacial fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm.J. Am. Chem. Soc.201613840132891329710.1021/jacs.6b07272 27643711
    [Google Scholar]
  23. AugugliaroV. García-LópezE. LoddoV. Malato-RodriguezS. MaldonadoI. MarcìG. MolinariR. PalmisanoL. Degradation of lyncomycin in aqueous medium: coupling of solar photocatalysis and membrane separation.Sol. Energy20057940240810.1016/j.solener.2005.02.020
    [Google Scholar]
  24. SunH. ZhouG. WangY. SuvorovaA. WangS. A new metal-free carbon hybrid for enhanced photocatalysis.ACS Appl. Mater. Interfaces2014619167451675410.1021/am503820h 25212502
    [Google Scholar]
  25. NakamotoK. Infra-Red Spectra of Inorganic and Coordination Compounds.New YorkWiley1963
    [Google Scholar]
  26. KubelkaP. MunkF. An article on optics of paint layers.Z. Tech. Phys193112593603
    [Google Scholar]
  27. TaucR. GrigoroviciA. VancuA. Optical properties and electronic structure of amorphous germanium.Phys. Status Solidi19661562763710.1002/pssb.19660150224
    [Google Scholar]
  28. MarcìG. García-LópezE.I. PomillaF.R. PalmisanoL. ZafforaA. SantamariaM. KrivtsovI. IlkaevaM. BarbiericováS. BrezováV. Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes.Catal. Today2019328212810.1016/j.cattod.2019.01.075
    [Google Scholar]
/content/journals/photocat/10.2174/2665976X01666191127152926
Loading
/content/journals/photocat/10.2174/2665976X01666191127152926
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test