Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Objective

An adverse drug reaction is defined as “an appreciably harmful or unpleasant reaction, resulting from an intervention related to the use of a medicinal product, which warrants prevention or specific treatment, alteration of the dosage regimen, or withdrawal of the product, as it predicts hazard from future administration.”

Methodology

Currently used to report such responses, the International Classification of Diseases will soon incorporate WHO's Adverse Reaction Terminology. A medication's bad effects can fall into one of six types, each having its own mnemonic: withdrawal, therapeutic failure, dose-and time-related, non-dose-related, weird, increased withdrawal, and withdrawal overall (time-related). Factors such as timing, illness pattern, investigation findings, and retesting the medicine could be useful in pinpointing the reason for a suspected adverse drug reaction. Management includes treating the effects of the medication specifically as well as, if feasible, stopping it altogether.

Results

Reporting suspected adverse medication reactions is important. Monitoring techniques are able to identify responses and establish connections. There is many software that is used to report and monitor adverse drug reaction responses. Various Pharmacovigilance companies use AI technology to utilize this method to record signals, communicate, and solve new issues in order to limit or avoid harm because of large data size.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882313855240809064836
2024-08-22
2025-07-09
The full text of this item is not currently available.

References

  1. JordanS. LoganP. PanesG. VaismoradiM. HughesD. Adverse drug reactions, power, harm reduction, regulation and the ADRe profiles.Pharmacy20186310210.3390/pharmacy603010230231573
    [Google Scholar]
  2. DaviesE.A. O’MahonyM.S. Adverse drug reactions in special populations – The elderly.Br. J. Clin. Pharmacol.201580479680710.1111/bcp.1259625619317
    [Google Scholar]
  3. LaatikainenO. SneckS. TurpeinenM. Medication-related adverse events in health care—what have we learned? A narrative overview of the current knowledge.Eur. J. Clin. Pharmacol.202278215917010.1007/s00228‑021‑03213‑x34611721
    [Google Scholar]
  4. ZieglerD.K. MosierM.C. BuenaverM. OkuyemiK. How much information about adverse effects of medication do patients want from physicians?Arch. Intern. Med.2001161570671310.1001/archinte.161.5.70611231703
    [Google Scholar]
  5. MeadP.S. SlutskerL. DietzV. McCaigL.F. BreseeJ.S. ShapiroC. GriffinP.M. TauxeR.V. Food-related illness and death in the United States.Emerg. Infect. Dis.19995560762510.3201/eid0505.99050210511517
    [Google Scholar]
  6. WöhrlS. Clinical work-up of adverse drug reactions.Expert. Rev. Dermatol.20072221723110.1586/17469872.2.2.217
    [Google Scholar]
  7. TurabianJ.L. The role of general practitioner in the study of adverse drug reactions epidemiology in ambulatory care setting.Arch. Community Med. Public Health201951003007
    [Google Scholar]
  8. GautierS. BacheletH. BordetR. CaronJ. The cost of adverse drug reactions.Expert Opin. Pharmacother.20034331932610.1517/14656566.4.3.31912614184
    [Google Scholar]
  9. HadiM.A. NeohC.F. ZinR.M. ElrggalM. CheemaE. Pharmacovigilance: Pharmacists’ perspective on spontaneous adverse drug reaction reporting.Integr. Pharm. Res. Pract.20176919810.2147/IPRP.S10588129354555
    [Google Scholar]
  10. MahmoodK.T. Pharmacovigilance-A need for best patient care in Pakistan. A review.J. Pharm. Sci. Res.20113111566
    [Google Scholar]
  11. EichlerH.G. Bloechl-DaumB. BrasseurD. BreckenridgeA. LeufkensH. RaineJ. SalmonsonT. SchneiderC.K. RasiG. The risks of risk aversion in drug regulation.Nat. Rev. Drug Discov.2013121290791610.1038/nrd412924232377
    [Google Scholar]
  12. ElhijaziW. Off-label and unlicensed medicines' related problems in paediatric in-patients.UHRA2018
    [Google Scholar]
  13. StausbergJ. International prevalence of adverse drug events in hospitals: An analysis of routine data from England, Germany, and the USA.BMC Health Serv. Res.201414112510.1186/1472‑6963‑14‑12524620750
    [Google Scholar]
  14. RexJ.H. TurnbullJ.E. AllenS.J. VoordeK.V. LutherK. Systematic root cause analysis of adverse drug events in a tertiary referral hospital.Jt. Comm. J. Qual. Improv.2000261056357510.1016/S1070‑3241(00)26048‑311042820
    [Google Scholar]
  15. ThürmannP.A. Methods and systems to detect adverse drug reactions in hospitals.Drug Saf.2001241396196810.2165/00002018‑200124130‑0000311735652
    [Google Scholar]
  16. ZuckerD.R. RuthazerR. SchmidC.H. Individual (N-of-1) trials can be combined to give population comparative treatment effect estimates: Methodologic considerations.J. Clin. Epidemiol.201063121312132310.1016/j.jclinepi.2010.04.02020863658
    [Google Scholar]
  17. HoT.B. LeL. Tran ThaiD. TaewijitS. Data-driven approach to detect and predict adverse drug reactions.Curr. Pharm. Des.201622233498352610.2174/138161282266616050912504727157416
    [Google Scholar]
  18. HakkarainenK.M. Andersson SundellK. PetzoldM. HäggS. Methods for assessing the preventability of adverse drug events: A systematic review.Drug Saf.201235210512610.2165/11596570‑000000000‑0000022201475
    [Google Scholar]
  19. BrownE.G. Methods and pitfalls in searching drug safety databases utilising the medical dictionary for regulatory activities (MedDRA).Drug Saf.200326314515810.2165/00002018‑200326030‑0000212580645
    [Google Scholar]
  20. HarrisonM.I. KoppelR. Bar-LevS. Unintended consequences of information technologies in health care--an interactive sociotechnical analysis.J. Am. Med. Inform. Assoc.200714554254910.1197/jamia.M238417600093
    [Google Scholar]
  21. BudnitzD.S. ShehabN. KeglerS.R. RichardsC.L. Medication use leading to emergency department visits for adverse drug events in older adults.Ann. Intern. Med.20071471175576510.7326/0003‑4819‑147‑11‑200712040‑0000618056659
    [Google Scholar]
  22. HylekE.M. ReganS. GoA.S. HughesR.A. SingerD.E. SkatesS.J. Clinical predictors of prolonged delay in return of the international normalized ratio to within the therapeutic range after excessive anticoagulation with warfarin.Ann. Intern. Med.2001135639340010.7326/0003‑4819‑135‑6‑200109180‑0000811560452
    [Google Scholar]
  23. JordanS. VaismoradiM. GriffithsP. Adverse drug reactions, nursing and policy: A narrative review.Ann. Nurs. Pract.2020331050
    [Google Scholar]
  24. EdwardsI.R. AronsonJ.K. Adverse drug reactions: Definitions, diagnosis, and management.Lancet200035692371255125910.1016/S0140‑6736(00)02799‑911072960
    [Google Scholar]
  25. ScripcaruG. MateusC. NunesC. Adverse drug events—Analysis of a decade. A Portuguese case-study, from 2004 to 2013 using hospital database.PLoS One2017126e017862610.1371/journal.pone.017862628575013
    [Google Scholar]
  26. KongkaewC. Drug-Related Hospital Admissions: An Epidemiological Assessment of Prevalence, Risk Factors, Nature and Clinical Significance.United KingdomThe University of Manchester2009
    [Google Scholar]
  27. ZazzaraM.B. PalmerK. VetranoD.L. CarfìA. OnderG. Adverse drug reactions in older adults: A narrative review of the literature.Eur. Geriatr. Med.202112346347310.1007/s41999‑021‑00481‑933738772
    [Google Scholar]
  28. HuY.J. ZhouX. WangS. WillcoxM. GarnerC. BrownD. BecqueT. StuartB. HanZ. ChangQ. MooreM. LittleP. Diarrhoea management using over-the-counter nutraceuticals in daily practice (DIAMOND): A feasibility RCT on alternative therapy to reduce antibiotic use.Pilot Feasibility Stud.20217112610.1186/s40814‑021‑00850‑y34130752
    [Google Scholar]
  29. StephensM.D.B. TalbotJ. The detection of new adverse drug reactions.Springer198510.1007/978‑1‑349‑07250‑7
    [Google Scholar]
  30. McdowellS.E. ThomasS.K. ColemanJ.J. AronsonJ.K. FernerR.E. A practical guide to monitoring for adverse drug reactions during antihypertensive drug therapy.J. R. Soc. Med.201310638711910.1258/jrsm.2012.12013723481430
    [Google Scholar]
  31. ArulmaniR. RajendranS.D. SureshB. Adverse drug reaction monitoring in a secondary care hospital in South India.Br. J. Clin. Pharmacol.200865221021610.1111/j.1365‑2125.2007.02993.x17662089
    [Google Scholar]
  32. AprotosoaieA.C. HăncianuM. CostacheI-I. MironA. Linalool: A review on a key odorant molecule with valuable biological properties.Flavour Fragrance J.201429419321910.1002/ffj.3197
    [Google Scholar]
  33. LishaJ. AnnalakshmiV. MariaJ. PadminiD. Adverse drug reactions in critical care settings: A systematic review.Curr. Drug Saf.201712314716128699492
    [Google Scholar]
  34. HutchinsonT.A. LaneD.A. Assessing methods for causality assessment of suspected adverse drug reactions.J. Clin. Epidemiol.198942151610.1016/0895‑4356(89)90020‑62913186
    [Google Scholar]
  35. LavanA.H. GallagherP. Predicting risk of adverse drug reactions in older adults.Ther. Adv. Drug Saf.201671112210.1177/204209861561547226834959
    [Google Scholar]
  36. AronsonJ.K. Adverse drug reactions: History, terminology, classification, causality, frequency, preventability.Stephens' Detection and Evaluation of Adverse Drug Reactions: Principles and PracticeWiley2011111910.1002/9780470975053.ch1
    [Google Scholar]
  37. MeyboomR.H.B. HeksterY.A. EgbertsA.C.G. GribnauF.W.J. EdwardsI.R. Causal or casual?Drug Saf.199717637438910.2165/00002018‑199717060‑000049429837
    [Google Scholar]
  38. NaranjoC.A. BustoU. SellersE.M. SandorP. RuizI. RobertsE.A. JanecekE. DomecqC. GreenblattD.J. A method for estimating the probability of adverse drug reactions.Clin. Pharmacol. Ther.198130223924510.1038/clpt.1981.1547249508
    [Google Scholar]
  39. AlomarM.J. Factors affecting the development of adverse drug reactions (Review article).Saudi Pharm. J.2014222839410.1016/j.jsps.2013.02.00324648818
    [Google Scholar]
  40. LuH. RosenbaumS. Developmental pharmacokinetics in pediatric populations.J. Pediatr. Pharmacol. Ther.201419426227610.5863/1551‑6776‑19.4.26225762871
    [Google Scholar]
  41. IvanovskaV. RademakerC.M.A. van DijkL. Mantel-TeeuwisseA.K. Pediatric drug formulations: A review of challenges and progress.Pediatrics2014134236137210.1542/peds.2013‑322525022739
    [Google Scholar]
  42. SoodR. TomarD. KaushikP. SharmaP. RaniN. GuarveK. DhankharS. GargN. Enhanced solubility and increased bioavailability with engineered nanocrystals.Curr. Drug Ther.202419663864710.2174/0115748855269071231113070552
    [Google Scholar]
  43. NodaA. SakaiT. ObaraT. MiyazakiM. TsuchiyaM. OyanagiG. MuraiY. ManoN. Characteristics of pediatric adverse drug reaction reports in the Japanese adverse drug event report database.BMC Pharmacol. Toxicol.20202113610.1186/s40360‑020‑00412‑732448369
    [Google Scholar]
  44. TempleM.E. RobinsonR.F. MillerJ.C. HayesJ.R. NahataM.C. Frequency and preventability of adverse drug reactions in paediatric patients.Drug Saf.2004271181982910.2165/00002018‑200427110‑0000515350153
    [Google Scholar]
  45. ManshipD. Anticonvulsant Hypersensitivity Syndrome (AHS).Poster session presented at Oklahoma State University Center for Health Sciences Research DayTulsa, Oklahoma, United States.2020
    [Google Scholar]
  46. SharmaP. KaushikP. Kumar SharmaS. DhankarS. GargN. RaniN. Exploring microsponges in dermatology: Opportunities and hurdles ahead.Micro Nanosyst.2024161910.2174/0118764029295903240328054858
    [Google Scholar]
  47. SharmaH. GargN. DhankharS. MIttalP. ChauhanS. SainiM. Biobased nanomaterials: Pioneering innovations for biomedical advancements.Pharm. Nanotechnol.20241211510.2174/012211738529153024030504470338504570
    [Google Scholar]
  48. OscanoaT.J. LizarasoF. CarvajalA. Hospital admissions due to adverse drug reactions in the elderly. A meta-analysis.Eur. J. Clin. Pharmacol.201773675977010.1007/s00228‑017‑2225‑328251277
    [Google Scholar]
  49. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A review on natural antioxidants for their role in the treatment of parkinson’s disease.Pharmaceuticals202316790810.3390/ph1607090837513820
    [Google Scholar]
  50. MittalP. Biobased nanomaterials in biomedical applications.Biobased Nanomaterials: Applications in Biomedicine, Food Industry, Agriculture, and Environmental SustainabilitySpringer202414117110.1007/978‑981‑97‑0542‑9_6
    [Google Scholar]
  51. MangoniA.A. Predicting and detecting adverse drug reactions in old age: Challenges and opportunities.Expert Opin. Drug Metab. Toxicol.20128552753010.1517/17425255.2012.66587422512705
    [Google Scholar]
  52. NarwalS. Current therapeutic strategies for chagas disease.Antiinfect. Agents202321111
    [Google Scholar]
  53. KciukM. GargN. DhankharS. SainiM. MujwarS. DeviS. ChauhanS. SinghT.G. SinghR. MarciniakB. GielecińskaA. KontekR. Exploring the comprehensive neuroprotective and anticancer potential of afzelin.Pharmaceuticals202417670110.3390/ph17060701
    [Google Scholar]
  54. FerrucciL. GuralnikJ.M. StudenskiS. FriedL.P. CutlerG.B.Jr WalstonJ.D. Interventions on Frailty Working Group Designing randomized, controlled trials aimed at preventing or delaying functional decline and disability in frail, older persons: A consensus report.J. Am. Geriatr. Soc.200452462563410.1111/j.1532‑5415.2004.52174.x15066083
    [Google Scholar]
  55. NolinT.D. FryeR.F. MatzkeG.R. Hepatic drug metabolism and transport in patients with kidney disease.Am. J. Kidney Dis.200342590692510.1016/j.ajkd.2003.07.01914582035
    [Google Scholar]
  56. OnderG. LattanzioF. BattagliaM. CerulloF. SportielloR. BernabeiR. LandiF. The risk of adverse drug reactions in older patients: Beyond drug metabolism.Curr. Drug Metab.201112764765110.2174/13892001179650456321495971
    [Google Scholar]
  57. LalitK. Phyto-pharmacological review of Coccinia indica.World J. Pharm. Pharm. Sci.20143217341745
    [Google Scholar]
  58. DhankarS. GargN. ChauhanS. SainiM. A bird view on the role of graphene oxide nanosystems in therapeutic delivery.Curr. Nanosci.20242011110.2174/0115734137299120240312044808
    [Google Scholar]
  59. DhankarS. MujwarS. GargN. ChauhanS. SharmaP. Kumar SharmaS. KamalM.A. RaniD.N. KumarS. SainiM. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets20232311037861051
    [Google Scholar]
  60. PhillipsK.A. VeenstraD.L. OrenE. LeeJ.K. SadeeW. Potential role of pharmacogenomics in reducing adverse drug reactions: A systematic review.JAMA2001286182270227910.1001/jama.286.18.227011710893
    [Google Scholar]
  61. SeverinoG. Del ZompoM. Adverse drug reactions: Role of pharmacogenomics.Pharmacol. Res.200449436337310.1016/j.phrs.2003.05.00315202516
    [Google Scholar]
  62. RohillaS. SharmaP. KambojS. DhankharS. GargN. ChauhanS. RaniN. Anabolic androgenic steroids: A review.Emir. Med. J.20245e0250688225370610.2174/0102506882253706240104073440
    [Google Scholar]
  63. DeanL. KaneM. Codeine therapy and CYP2D6 genotype.Medical Genetics SummariesBethesda (MD)National Center for Biotechnology Information (US)2021
    [Google Scholar]
  64. ChauhanS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.2023193104121
    [Google Scholar]
  65. ChauhanS. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.2021113225233
    [Google Scholar]
  66. PanchalM. RanaP. GargN. DhankharS. SharmaH. ChauhanS. A comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy.Emir. Med. J.20245e0250688228292910.2174/0102506882282929231212074538
    [Google Scholar]
  67. FangH. HarrisS.C. LiuZ. ZhouG. ZhangG. XuJ. RosarioL. HowardP.C. TongW. FDA drug labeling: Rich resources to facilitate precision medicine, drug safety, and regulatory science.Drug Discov. Today201621101566157010.1016/j.drudis.2016.06.00627319291
    [Google Scholar]
  68. Tan-KoiW.C. LimE.S.H. TeoY.Y. Health regulatory communications of well-established safety-related pharmacogenomics associations in six developed countries: An evaluation of alignment.Pharmacogenomics J.201717212112710.1038/tpj.2016.526902540
    [Google Scholar]
  69. NaranjoC.A. BustoU. SellersE.M. Difficulties in assessing adverse drug reactions in clinical trials.Prog. Neuropsychopharmacol. Biol. Psychiatry198264-665165710.1016/S0278‑5846(82)80162‑06761768
    [Google Scholar]
  70. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  71. DaviesE. GreenC. MottramD. PirmohamedM. Adverse drug reactions in hospitals: A narrative review.Curr. Drug Saf.200721798710.2174/15748860777931550718690953
    [Google Scholar]
  72. Dal PanG.J. LindquistM. GelperinK. Postmarketing spontaneous pharmacovigilance reporting systems.Pharmacoepidemiology2019165201
    [Google Scholar]
  73. PoluzziE. Data mining techniques in pharmacovigilance: Analysis of the publicly accessible FDA adverse event reporting system (AERS).Data mining applications in engineering and medicineIntechOpen2012
    [Google Scholar]
  74. DubrallD. SchmidM. AlešikE. PaeschkeN. StinglJ. SachsB. Frequent adverse drug reactions, and medication groups under suspicion: A descriptive analysis based on spontaneous reports to the german federal institute for drugs and medical devices from 1978 to 2016.Dtsch. Arztebl. Int.20181152339340029960607
    [Google Scholar]
  75. AungA.K. TangM.J. AdlerN.R. de MenezesS.L. GohM.S.Y. TeeH.W. TrubianoJ.A. PuyR. ZubrinichC.M. GraudinsL.V. Adverse drug reactions reported by healthcare professionals: Reaction characteristics and time to reporting.J. Clin. Pharmacol.201858101332133910.1002/jcph.114829733431
    [Google Scholar]
  76. RollmanJ.E. HeywardJ. OlsonL. LurieP. SharfsteinJ. AlexanderG.C. Assessment of the FDA risk evaluation and mitigation strategy for transmucosal immediate-release fentanyl products.JAMA2019321767668510.1001/jama.2019.023530778596
    [Google Scholar]
  77. WysowskiD.K. SwartzL. Adverse drug event surveillance and drug withdrawals in the United States, 1969-2002: The importance of reporting suspected reactions.Arch. Intern. Med.2005165121363136910.1001/archinte.165.12.136315983284
    [Google Scholar]
  78. DhankharS. ChauhanS. MehtaD.K. Nitika SainiK. SainiM. DasR. GuptaS. GautamV. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑536782201
    [Google Scholar]
  79. DhankharS. SharmaP. ChauhanS. SainiM. GargN. SinghR. KamalM.A. Kumar SharmaS. RaniN. Cognitive rehabilitation for early-stage dementia: A review.Curr. Psychiatry Res. Rev.20242011410.2174/0126660822275618231129073551
    [Google Scholar]
  80. SteinmanM.A. HandlerS.M. GurwitzJ.H. SchiffG.D. CovinskyK.E. Beyond the prescription: Medication monitoring and adverse drug events in older adults.J. Am. Geriatr. Soc.20115981513152010.1111/j.1532‑5415.2011.03500.x21797831
    [Google Scholar]
  81. WittesJ. CroweB. Chuang-SteinC. GuettnerA. HallD. JiangQ. OdenheimerD. XiaH.A. KramerJ. The FDA’s final rule on expedited safety reporting: Statistical considerations.Stat. Biopharm. Res.20157317419010.1080/19466315.2015.104339526550466
    [Google Scholar]
  82. PapazisisG. SpachosD. SiafisS. PandriaN. DeligianniE. TsakiridisI. GoulasA. Assessment of the safety signal for the abuse potential of pregabalin and gabapentin using the FAERS database and big data search analytics.Front. Psychiatry20211264026410.3389/fpsyt.2021.64026434093263
    [Google Scholar]
  83. WongC.K. HoS.S. SainiB. HibbsD.E. FoisR.A. Standardisation of the FAERS database: A systematic approach to manually recoding drug name variants.Pharmacoepidemiol. Drug Saf.201524773173710.1002/pds.380526017154
    [Google Scholar]
  84. HicksR.W. CousinsD.D. WilliamsR.L. Selected medication-error data from USP’s MEDMARX program for 2002.Am. J. Health Syst. Pharm.20046110993100010.1093/ajhp/61.10.99315160775
    [Google Scholar]
  85. KaushalR. BatesD.W. LandriganC. McKennaK.J. ClappM.D. FedericoF. GoldmannD.A. Medication errors and adverse drug events in pediatric inpatients.JAMA2001285162114212010.1001/jama.285.16.211411311101
    [Google Scholar]
  86. AliU. AounM. Machine learning and FAERS data: Revolutionizing health care analytics for adverse drug reaction prediction.Int. J. Appl. Health Care Analytics.202383118
    [Google Scholar]
  87. TanY. HuY. LiuX. YinZ. ChenX. LiuM. Improving drug safety: From adverse drug reaction knowledge discovery to clinical implementation.Methods2016110142510.1016/j.ymeth.2016.07.02327485605
    [Google Scholar]
  88. HärmarkL. van HunselF. GrundmarkB. ADR reporting by the general public: Lessons learnt from the Dutch and Swedish systems.Drug Saf.201538433734710.1007/s40264‑015‑0264‑125627832
    [Google Scholar]
  89. RohillaM. Rishabh BansalS. GargA. DhimanS. DhankharS. SainiM. ChauhanS. AlsubaieN. BatihaG.E.S. AlbezrahN.K.A. SinghT.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.11588137989030
    [Google Scholar]
  90. INJETIN. PALA. Adverse Drug Reaction Monitoring: Pharmacovigilance and Artificial IntelligenceInt. J. Pharm. Res.202113209752366
    [Google Scholar]
  91. ShahR.R. Can pharmacogenetics help rescue drugs withdrawn from the market?Pharmacogenomics20067688990810.2217/14622416.7.6.889
    [Google Scholar]
  92. VictorD.G. RaustialaK. SkolnikoffE.B. The implementation and effectiveness of international environmental commitments: Theory and practice.MIT press1998
    [Google Scholar]
  93. CastillonG. SalvoF. MorideY. The social impact of suspected adverse drug reactions: An analysis of the Canada vigilance spontaneous reporting database.Drug Saf.2019421273410.1007/s40264‑018‑0713‑830121742
    [Google Scholar]
  94. WilkesM.S. BellR.A. KravitzR.L. Direct-to-consumer prescription drug advertising: Trends, impact, and implications: Aiming drug ads at consumers means big business for drug companies, but its effect on clinical care is not yet known.Health Aff.200019211012810.1377/hlthaff.19.2.110
    [Google Scholar]
  95. HazellL. CorneliusV. HannafordP. ShakirS. AveryA.J. Yellow Card Study Collaboration How do patients contribute to signal detection?: A retrospective analysis of spontaneous reporting of adverse drug reactions in the UK’s Yellow Card Scheme.Drug Saf.201336319920610.1007/s40264‑013‑0021‑223444232
    [Google Scholar]
  96. NagumoW-R. Pharmacovigilance and adverse drug reaction reporting practices among Ghanaian healthcare professionals.University of Sheffield2020
    [Google Scholar]
  97. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. KumarS. SharmaH. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.20231211137818559
    [Google Scholar]
  98. MedhiB. MuraliK. KaurS. PrakashA. Artificial intelligence in pharmacovigilance: Practical utility.Indian J. Pharmacol.201951637337610.4103/ijp.IJP_814_1932029958
    [Google Scholar]
  99. LétinierL. JouganousJ. BenkebilM. Bel-LétoileA. GoehrsC. SingierA. RoubyF. LacroixC. MiremontG. MicallefJ. SalvoF. ParienteA. Artificial intelligence for unstructured healthcare data: Application to coding of patient reporting of adverse drug reactions.Clin. Pharmacol. Ther.2021110239240010.1002/cpt.226633866552
    [Google Scholar]
  100. HuysentruytK. KjoersvikO. DobrackiP. SavageE. MishalovE. CherryM. LeonardE. TaylorR. PatelB. AbatemarcoD. Validating intelligent automation systems in pharmacovigilance: insights from good manufacturing practices.Drug Saf.202144326127210.1007/s40264‑020‑01030‑233523400
    [Google Scholar]
  101. VermanS. AnjankarA. A narrative review of adverse event detection, monitoring, and prevention in indian hospitals.Cureus2022149e2916210.7759/cureus.2916236258971
    [Google Scholar]
  102. EgonK. Machine learning in drug safety monitoring: Enhancing pharmacovigilance efforts.J. Drugs Pharm. Sci.202310.31219/osf.io/9w5h7
    [Google Scholar]
  103. DivyaP. Automation in pharmacovigilance: Artificial intelligence and machine learning for patient safety.J. Innov. Appl. Pharm. Sci.2022118122
    [Google Scholar]
  104. KumarA. KhanH. Signal detection and their assessment in pharmacovigilance.Open Pharm. Sci. J.201521667310.2174/1874844901502010066
    [Google Scholar]
  105. BateA. StegmannJ.U. Artificial intelligence and pharmacovigilance: What is happening, what could happen and what should happen?Health Policy Technol.202312210074310.1016/j.hlpt.2023.100743
    [Google Scholar]
  106. MayerB. KringelD. LötschJ. Artificial intelligence and machine learning in clinical pharmacological research.Expert Rev. Clin. Pharmacol.2024171799110.1080/17512433.2023.229400538165148
    [Google Scholar]
  107. GhoshJ. ChoudhuryS.R. SinghK. KonerS. Application of machine learning algorithm and artificial intelligence in improving metabolic syndrome related complications: A review.Int. J. Adv. Life Sci. Res.202472416710.31632/ijalsr.2024.v07i02.004
    [Google Scholar]
  108. RaoM. NassiriV. AlhambraC. SnoeysJ. Van GoethemF. IrrechukwuO. AleoM.D. GeysH. MitraK. WillY. AI/ML models to predict the severity of drug-induced liver injury for small molecules.Chem. Res. Toxicol.20233671129113910.1021/acs.chemrestox.3c0009837294641
    [Google Scholar]
  109. ChalasaniS.H. SyedJ. RameshM. PatilV. Pramod KumarT.M. Artificial intelligence in the field of pharmacy practice: A literature review.Exploratory Research in Clinical and Social Pharmacy20231210034610.1016/j.rcsop.2023.10034637885437
    [Google Scholar]
  110. KhandayA.M.U.D. RabaniS.T. KhanQ.R. RoufN. Mohi Ud DinM. Machine learning based approaches for detecting COVID-19 using clinical text data.Int. J. Inf. Technol.202012373173910.1007/s41870‑020‑00495‑932838125
    [Google Scholar]
  111. RehniA.K. SinghT.G. SinghN. AroraS. Tramadol-induced seizurogenic effect: A possible role of opioid-dependent histamine (H1) receptor activation-linked mechanism.Naunyn Schmiedebergs Arch. Pharmacol.20103811111910.1007/s00210‑009‑0476‑y20012267
    [Google Scholar]
  112. RehniA.K. SinghT.G. JaggiA.S. SinghN. Pharmacological preconditioning of the brain: A possible interplay between opioid and calcitonin gene related peptide transduction systems.Pharmacol. Rep.200860690491319211983
    [Google Scholar]
  113. KumarA. BehlT. ChadhaS. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects.Int. J. Biol. Macromol.20201491262127410.1016/j.ijbiomac.2020.02.04832044364
    [Google Scholar]
  114. DickinsonH. TeltschD.Y. FeifelJ. HuntP. Vallejo-YagüeE. VirkudA.V. MuylleK.M. OchiT. DonneyongM. ZabinskiJ. StraussV.Y. Hincapie-CastilloJ.M. Actionable AI group The unseen hand: AI-based prescribing decision support tools and the evaluation of drug safety and effectiveness.Drug Saf.202447211712310.1007/s40264‑023‑01376‑338019365
    [Google Scholar]
  115. CocciaM. GhazinooriS. RoshaniS. Evolutionary pathways of ecosystem literature in organization and management studies.Research Square202310.21203/rs.3.rs‑2499460/v1
    [Google Scholar]
  116. ZhouB. Natural language processing for smart healthcare.IEEE Rev. Biomed. Eng.202236170385
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882313855240809064836
Loading
/content/journals/nemj/10.2174/0102506882313855240809064836
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test