Skip to content
2000
Volume 4, Issue 2
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Objectives

Caveolins are universal multifunctional physiologically active microparticles that collaborate in the caveolae formation to maintain the metabolic homeostatic balance of the cells. In fact, remarkable advances in the molecular biopathology of caveolae have been made in recent years by exploring the role of caveolae in norm and physiopathology.

Methods

The current literature data on the caveolae behavior in norm and pathology were revised.

Results

Caveolae are expressed in various cell types, highly concentrated in endothelial cells, cardiomyocytes, and epithelial cells. Physiologically, caveolae contribute to maintaining a signaling balance between the various homeostatic processes, including pro-growth and pro-survival, such as endothelial nitric oxide synthase, glycogen synthase kinase-3β, p42/p44 mitogen-activated protein kinase, PKA, SFK, PKC, Akt through regulation of tyrosine kinases, G protein-coupled receptor, endothelial nitric oxide synthase, and MAPK pathways, and their signaling dysfunction is directly attributed to the pathogenesis of cardiovascular diseases, regeneration inhibition, neurodegenerative diseases, infection, osteoporosis, diabetes, and tumour induction and progression.

Conclusion

Regulation of the ratio and penetrance of caveolae activity/expression is a clinically significant potential therapeutic strategy to enhance the current therapies and eliminate the etiopathogenetic pathway of rising homeostatic disorders.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0250688204666230508112229
2023-07-18
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/nemj/4/2/NEMJ-4-2-E080523216639.html?itemId=/content/journals/nemj/10.2174/0250688204666230508112229&mimeType=html&fmt=ahah

References

  1. LianX. MatthaeusC. KaßmannM. DaumkeO. GollaschM. Pathophysiological role of caveolae in hypertension.Front. Med.2019615310.3389/fmed.2019.0015331355199
    [Google Scholar]
  2. BoscherC. NabiI.R. Caveolin-1: Role in cell signaling.Adv. Exp. Med. Biol.2012729295010.1007/978‑1‑4614‑1222‑9_322411312
    [Google Scholar]
  3. YanF. SuL. ChenX. WangX. GaoH. ZengY. Molecular regulation and clinical significance of caveolin‐1 methylation in chronic lung diseases.Clin. Transl. Med.202010115116010.1002/ctm2.232508059
    [Google Scholar]
  4. ZhouY. AriottiN. RaeJ. LiangH. TilluV. TeeS. BastianiM. BademosiA.T. CollinsB.M. MeunierF.A. HancockJ.F. PartonR.G. Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae.J. Cell Biol.20212203e20200513810.1083/jcb.20200513833496726
    [Google Scholar]
  5. AriottiN. RaeJ. LenevaN. FergusonC. LooD. OkanoS. HillM.M. WalserP. CollinsB.M. PartonR.G. Molecular characterization of caveolin-induced membrane curvature.J. Biol. Chem.201529041248752489010.1074/jbc.M115.64433626304117
    [Google Scholar]
  6. CodenottiS. FaggiF. RoncaR. ChiodelliP. GrilloE. GuesciniM. MegiorniF. MaramponF. FanzaniA. Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation.Cancer Lett.201944913514410.1016/j.canlet.2019.02.01330771426
    [Google Scholar]
  7. ZhangD. GavaA.L. Van KriekenR. MehtaN. LiR. GaoB. DesjardinsE.M. SteinbergG.R. HawkeT. KrepinskyJ.C. The caveolin-1 regulated protein follistatin protects against diabetic kidney disease.Kidney Int.20199651134114910.1016/j.kint.2019.05.03231492508
    [Google Scholar]
  8. DíazM.I. DíazP. BennettJ.C. UrraH. OrtizR. OrellanaP.C. HetzC. QuestA.F.G. Caveolin-1 suppresses tumor formation through the inhibition of the unfolded protein response.Cell Death Dis.202011864810.1038/s41419‑020‑02792‑432811828
    [Google Scholar]
  9. ZhangX. RamírezC.M. AryalB. Madrigal-MatuteJ. LiuX. DiazA. Torrecilla-ParraM. SuárezY. CuervoA.M. SessaW.C. Fernández-HernandoC. Cav-1 (Caveolin-1) deficiency increases autophagy in the endothelium and attenuates vascular inflammation and atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20204061510152210.1161/ATVBAHA.120.31429132349535
    [Google Scholar]
  10. HouK. LiS. ZhangM. QinX. Caveolin-1 in autophagy: A potential therapeutic target in atherosclerosis.Clin. Chim. Acta2021513253310.1016/j.cca.2020.11.02033279502
    [Google Scholar]
  11. WilliamsT.M. LisantiM.P. The caveolin proteins.Genome Biol.20045321410.1186/gb‑2004‑5‑3‑21415003112
    [Google Scholar]
  12. KruglikovI.L. SchererP.E. Caveolin as a universal target in dermatology.Int. J. Mol. Sci.20192118010.3390/ijms2101008031877626
    [Google Scholar]
  13. YamadaE. The fine structure of the gall bladder epithelium of the mouse.J. Cell Biol.19551544545810.1083/jcb.1.5.445
    [Google Scholar]
  14. PaladeG.E. Fine structure of blood capillaries.J. Appl. Phys.1953241424
    [Google Scholar]
  15. WangJ. LuoQ. LiuM. ZhangC. JiaY. TongR. YangL. FuX. TBRG4 silencing promotes progression of squamous cell carcinoma via regulation of CAV-1 expression and ROS formation.Cell. Mol. Biol.202066215716410.14715/cmb/2020.66.2.2632415943
    [Google Scholar]
  16. MarzoogB. Lipid behavior in metabolic syndrome pathophysiology.Curr. Diabetes Rev.2022186e15092119649710.2174/157339981766621091510132134525924
    [Google Scholar]
  17. MarzoogB.A. The metabolic syndrome puzzles; possible pathogenesis and management.Curr. Diabetes Rev.20221810.2174/157339981866622042910041135507784
    [Google Scholar]
  18. MarzoogB.A. VlasovaT.I. Systemic and local hypothermia in the context of cell regeneration.Cryo Lett.2022432667310.54680/fr2221011011236626147
    [Google Scholar]
  19. MarzoogB.A. Endothelial cell autophagy in the context of disease development.Anat. Cell Biol.2023561162410.5115/acb.22.09836267005
    [Google Scholar]
  20. MarzoogB.A. Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target.J. Diabetes Metab. Disord.20222121903191110.1007/s40200‑022‑01088‑y36065330
    [Google Scholar]
  21. MarzoogB.A. VlasovaT.I. Membrane lipids under norm and pathology.Eur J Clin Exp Med2021191597510.15584/ejcem.2021.1.9
    [Google Scholar]
  22. Abdullah MarzoogB. Adaptive and Compensatory Mechanisms of the Cardiovascular System and Disease Risk Factors in young males and females.Emir. Med. J.202341e28112221129310.2174/04666221128110145
    [Google Scholar]
  23. MarzoogB.A. Pulmonary fibrosis; risk factors and molecular triggers, insight for neo therapeutic approach.Curr. Respir. Med. Rev.202218425926610.2174/1573398X18666220806124019
    [Google Scholar]
  24. MarzoogB.A. Local lung fibroblast autophagy in the context of lung fibrosis pathogenesis.Curr. Respir. Med. Rev.202319161110.2174/1573398X19666221130141600
    [Google Scholar]
  25. AbdullahM.B. Autophagy as an anti-senescent in aging neurocytes.Curr. Mol. Med.202323ahead of print10.2174/156652402366623012010271836683318
    [Google Scholar]
  26. MarzoogB.A. Autophagy in endothelial cell dysfunction.Curr. Mol. Med.2022
    [Google Scholar]
  27. BusijaA.R. PatelH.H. InselP.A. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology.Am. J. Physiol. Cell Physiol.20173124C459C47710.1152/ajpcell.00355.201628122734
    [Google Scholar]
  28. de AlmeidaC.J.G. Caveolin-1 and caveolin-2 can be antagonistic partners in inflammation and beyond.Front. Immunol.20178153010.3389/fimmu.2017.0153029250058
    [Google Scholar]
  29. DudãuM. CodriciE. TanaseC. GherghiceanuM. EnciuA.M. HinescuM.E. Caveolae as potential hijackable gates in cell communication.Front. Cell Dev. Biol.2020858173210.3389/fcell.2020.58173233195223
    [Google Scholar]
  30. TiwariA. CopelandC.A. HanB. HansonC.A. RaghunathanK. KenworthyA.K. Caveolin-1 is an aggresome-inducing protein.Sci. Rep.2016613868110.1038/srep3868127929047
    [Google Scholar]
  31. SimónL. CamposA. LeytonL. QuestA.F.G. Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer.Cancer Metastasis Rev.202039243545310.1007/s10555‑020‑09890‑x32458269
    [Google Scholar]
  32. VolonteD. LiuZ. ShivaS. GalbiatiF. Caveolin-1 controls mitochondrial function through regulation of m-AAA mitochondrial protease.Aging20168102355236910.18632/aging.10105127705926
    [Google Scholar]
  33. CesnekovaJ. RodinovaM. HansikovaH. ZemanJ. StiburekL. Loss of mitochondrial AAA proteases AFG3L2 and YME1L impairs mitochondrial structure and respiratory chain biogenesis.Int. J. Mol. Sci.20181912393010.3390/ijms1912393030544562
    [Google Scholar]
  34. SchillingJ.M. HeadB.P. PatelH.H. Caveolins as regulators of stress adaptation.Mol. Pharmacol.201893427728510.1124/mol.117.11123729358220
    [Google Scholar]
  35. Bravo-SaguaR. ParraV. Ortiz-SandovalC. Navarro-MarquezM. RodríguezA.E. Diaz-ValdiviaN. SanhuezaC. Lopez-CrisostoC. TahbazN. RothermelB.A. HillJ.A. CifuentesM. SimmenT. QuestA.F.G. LavanderoS. Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress.Cell Death Differ.20192671195121210.1038/s41418‑018‑0197‑130209302
    [Google Scholar]
  36. PedrialiG. RimessiA. SbanoL. GiorgiC. WieckowskiM.R. PreviatiM. PintonP. Regulation of endoplasmic reticulum–mitochondria Ca2+ transfer and its importance for anti-cancer therapies.Front. Oncol.2017718010.3389/fonc.2017.0018028913175
    [Google Scholar]
  37. ServiliE. TrusM. MaayanD. AtlasD. β-Subunit of the voltage-gated Ca 2+ channel Cav1.2 drives signaling to the nucleus via H-Ras.Proc. Natl. Acad. Sci.201811537E8624E863310.1073/pnas.180538011530150369
    [Google Scholar]
  38. MaH. GrothR.D. CohenS.M. EmeryJ.F. LiB. HoedtE. ZhangG. NeubertT.A. TsienR.W. γCaMKII shuttles Ca²⁺/CaM to the nucleus to trigger CREB phosphorylation and gene expression.Cell2014159228129410.1016/j.cell.2014.09.01925303525
    [Google Scholar]
  39. TangY. FangW. XiaoZ. SongM. ZhuangD. HanB. WuJ. SunX. Nicotinamide ameliorates energy deficiency and improves retinal function in Cav-1 -/- Mice.J. Neurochem.2020157355056010.1111/jnc.15266
    [Google Scholar]
  40. TianJ. PopalM.S. HuangR. ZhangM. ZhaoX. ZhangM. SongX. Caveolin as a novel potential therapeutic target in cardiac and vascular diseases: A mini review.Aging Dis.202011237838910.14336/AD.2019.0960332257548
    [Google Scholar]
  41. WangF. GuH. ZhangD. Caveolin-1 and ATP binding cassette transporter A1 and G1-mediated cholesterol efflux.Cardiovasc. Hematol. Disord. Drug Targets201414214214810.2174/1871529X1466614050512280224801727
    [Google Scholar]
  42. RamírezC.M. ZhangX. BandyopadhyayC. RotllanN. SugiyamaM.G. AryalB. LiuX. HeS. KraehlingJ.R. UlrichV. LinC.S. VelazquezH. LasunciónM.A. LiG. SuárezY. TellidesG. SwirskiF.K. LeeW.L. SchwartzM.A. SessaW.C. Fernández-HernandoC. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation.Circulation2019140322523910.1161/CIRCULATIONAHA.118.03857131154825
    [Google Scholar]
  43. OtisJ.P. ShenM.C. QuinlivanV. AndersonJ.L. FarberS.A. 2Intestinal epithelial cell Caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels.Dis. Model. Mech.2017103dmm.02730010.1242/dmm.02730028130355
    [Google Scholar]
  44. XuS. ZhouX. YuanD. XuY. HeP. Caveolin-1 scaffolding domain promotes leukocyte adhesion by reduced basal endothelial nitric oxide-mediated ICAM-1 phosphorylation in rat mesenteric venules.Am. J. Physiol. Heart Circ. Physiol.201330510H1484H149310.1152/ajpheart.00382.201324043249
    [Google Scholar]
  45. BaeG.D. ParkE.Y. KimK. JangS.E. JunH.S. OhY.S. Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis.Sci. Rep.2019911678510.1038/s41598‑019‑53278‑z31728004
    [Google Scholar]
  46. RathinasabapathyA. CopelandC. CrabtreeA. CarrierE.J. MooreC. ShayS. GladsonS. AustinE.D. KenworthyA.K. LoydJ.E. HemnesA.R. WestJ.D. Expression of a human caveolin-1 mutation in mice drives inflammatory and metabolic defect-associated pulmonary arterial hypertension.Front. Med.2020754010.3389/fmed.2020.0054033015095
    [Google Scholar]
  47. WeissC.R. GuanQ. MaY. QingG. BernsteinC.N. WarringtonR.J. PengZ. The potential protective role of caveolin-1 in intestinal inflammation in TNBS-induced murine colitis.PLoS One2015103e011900410.1371/journal.pone.011900425756273
    [Google Scholar]
  48. HaddadD. Al MadhounA. NizamR. Al-MullaF. Role of caveolin-1 in diabetes and its complications.Oxid. Med. Cell. Longev.2020202012010.1155/2020/976153932082483
    [Google Scholar]
  49. SurguchovA. Caveolin: A new link between diabetes and AD.Cell Mol Neurobiol20204071059106610.1007/s10571‑020‑00796‑4
    [Google Scholar]
  50. BondsJ.A. ShettiA. BheriA. ChenZ. DisoukyA. TaiL. MaoM. HeadB.P. BoniniM.G. HausJ.M. MinshallR.D. LazarovO. Depletion of caveolin-1 in type 2 diabetes model induces Alzheimer’s disease pathology precursors.J. Neurosci.201939438576858310.1523/JNEUROSCI.0730‑19.201931527120
    [Google Scholar]
  51. Fernandez-RojoM.A. RammG.A. Caveolin-1 function in liver physiology and disease.Trends Mol. Med.2016221088990410.1016/j.molmed.2016.08.00727633517
    [Google Scholar]
  52. NwosuZ.C. EbertM.P. DooleyS. MeyerC. Caveolin-1 in the regulation of cell metabolism: A cancer perspective.Mol. Cancer20161517110.1186/s12943‑016‑0558‑727852311
    [Google Scholar]
  53. ShteyerE. LiaoY. MugliaL.J. HruzP.W. RudnickD.A. Disruption of hepatic adipogenesis is associated with impaired liver regeneration in mice.Hepatology20044061322133210.1002/hep.2046215565660
    [Google Scholar]
  54. WilliamsT.M. LisantiM.P. Caveolin-1 in oncogenic transformation, cancer, and metastasis.Am. J. Physiol. Cell Physiol.20052883C494C50610.1152/ajpcell.00458.200415692148
    [Google Scholar]
  55. RazaniB. EngelmanJ.A. WangX.B. SchubertW. ZhangX.L. MarksC.B. MacalusoF. RussellR.G. LiM. PestellR.G. Di VizioD. HouH.Jr KneitzB. LagaudG. ChristG.J. EdelmannW. LisantiM.P. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities.J. Biol. Chem.200127641381213813810.1074/jbc.M10540820011457855
    [Google Scholar]
  56. RazaniB. CombsT.P. WangX.B. FrankP.G. ParkD.S. RussellR.G. LiM. TangB. JelicksL.A. SchererP.E. LisantiM.P. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities.J. Biol. Chem.2002277108635864710.1074/jbc.M11097020011739396
    [Google Scholar]
  57. CohenA.W. RazaniB. SchubertW. WilliamsT.M. WangX.B. IyengarP. BrasaemleD.L. SchererP.E. LisantiM.P. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation.Diabetes20045351261127010.2337/diabetes.53.5.126115111495
    [Google Scholar]
  58. CohenA.W. SchubertW. BrasaemleD.L. SchererP.E. LisantiM.P. Caveolin-1 expression is essential for proper nonshivering thermogenesis in brown adipose tissue.Diabetes200554367968610.2337/diabetes.54.3.67915734843
    [Google Scholar]
  59. FrankP.G. LisantiM.P. Caveolin-1 and liver regeneration: Role in proliferation and lipogenesis.Cell Cycle20076211511610.4161/cc.6.2.372217314510
    [Google Scholar]
  60. ShihataW.A. MichellD.L. AndrewsK.L. Chin-DustingJ.P.F. Caveolae: A role in endothelial inflammation and mechanotransduction?Front. Physiol.2016762810.3389/fphys.2016.0062828066261
    [Google Scholar]
  61. SudhaharV. OkurM.N. O’BryanJ.P. MinshallR.D. FultonD. Ushio-FukaiM. FukaiT. Caveolin-1 stabilizes ATP7A, a copper transporter for extracellular SOD, in vascular tissue to maintain endothelial function.Am. J. Physiol. Cell Physiol.20203195C933C94410.1152/ajpcell.00151.202032936699
    [Google Scholar]
  62. SamarakoonR. HigginsS.P. HigginsC.E. HigginsP.J. The TGF-β1/p53/PAI-1 signaling axis in vascular senescence: role of caveolin-1.Biomolecules20199834110.3390/biom908034131382626
    [Google Scholar]
  63. ZimnickaA.M. HusainY.S. ShajahanA.N. SverdlovM. ChagaO. ChenZ. TothP.T. KlompJ. KarginovA.V. TiruppathiC. MalikA.B. MinshallR.D. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae.Mol. Biol. Cell201627132090210610.1091/mbc.E15‑11‑075627170175
    [Google Scholar]
  64. YoonH.J. SurhY.J. Modulation of cancer cell growth and progression by caveolin-1 in the tumor microenvironment.Adv. Exp. Med. Biol.20201277637410.1007/978‑3‑030‑50224‑9_433119865
    [Google Scholar]
  65. GrivasD. González-RajalÁ. Guerrero RodríguezC. GarciaR. de la PompaJ.L. Loss of Caveolin-1 and caveolae leads to increased cardiac cell stiffness and functional decline of the adult zebrafish heart.Sci. Rep.20201011281610.1038/s41598‑020‑68802‑932733088
    [Google Scholar]
  66. SandersY.Y. LiuH. ScruggsA.M. DuncanS.R. HuangS.K. ThannickalV.J. Epigenetic regulation of caveolin-1 gene expression in lung fibroblasts.Am. J. Respir. Cell Mol. Biol.2017561506110.1165/rcmb.2016‑0034OC27560128
    [Google Scholar]
  67. YuW. ChenH. YangH. DingJ. XiaP. MeiX. WangL. ChenS. ZouC. WangL.X. Dissecting molecular mechanisms underlying pulmonary vascular smooth muscle cell dedifferentiation in pulmonary hypertension: Role of mutated caveolin-1 (Cav1F92A)-bone marrow mesenchymal stem cells.Heart Lung Circ.201928101587159710.1016/j.hlc.2018.08.00230262154
    [Google Scholar]
  68. WangQ. LaoM. XuZ. DingM. GuoS. LiL. Caveolin‑1 modulates hypertensive vascular remodeling via regulation of the Notch pathway.Mol. Med. Rep.20202254320432810.3892/mmr.2020.1150833000233
    [Google Scholar]
  69. MarudamuthuA.S. BhandaryY.P. FanL. RadhakrishnanV. MacKenzieB. MaierE. ShettyS.K. NagarajaM.R. GopuV. TiwariN. ZhangY. WattsA.B. WilliamsR.O.III CrinerG.J. BollaS. MarchettiN. IdellS. ShettyS. Caveolin-1–derived peptide limits development of pulmonary fibrosis.Sci. Transl. Med.201911522eaat284810.1126/scitranslmed.aat284831826982
    [Google Scholar]
  70. LinX. BarravecchiaM. Matthew KottmannR. SimeP. DeanD.A. Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis.Sci. Rep.2019911964310.1038/s41598‑019‑55819‑y31873099
    [Google Scholar]
  71. WangX. CaiL. XieJ.X. CuiX. ZhangJ. WangJ. ChenY. LarreI. ShapiroJ.I. PierreS.V. WuD. ZhuG.Z. XieZ. A caveolin binding motif in Na/K-ATPase is required for stem cell differentiation and organogenesis in mammals and C. elegans.Sci. Adv.2020622eaaw585110.1126/sciadv.aaw585132537485
    [Google Scholar]
  72. YangR. WangJ. ZhouZ. QiS. RuanS. LinZ. XinQ. LinY. ChenX. XieJ. Role of caveolin-1 in epidermal stem cells during burn wound healing in rats.Dev. Biol.2019445227127910.1016/j.ydbio.2018.11.01530476483
    [Google Scholar]
  73. YangS. ZhaoJ. HuangS. ShuB. YangR. ChenL. XuY. XieJ. LiuX. JiaJ. QiS. Reduced hydration-induced decreased caveolin-1 expression causes epithelial-to-mesenchymal transition.Am. J. Transl. Res.202012128067808333437382
    [Google Scholar]
  74. LiuJ. HanC. WangY.J. WangY-C. GuanX. WangL. ShenL-M. ZouW. Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells.Neural Regen. Res.202116471472010.4103/1673‑5374.29534233063733
    [Google Scholar]
  75. PanG. ZhangH. ZhuA. LinY. ZhangL. YeB. ChengJ. ShenW. JinL. LiuC. XieQ. ChenX. Treadmill exercise attenuates cerebral ischaemic injury in rats by protecting mitochondrial function via enhancement of caveolin-1.Life Sci.202126411863410.1016/j.lfs.2020.11863433148419
    [Google Scholar]
  76. QianX.L. PanY.H. HuangQ.Y. ShiY.B. HuangQ.Y. HuZ.Z. XiongL.X. Caveolin-1: A multifaceted driver of breast cancer progression and its application in clinical treatment.OncoTargets Ther.2019121539155210.2147/OTT.S19131730881011
    [Google Scholar]
  77. LinC.J. YunE.J. LoU.G. TaiY.L. DengS. HernandezE. DangA. ChenY.A. SahaD. MuP. LinH. LiT.K. ShenT.L. LaiC.H. HsiehJ.T. The paracrine induction of prostate cancer progression by caveolin-1.Cell Death Dis.2019101183410.1038/s41419‑019‑2066‑331685812
    [Google Scholar]
  78. KimY.J. KimJ.H. KimO. AhnE.J. OhS.J. AkandaM.R. OhI.J. JungS. KimK.K. LeeJ.H. KimH.S. KimH. LeeK.H. MoonK.S. Caveolin-1 enhances brain metastasis of non-small cell lung cancer, potentially in association with the epithelial-mesenchymal transition marker SNAIL.Cancer Cell Int.201919117110.1186/s12935‑019‑0892‑031297035
    [Google Scholar]
  79. ZhangC. HuangH. ZhangJ. WuQ. ChenX. HuangT. LiW. LiuY. ZhangJ. Caveolin-1 promotes invasion and metastasis by upregulating Pofut1 expression in mouse hepatocellular carcinoma.Cell Death Dis.201910747710.1038/s41419‑019‑1703‑131209283
    [Google Scholar]
  80. ThompsonT.C. TimmeT.L. LiL. GoltsovA. Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer.Apoptosis19994423323710.1023/A:100961270809914634273
    [Google Scholar]
  81. WilliamsT.M. HassanG.S. LiJ. CohenA.W. MedinaF. FrankP.G. PestellR.G. Di VizioD. LodaM. LisantiM.P. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice.J. Biol. Chem.200528026251342514510.1074/jbc.M50118620015802273
    [Google Scholar]
  82. Lobos-GonzálezL. AguilarL. DiazJ. DiazN. UrraH. TorresV.A. SilvaV. FitzpatrickC. LladserA. HoekK.S. LeytonL. QuestA.F.G. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.Pigment Cell Melanoma Res.201326455557010.1111/pcmr.1208523470013
    [Google Scholar]
  83. JoshiB. PawlingJ. ShankarJ. PacholczykK. KimY. TranW. MengF. RahmanA.M.A. FosterL.J. LeongH.S. DennisJ.W. NabiI.R. Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion.Oncotarget201910626668667710.18632/oncotarget.2731331803361
    [Google Scholar]
  84. GerstenbergerW. WrageM. KettunenE. PantelK. AnttilaS. SteurerS. WikmanH. Stromal Caveolin-1 and Caveolin-2 Expression in Primary Tumors and Lymph Node Metastases.Anal. Cell. Pathol. (Amst.)201820181810.1155/2018/865179029850392
    [Google Scholar]
  85. LamazeC. TorrinoS. Caveolae and cancer: A new mechanical perspective.Biomed. J.201538536737910.4103/2319‑4170.16422926345539
    [Google Scholar]
  86. LiuY. WangM. WangD. FayW. P. KorthuisR. J. SowaG. Elevated post-ischemic tissue injury and leukocyte-endothelial adhesive interactions in mice with global deficiency in caveolin-2: Role of PAI-1.Am. J. Physiol. Circ. Physiol.20213203H1185H119810.1152/ajpheart.00682.2020
    [Google Scholar]
  87. LeiY. SongM. WuJ. XingC. SunX. eNOS activity in CAV1 knockout mouse eyes.Invest. Ophthalmol. Vis. Sci.20165762805281310.1167/iovs.15‑1884127228562
    [Google Scholar]
  88. LiuY. QiX. LiG. SowaG. Caveolin-2 deficiency induces a rapid anti-tumor immune response prior to regression of implanted murine lung carcinoma tumors.Sci. Rep.2019911897010.1038/s41598‑019‑55368‑431831780
    [Google Scholar]
  89. PapadopoulosC. PapadimasG.K. KekouK. SpengosK. SvigouM. Kitsiou-TzeliS. MantaP. Caveolinopathies in greece.Neurologist201520181210.1097/NRL.000000000000003626185955
    [Google Scholar]
  90. SohnJ. BrickR.M. TuanR.S. From embryonic development to human diseases: The functional role of caveolae/caveolin.Birth Defects Res. C Embryo Today20161081456410.1002/bdrc.2112126991990
    [Google Scholar]
  91. ShahD.S. NisrR.B. StrettonC. Krasteva-ChristG. HundalH.S. Caveolin‐3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function.J. Cachexia Sarcopenia Muscle202011383885810.1002/jcsm.1254132090499
    [Google Scholar]
  92. KimS.Y. KimK.H. SchillingJ.M. LeemJ. DhananiM. HeadB.P. RothD.M. Zemljic-HarpfA.E. PatelH.H. Protective role of cardiac-specific overexpression of caveolin-3 in cirrhotic cardiomyopathy.Am. J. Physiol. Gastrointest. Liver Physiol.20203183G531G54110.1152/ajpgi.00346.201931961720
    [Google Scholar]
  93. CuadradoI. CastejonB. MartinA.M. SauraM. Reventun-TorralbaP. ZamoranoJ.L. ZaragozaC. Nitric oxide induces cardiac protection by preventing extracellular matrix degradation through the complex caveolin-3/emmprin in cardiac myocytes.PLoS One2016119e016291210.1371/journal.pone.016291227649573
    [Google Scholar]
  94. SellersS.L. TraneA.E. BernatchezP.N. Caveolin as a potential drug target for cardiovascular protection.Front. Physiol.2012328010.3389/fphys.2012.0028022934034
    [Google Scholar]
  95. KruglikovI.L. SchererP.E. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring.NPJ Regen. Med.201941910.1038/s41536‑019‑0071‑x31044089
    [Google Scholar]
  96. ChenH. ChenX. LiW. ShenJ. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: Potential application for drug discovery.Acta Pharmacol. Sin.201839566968210.1038/aps.2018.2729595191
    [Google Scholar]
  97. QinL. YangY.B. YangY.X. ZhuN. LiuZ. NiY.G. LiS.X. ZhengX.L. LiaoD.F. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.Clin. Exp. Pharmacol. Physiol.201643218219210.1111/1440‑1681.1252426666965
    [Google Scholar]
  98. SawayaA.P. JozicI. StoneR.C. PastarI. EggerA.N. StojadinovicO. GlinosG.D. KirsnerR.S. Tomic-CanicM. Mevastatin promotes healing by targeting caveolin-1 to restore EGFR signaling.JCI Insight2019423e12932010.1172/jci.insight.12932031661463
    [Google Scholar]
  99. WuZ. ZhuM. MouX. YeL. Overexpressing of caveolin-1 in mesenchymal stem cells promotes deep second-degree burn wound healing.J. Biosci. Bioeng.2021131434134710.1016/j.jbiosc.2020.11.01033423964
    [Google Scholar]
  100. JozicI. SawayaA.P. PastarI. HeadC.R. WongL.L. GlinosG.D. WikramanayakeT.C. BremH. KirsnerR.S. Tomic-CanicM. Pharmacological and genetic inhibition of caveolin-1 promotes epithelialization and wound closure.Mol. Ther.201927111992200410.1016/j.ymthe.2019.07.01631409528
    [Google Scholar]
  101. Katsuno-KambeH. PartonR.G. YapA.S. TeoJ.L. Caveolin‐1 influences epithelial collective cell migration via FMNL2 formin.Biol. Cell2021113210711710.1111/boc.20200011633169848
    [Google Scholar]
  102. LuoS. YangM. ZhaoH. HanY. JiangN. YangJ. ChenW. LiC. LiuY. ZhaoC. SunL. Caveolin-1 regulates cellular metabolism: A potential therapeutic target in kidney Disease.Front. Pharmacol.20211276810010.3389/fphar.2021.76810034955837
    [Google Scholar]
  103. YinH. LiuT. ZhangY. YangB. Caveolin proteins: A molecular insight into disease.Front. Med.201610439740410.1007/s11684‑016‑0483‑627896622
    [Google Scholar]
  104. CopelandC.A. HanB. TiwariA. AustinE.D. LoydJ.E. WestJ.D. KenworthyA.K. A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal.Mol. Biol. Cell201728223095311110.1091/mbc.e17‑06‑042128904206
    [Google Scholar]
/content/journals/nemj/10.2174/0250688204666230508112229
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test