Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Malaria is a life-threatening disease spread female Anopheles mosquitoes. Assortments of factors are causing the trouble ., (i) fierce opposition posed by the plasmodium life cycle and intracellular localization for pathogens in hepatocytes and erythrocytes; (ii) The decisive physical and chemical properties among most antimalarial drugs, that exhibit an amphiphilic property allowing them to be widely circulated in and out of body tissues since administration and quickly fully exploited in the liver; (iii) The unflattering fluidic circumstances confronted in blood flow that affect the relationship of ionic parts to target tissue. So rather than concentrating the entire energy on establishing novel medications, it is preferable to effort into refining operative medicine conveyance transporters to overcome these downsides. Anti-paludism medications have been effectively distributed nanomaterials on adjacent concentrations high sufficient on the way to slay the pests and evade the growth of treatment obstruction, although upholding a small general amount to foil uncomplimentary poisonous sideways things. As of now, a few nanostructured frameworks like liposomes or dendrimers have been demonstrated to be fit for working on the viability of anti-malarial treatments. These nanoparticles are an auspicious medication conveyance automobile and could be utilized as remedial techniques intended for battling pests. This audit is expected to scrutinize the utilization of nanoparticles to further develop medicine effectiveness at various phases for both human and vampire congregations of miasm vermin.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882324643240819182644
2024-09-11
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882324643.html?itemId=/content/journals/nemj/10.2174/0102506882324643240819182644&mimeType=html&fmt=ahah

References

  1. World malaria report 2018.2018Available from: https://www.who.int/publications/i/item/9789241565653
  2. WhiteN.J. PukrittayakameeS. HienT.T. FaizM.A. MokuoluO.A. DondorpA.M. Malaria.Lancet2014383991872373510.1016/S0140‑6736(13)60024‑023953767
    [Google Scholar]
  3. Epidemiological alert, increase of malaria in the Americas.2018Available from: https://www.paho.org/sites/default/files/2019-11/2019-nov-18-phe-epi-update-malaria_0.pdf
  4. DhimanS. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead.Infect. Dis. Poverty2019811410.1186/s40249‑019‑0524‑x30760324
    [Google Scholar]
  5. OmorouR. DelabieB. LavoignatA. ChakerV. BonnotG. TraoreK. BienvenuA.L. PicotS. Nanoparticle tracking analysis of natural hemozoin from Plasmodium parasites.Acta Trop.202425010710510.1016/j.actatropica.2023.10710538135133
    [Google Scholar]
  6. WalkerN. NadjmB. WhittyC. Malaria.Medicine (Baltimore)2017425258
    [Google Scholar]
  7. ZhangY. XieL. XieL. BourneP. The Plasmodium falciparum drugome and its polypharmacological implications.bioRxiv201604248110.1101/042481
    [Google Scholar]
  8. CowmanA.F. CrabbB.S. Invasion of red blood cells by malaria parasites.Cell2006124475576610.1016/j.cell.2006.02.00616497586
    [Google Scholar]
  9. LeeR.S. WatersA.P. BrewerJ.M. A cryptic cycle in haematopoietic niches promotes initiation of malaria transmission and evasion of chemotherapy.Nat. Commun.201891168910.1038/s41467‑018‑04108‑929703959
    [Google Scholar]
  10. WoldearegaiTG. Characterization of Plasmodium falciparum mature gametocytes: Lifespan, immunogenicity and susceptibility to novel compounds.Eberhard Karls University of Tübingen-Faculty of Mathematics and Natural Sciences2018Available from: https://ub01.uni-tuebingen.de/xmlui/bitstream/handle/10900/82046/PhD%20thesis_Tamirat%20Gebru%20Woldearegai.pdf?sequence=1&isAllowed=y
    [Google Scholar]
  11. ShittuO.K. TawakalituA.A. SakaA.O. KamaldeenA. MercyT.B. Entrapped chemically synthesized gold nanoparticles combined with polyethylene glycol and Chloroquine diphosphate as an improved antimalarial drug.Nanomed. J.2019628596
    [Google Scholar]
  12. ShittuO.K. LawalB. OjoA.J. YisaA.S. Polyethylene glycol-modified nanocarrier encapsulation of diaminazene aceturate improved haemato-biochemical recovery in Trypanosom brucei brucei infected rats.Pol. J. Nat. Sci.2019342317322Available from: https://www.researchgate.net/publication/334231224_POLYETHYLENE_GLYCOL_-MODIFIED_NANOCARRIER_ENCAPSULATION_OF_DIMINAZENE_ACETURATE_IMPROVED_HAEMATOBIOCHEMICAL_RECOVERY_IN_TRYPANOSOMA_BRUCEI_BRUCEI_INFECTED_RATS
    [Google Scholar]
  13. OakesR.S. JewellC.M. A plug-and-play approach for malaria vaccination.Nat. Nanotechnol.201813121096109710.1038/s41565‑018‑0291‑z30297817
    [Google Scholar]
  14. RahmanK. KhanS.U. FahadS. ChangM.X. AbbasA. KhanW.U. RahmanL. HaqZ.U. NabiG. KhanD. Nano-biotechnology: A new approach to treat and prevent malaria.Int. J. Nanomedicine2019141401141010.2147/IJN.S19069230863068
    [Google Scholar]
  15. BarabadiH. AlizadehZ. RahimiM.T. BaracA. MaraoloA.E. RobertsonL.J. MasjediA. ShahrivarF. AhmadpourE. Nanobiotechnology as an emerging approach to combat malaria: A systematic review.Nanomedicine20191822123310.1016/j.nano.2019.02.01730904586
    [Google Scholar]
  16. KondilisE. GiannakopoulosS. GavanaM. IerodiakonouI. WaitzkinH. BenosA. Economic crisis, restrictive policies, and the population’s health and health care: The Greek case.Am. J. Public Health2013103697397910.2105/AJPH.2012.30112623597358
    [Google Scholar]
  17. BrittonS. ChengQ. McCarthyJ.S. Novel molecular diagnostic tools for malaria elimination: A review of options from the point of view of high-throughput and applicability in resource limited settings.Malar. J.20161518810.1186/s12936‑016‑1158‑026879936
    [Google Scholar]
  18. TrampuzA. JerebM. MuzlovicI. PrabhuR.M. Clinical review: Severe malaria.Crit. Care20037431532310.1186/cc218312930555
    [Google Scholar]
  19. NostenF. WhiteN.J. Artemisinin-based combination treatment of falciparum malaria.Am. J. Trop. Med. Hyg.2007776_Suppl18119210.4269/ajtmh.2007.77.18118165491
    [Google Scholar]
  20. SchlagenhaufP. PetersenE. Malaria chemoprophylaxis: Strategies for risk groups.Clin. Microbiol. Rev.200821346647210.1128/CMR.00059‑0718625682
    [Google Scholar]
  21. BairdJ.K. Resistance to chloroquine unhinges vivax malaria therapeutics.Antimicrob. Agents Chemother.20115551827183010.1128/AAC.01296‑1021383088
    [Google Scholar]
  22. DavisT.M.E. HungT.Y. SimI.K. KarunajeewaH.A. IlettK.F. Piperaquine.Drugs2005651758710.2165/00003495‑200565010‑0000415610051
    [Google Scholar]
  23. MeshnickS.R. DobsonM.J. The history of antimalarial drugs.200110.1385/1‑59259‑111‑6:15
    [Google Scholar]
  24. DahlE.L. RosenthalP.J. Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics.Trends Parasitol.200824627928410.1016/j.pt.2008.03.00718450512
    [Google Scholar]
  25. CuiL. SuX. Discovery, mechanisms of action and combination therapy of artemisinin.Expert Rev. Anti Infect. Ther.200978999101310.1586/eri.09.6819803708
    [Google Scholar]
  26. DondorpA. NostenF. StepniewskaK. DayN. WhiteN. Artesunate versus quinine for treatment of severe falciparum malaria: A randomised trial.Lancet2005366948771772510.1016/S0140‑6736(05)67176‑016125588
    [Google Scholar]
  27. Guidelines for the treatment of malaria, 3rd ed.2015Available from: https://www.afro.who.int/publications/guidelines-treatment-malaria-third-edition
  28. ShaikhF. KhanS. ShaikhA. ShivsharanS. LalM. A SheikhI. BaigM.S. Formulation and evaluation of ocusert embeded with ciprofloxacin loaded nanoparticles. Int. j. adv. life sci. res.20247113013810.31632/ijalsr.2024.v07i01.014
    [Google Scholar]
  29. Varela-AramburuS. GhoshC. GoerdelerF. PriegueP. MoscovitzO. SeebergerP.H. Targeting and inhibiting plasmodium falciparum using ultra-small gold nanoparticles.ACS Appl. Mater. Interfaces20201239433804338710.1021/acsami.0c0907532875786
    [Google Scholar]
  30. WangX. XieY. JiangN. WangJ. LiangH. LiuD. YangN. SangX. FengY. ChenR. ChenQ. Enhanced antimalarial efficacy obtained by targeted delivery of artemisinin in heparin-coated magnetic hollow mesoporous nanoparticles.ACS Appl. Mater. Interfaces202113128729710.1021/acsami.0c2007033356111
    [Google Scholar]
  31. Gérard YaméogoJ. B. MazetR. WouessidjeweD. ChoisnardL. Pharmacokinetic study of intravenously administered artemisinin-loaded surface-decorated amphiphilic γ-cyclodextrin nanoparticles.Mater Sci Eng C Mater Biol Appl.202010611028110.1016/j.msec.2019.110281.
    [Google Scholar]
  32. HeW. DuY. LiC. WangJ. WangY. DogovskiC. HuR. TaoZ. YaoC. LiX. Dimeric artesunate-choline conjugate micelles coated with hyaluronic acid as a stable, safe and potent alternative anti-malarial injection of artesunate.Int. J. Pharm.202160912113810.1016/j.ijpharm.2021.12113834592395
    [Google Scholar]
  33. UmeyorC.E. ObachieO. ChukwukaR. AttamaA. Development insights of surface modified lipid nanoemulsions of dihydroartemisinin for malaria chemotherapy: Characterization, and in vivo antimalarial evaluation.Recent Pat. Biotechnol.201913214916510.2174/187220831366618120409531430514197
    [Google Scholar]
  34. GuoW. LiN. RenG. WangR. ChaiL. LiY. WangX. YangQ. WangR. ZhangG. YangL. YiB. ZhangS. Murine pharmacokinetics and antimalarial pharmacodynamics of dihydroartemisinin trimer self-assembled nanoparticles.Parasitol. Res.202112082827283710.1007/s00436‑021‑07208‑634272998
    [Google Scholar]
  35. KannanD. YadavN. AhmadS. NamdevP. BhattacharjeeS. LochabB. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite.EBioMedicine.20194526127710.1016/j.ebiom.2019.06.026.
    [Google Scholar]
  36. AgboC.P. UgwuanyiT.C. UgwuokeW.I. McConvilleC. AttamaA.A. OfokansiK.C. Intranasal artesunate-loaded nanostructured lipid carriers: A convenient alternative to parenteral formulations for the treatment of severe and cerebral malaria.J. Control. Release202133422423610.1016/j.jconrel.2021.04.02033894303
    [Google Scholar]
  37. IsmailM. DuY. LingL. LiX. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria.Int. J. Pharm.201956216217110.1016/j.ijpharm.2019.03.03130902709
    [Google Scholar]
  38. KathpaliaH. JuvekarS. MohanrajK. ApsingekarM. ShidhayeS. Investigation of pre-clinical pharmacokinetic parameters of atovaquone nanosuspension prepared using a pH-based precipitation method and its pharmacodynamic properties in a novel artemisinin combination.J. Glob. Antimicrob. Resist.20202224825610.1016/j.jgar.2020.02.01832119990
    [Google Scholar]
  39. KaurR. GorkiV. KatareO. P. DhingraN. ChauhanM. KaurR. Improved biopharmaceutical attributes of lumefantrine using choline mimicking drug delivery system: Preclinical investigation on NK-65 P.berghei murine model.Expert Opin Drug Deliv.202118101533155210.1080/17425247.2021.1946512.
    [Google Scholar]
  40. GhoshA. BanerjeeT. Nanotized curcumin‐benzothiophene conjugate: A potential combination for treatment of cerebral malaria.IUBMB Life202072122637265010.1002/iub.239433037778
    [Google Scholar]
  41. PestehchianN. VafaeiM. R. NematolahyP. VarshosazJ. YousefiH. A. BideV. Z. A new effective antiplasmodial compound: Nanoformulated pyrimethamine.J Glob Antimicrob Resist.20202030931510.1016/j.jgar.2019.08.002.
    [Google Scholar]
  42. da Silva de BarrosA.O. PortilhoF.L. dos Santos MatosA.P. Ricci-JuniorE. AlencarL.M.R. dos SantosC.C. PaumgarttenF.J.R. IramS.H. MazierD. FranetichJ.F. AlexisF. Santos-OliveiraR. Preliminary studies on drug delivery of polymeric primaquine microparticles using the liver high uptake effect based on size of particles to improve malaria treatment.Mater. Sci. Eng. C202112811227510.1016/j.msec.2021.11227534474834
    [Google Scholar]
  43. ElmiT. ArdestaniM.S. MotevalianM. HesariA.K. hamzehM.S. ZamaniZ. TabatabaieF. Antiplasmodial effect of nano dendrimer G2 loaded with chloroquine in mice infected with plasmodium berghei.Acta Parasitol.202267129830810.1007/s11686‑021‑00459‑434398379
    [Google Scholar]
  44. MarwahM. Narain SrivastavaP. MishraS. NagarsenkerM. Functionally engineered 'hepato-liposomes': Combating liver-stage malaria in a single prophylactic dose.Int J Pharm.202058711971010.1016/j.ijpharm.2020.119710.
    [Google Scholar]
  45. MichelsL.R. MacielT.R. NakamaK.A. TeixeiraF.E.G. CarvalhoF.B. GundelA. AraújoB.V. HaasS.E. Effects of surface characteristics of polymeric nanocapsules on the pharmacokinetics and efficacy of antimalarial quinine.Int. J. Nanomedicine201914101651017810.2147/IJN.S22791432021159
    [Google Scholar]
  46. FotoranW. L. MünteferingT. KleiberN. MirandaB. N. M. LiebauE. IrvineD. J. A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy.Nanomedicine.20192210209910.1016/j.nano.2019.102099
    [Google Scholar]
  47. KashyapA. KaurR. BaldiA. JainU.K. ChandraR. MadanJ. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites.Int. J. Biol. Macromol.201811416116810.1016/j.ijbiomac.2018.03.10229572147
    [Google Scholar]
  48. AraújoR.V. SantosS.S. Igne FerreiraE. GiarollaJ. New advances in general biomedical applications of PAMAM dendrimers.Molecules20182311284910.3390/molecules2311284930400134
    [Google Scholar]
  49. DiasA.P. da Silva SantosS. da SilvaJ.V. Parise-FilhoR. Igne FerreiraE. SeoudO.E. GiarollaJ. Dendrimers in the context of nanomedicine.Int. J. Pharm.202057311881410.1016/j.ijpharm.2019.11881431759101
    [Google Scholar]
  50. AlvingC.R. Liposomes as drug carriers in leishmaniasis and malaria.Parasitol. Today19862410110710.1016/0169‑4758(86)90039‑615462789
    [Google Scholar]
  51. OwaisM. VarshneyG.C. ChoudhuryA. ChandraS. GuptaC.M. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice.Antimicrob. Agents Chemother.199539118018410.1128/AAC.39.1.1807695303
    [Google Scholar]
  52. GabriëlsM. Plaizier-VercammenJ. Physical and chemical evaluation of liposomes, containing artesunate.J. Pharm. Biomed. Anal.200331465566710.1016/S0731‑7085(02)00678‑712644192
    [Google Scholar]
  53. ParasharD. AdityaN.P. MurthyR.S. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: Physicochemical characterization and in vivo antimalarial activity.Drug Deliv.201623112312910.3109/10717544.2014.90588324786480
    [Google Scholar]
  54. VankaR. KuppusamyG. Praveen KumarS. BaruahU.K. KarriV.V.S.R. PandeyV. BabuP.P. Ameliorating the in vivo antimalarial efficacy of artemether using nanostructured lipid carriers.J. Microencapsul.201835212113610.1080/02652048.2018.144191529448884
    [Google Scholar]
  55. AlonsoP.L. SacarlalJ. AponteJ.J. LeachA. MaceteE. MilmanJ. MandomandoI. SpiessensB. GuinovartC. EspasaM. BassatQ. AideP. Ofori-AnyinamO. NaviaM.M. CorachanS. CeuppensM. DuboisM.C. DemoitiéM.A. DubovskyF. MenéndezC. TornieporthN. Ripley BallouW. ThompsonR. CohenJ. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: Randomised controlled trial.Lancet200436494431411142010.1016/S0140‑6736(04)17223‑115488216
    [Google Scholar]
  56. SalinasN.D. MaR. DickeyT.H. McAleeseH. OuahesT. LongC.A. A potent and durable malaria transmission-blocking vaccine designed from a single-component 60-copy Pfs230D1 nanoparticle. npj.Vaccines (Basel)20238112436679969
    [Google Scholar]
  57. LudwigJ. ScallyS.W. CostaG. HoffmannS. MuruganR. LossinJ. PrietoK. ObraztsovaA. LobetoN. Franke-FayardB. JanseC.J. LebasC. CollinN. BinterS. KellamP. LevashinaE.A. WardemannH. JulienJ.P. Glycosylated nanoparticle-based PfCSP vaccine confers long-lasting antibody responses and sterile protection in mouse malaria model.NPJ Vaccines2023815210.1038/s41541‑023‑00653‑737029167
    [Google Scholar]
  58. MbelaT.K.M. PoupaertJ.H. DumontP. Poly(diethylmethylidene malonate) nanoparticles as primaquine delivery system to liver.Int. J. Pharm.1992791-3293810.1016/0378‑5173(92)90090‑O
    [Google Scholar]
  59. SinghK.K. VingkarS.K. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine.Int. J. Pharm.20083471-213614310.1016/j.ijpharm.2007.06.03517709216
    [Google Scholar]
  60. BajpaiA.K. ChoubeyJ. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate.J. Mater. Sci. Mater. Med.200617434535810.1007/s10856‑006‑8235‑916617413
    [Google Scholar]
  61. GuptaY. JainA. JainS.K. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain.J. Pharm. Pharmacol.201059793594010.1211/jpp.59.7.000417637187
    [Google Scholar]
  62. KannanR.M. NanceE. KannanS. TomaliaD.A. Emerging concepts in dendrimer‐based nanomedicine: From design principles to clinical applications.J. Intern. Med.2014276657961710.1111/joim.1228024995512
    [Google Scholar]
  63. BhadraD. BhadraS. JainN.K. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether.J. Pharm. Pharm. Sci.20058346748216401394
    [Google Scholar]
  64. BhadraD. YadavA.K. BhadraS. JainN.K. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting.Int. J. Pharm.20052951-222123310.1016/j.ijpharm.2005.01.02615848007
    [Google Scholar]
  65. AgrawalP. GuptaU. JainN.K. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate.Biomaterials200728223349335910.1016/j.biomaterials.2007.04.00417459469
    [Google Scholar]
  66. BhadraD. BhadraS. JainN.K. PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate.Pharm. Res.200623362363310.1007/s11095‑005‑9396‑916374532
    [Google Scholar]
  67. Martí Coma-CrosE. LancelotA. San AnselmoM. Neves Borgheti-CardosoL. Valle-DelgadoJ.J. SerranoJ.L. Fernàndez-BusquetsX. SierraT. Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery.Biomater. Sci.2019741661167410.1039/C8BM01600C30741274
    [Google Scholar]
  68. MovellanJ. UrbánP. MolesE. de la FuenteJ.M. SierraT. SerranoJ.L. Fernàndez-BusquetsX. Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs.Biomaterials201435277940795010.1016/j.biomaterials.2014.05.06124930847
    [Google Scholar]
  69. FröhlichT. HahnF. BelmudesL. LeidenbergerM. FriedrichO. KappesB. CoutéY. MarschallM. TsogoevaS.B. Synthesis of artemisinin-derived dimers, trimers and dendrimers: Investigation of their antimalarial and antiviral activities including putative mechanisms of action.Chemistry201824328103811310.1002/chem.20180072929570874
    [Google Scholar]
  70. KanathasanJ.S. NallappanD. PoddarS. WareA. Nanomaterials in cancer therapy.Cutting-Edge Applications of Nanomaterials in Biomedical Sciences. PrabhakarP. PrakashA. IGI Global202421724810.4018/979‑8‑3693‑0448‑8.ch008
    [Google Scholar]
  71. YoungsW.J. KnappA.R. WagersP.O. TessierC.A. Nanoparticle encapsulated silvercarbene complexes and their antimicrobial and anticancer properties: A perspective.Dalton Trans.201241232733610.1039/C1DT11100K21975603
    [Google Scholar]
  72. NguyenS.T. DuD. WychrijD. CainM.D. WuQ. KleinR.S. RussoI. GoldbergD.E. Histidine-rich protein II nanoparticle delivery of heme iron load drives endothelial inflammation in cerebral malaria.Proc. Natl. Acad. Sci. USA202312026e230631812010.1073/pnas.230631812037307435
    [Google Scholar]
  73. RaiM. IngleA.P. ParalikarP. GuptaI. MediciS. SantosC.A. Recent advances in use of silver nanoparticles as antimalarial agents.Int. J. Pharm.20175261-225427010.1016/j.ijpharm.2017.04.04228450172
    [Google Scholar]
  74. BenelliG. MaggiF. PavelaR. MuruganK. GovindarajanM. VaseeharanB. PetrelliR. CappellacciL. KumarS. HoferA. YoussefiM.R. AlarfajA.A. HwangJ.S. HiguchiA. Mosquito control with green nanopesticides: Towards the One Health approach? A review of non-target effects.Environ. Sci. Pollut. Res. Int.20182511101841020610.1007/s11356‑017‑9752‑428755145
    [Google Scholar]
  75. BenelliG. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review.Parasitol. Res.20161151233410.1007/s00436‑015‑4800‑926541154
    [Google Scholar]
  76. BenelliG. GovindarajanM. Green-synthesized mosquito oviposition attractants and ovicides: Towards a nanoparticle-based “lure and kill” approach?J. Cluster Sci.201728128730810.1007/s10876‑016‑1088‑6
    [Google Scholar]
  77. PanneerselvamC. PonarulselvamS. MuruganK. Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae).Arch. Appl. Sci. Res.20113208217Available from: https://www.researchgate.net/profile/Kadarkarai-Murugan-2/publication/221677671_Potential_Anti-plasmodial_Activity_of_Synthesized_Silver_Nanoparticle_using_Andrographis_paniculata_Nees_Acanthaceae/links/56458b6508ae451880a8e072/Potential-Anti-plasmodial-Activity-of-Synthesized-Silver-Nanoparticle-using-Andrographis-paniculata-Nees-Acanthaceae.pdf
    [Google Scholar]
  78. PanneerselvamC. MuruganK. RoniM. AzizA.T. SureshU. RajaganeshR. MadhiyazhaganP. SubramaniamJ. DineshD. NicolettiM. HiguchiA. AlarfajA.A. MunusamyM.A. KumarS. DesneuxN. BenelliG. Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity.Parasitol. Res.20161153997101310.1007/s00436‑015‑4828‑x26612497
    [Google Scholar]
  79. RajakumarG. RahumanA.A. ChungI.M. KirthiA.V. MarimuthuS. AnbarasanK. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice.Parasitol. Res.201511441397140610.1007/s00436‑015‑4318‑125653029
    [Google Scholar]
  80. KarthikL. KumarG. KeswaniT. BhattacharyyaA. ReddyB.P. RaoK.V.B. Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity.Nanomedicine20139795196010.1016/j.nano.2013.02.00223434675
    [Google Scholar]
  81. MehmoodA. GhafarH. YaqoobS. GoharU.F. AhmadB. Mesoporous silica nanoparticles: A review.J. Dev. Drugs201762100017410.4172/2329‑6631.1000174
    [Google Scholar]
  82. BhartiC. GulatiN. NagaichU. PalA.K. Mesoporous silica nanoparticles in target drug delivery system: A review.Int. J. Pharm. Investig.20155312413310.4103/2230‑973X.16084426258053
    [Google Scholar]
  83. AmolegbeS.A. OhmagariH. WakataK. TakehiraH. OhtaniR. NakamuraM. YuC. HayamiS. Synthesis of mesoporous materials as nano-carriers for an antimalarial drug.J. Mater. Chem. B Mater. Biol. Med.2016461040104310.1039/C5TB02200B32262995
    [Google Scholar]
  84. AmolegbeS.A. HiranoY. AdebayoJ.O. AdemowoO.G. BalogunE.A. ObaleyeJ.A. KrettliA.U. YuC. HayamiS. Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance.Sci. Rep.201881307810.1038/s41598‑018‑21351‑829449583
    [Google Scholar]
  85. BeckJ.S. VartuliJ.C. RothW.J. LeonowiczM.E. KresgeC.T. SchmittK.D. ChuC.T.W. OlsonD.H. SheppardE.W. McCullenS.B. HigginsJ.B. SchlenkerJ.L. A new family of mesoporous molecular sieves prepared with liquid crystal templates.J. Am. Chem. Soc.199211427108341084310.1021/ja00053a020
    [Google Scholar]
  86. ChenP.Y. ZhangM. LiuM. WongI.Y. HurtR.H. Ultrastretchable graphene-based molecular barriers for chemical protection, detection and actuation.ACS Nano201812123424410.1021/acsnano.7b0596129165991
    [Google Scholar]
  87. CastilhoC.J. LiD. LiuM. LiuY. GaoH. HurtR.H. Mosquito bite prevention through graphene barrier layers.Proc. Natl. Acad. Sci. USA201911637183041830910.1073/pnas.190661211631451645
    [Google Scholar]
  88. NallappanD. KanathasanJ.S. PoddarS. Sustainable use of nanotechnology in biomedical sciences.Cutting-Edge Applications of Nanomaterials in Biomedical Sciences. PrabhakarP. PrakashA. IGI Global202438741710.4018/979‑8‑3693‑0448‑8.ch016
    [Google Scholar]
  89. ShiJ. FangY. Biomedical applications of graphene.GrapheneCambridge, MA, USAAcademic Press201821523210.1016/B978‑0‑12‑812651‑6.00009‑4.
    [Google Scholar]
  90. KenryK. LimY.B. NaiM.H. CaoJ. LohK.P. LimC.T. Graphene oxide inhibits malaria parasite invasion and delays parasitic growth in vitro.Nanoscale2017937140651407310.1039/C7NR06007F28901366
    [Google Scholar]
  91. BragaS.S. Cyclodextrins: Emerging medicines of the new millennium.Biomolecules201991280110.3390/biom912080131795222
    [Google Scholar]
  92. CrandallI.E. SzarekW.A. VlahakisJ.Z. XuY. VohraR. SuiJ. KisilevskyR. Sulfated cyclodextrins inhibit the entry of Plasmodium into red blood cells.Biochem. Pharmacol.200773563264210.1016/j.bcp.2006.10.03017166484
    [Google Scholar]
  93. BalducciA.G. MagossoE. ColomboG. SonvicoF. KhanN.A.K. YuenK.H. BettiniR. ColomboP. RossiA. Agglomerated oral dosage forms of artemisinin/β-cyclodextrin spray-dried primary microparticles showing increased dissolution rate and bioavailability.AAPS PharmSciTech201314391191810.1208/s12249‑013‑9982‑923703233
    [Google Scholar]
  94. HaoY. ChenS. TianL. YangZ. HuangG. Inclusion complex of artemether with 2-hydroxypropyl-β-cyclodextrin for the treatment of malaria: Preparation, characterization and evaluation.MOJ bioequiv. bioavailab.2017314515110.15406/mojbb.2017.03.00052.
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882324643240819182644
Loading
/content/journals/nemj/10.2174/0102506882324643240819182644
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anti-paludism; Jungle fever; Malaria; Nanoparticles; Plasmodium falciparum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test