Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882
side by side viewer icon HTML

Abstract

This review paper aims to investigate the therapeutic benefits of pemirolast across different medical conditions, including asthma, allergic rhinitis, cancer, conjunctivitis, . The prevalence of allergic conditions has risen in recent decades, primarily attributed to environmental factors. This paper explores the role of pemirolast in managing and mitigating these diseases, shedding light on its potential applications in the context of evolving environmental influences.

This review paper investigates the diverse biological activities exhibited by pemirolast, encompassing its roles as an antimicrobial, analgesic, antiviral, anti-inflammatory, antioxidant, antihistamine, mast cell stabilizer, anti-tubercular, anticancer, anti-asthmatic, anti-malarial, diuretic, anti-anxiety, and antifungal agent. The positive outcomes of pemirolast application in various diseases are highlighted, showcasing its potential across a spectrum of medical conditions.

The pharmacological impact of pemirolast extends to diverse inflammatory mediators, enzymes, and hormones associated with various diseases. Pemirolast demonstrates inhibitory effects on key elements such as eosinophil activation, histamine, leukotriene, IgE, mast cells, basophils, prostaglandin, interleukin, T-helper cells, macrophage T-cells, neutrophils, tryptase, T-lymphocytes, interferons I-III, Amyloid β (Aβ) peptide, dsRNA transcription, GABA, dopamine, serotonin, and norepinephrine. This comprehensive exploration underscores pemirolast inhibitory actions across disorders, emphasizing its potential therapeutic relevance in diverse pathological conditions.

This review paper illuminates pemirolast potassium's versatile biological and therapeutic applications across various diseases. The potential synergies of combining pemirolast with buspirone, ritanserin, theophylline, and capreomycin are explored, showcasing its ability to elicit beneficial responses in addressing diverse ailments.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882308410240607053814
2024-06-26
2025-03-13
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882308410.html?itemId=/content/journals/nemj/10.2174/0102506882308410240607053814&mimeType=html&fmt=ahah

References

  1. SimonsF.E.R. Is antihistamine (H 1 ‐receptor antagonist) therapy useful in clinical asthma?Clin. Exp. Allergy199929S3Suppl. 39810410.1046/j.1365‑2222.1999.0290s3098.x10444221
    [Google Scholar]
  2. AroraS. TagdeP. AlamS. AkramW. NavedT. GuptaS. Influence of toll-like receptor-4 antagonist on bacterial load of asthma in Swiss albino mice: Targeting TLR4/MD2 complex pathway.Environ. Sci. Pollut. Res. Int.20223012328543286510.1007/s11356‑022‑24521‑436472742
    [Google Scholar]
  3. KempJ.P. BernsteinI.L. BiermanC.W. LiJ.T. SiegelS.C. SpangenbergR.D. TinkelmanD.G. Pemirolast, a new oral nonbronchodilator drug for chronic asthma.Ann. Allergy19926864884911610024
    [Google Scholar]
  4. AbelsonM.B. BerdyG.J. MundorfT. AmdahlL.D. GravesA.L. Pemirolast study group Pemirolast potassium 0.1% ophthalmic solution is an effective treatment for allergic conjunctivitis: A pooled analysis of two prospective, randomized, double-masked, placebo-controlled, phase III studies.J. Ocul. Pharmacol. Ther.200218547548810.1089/1080768026036275912419098
    [Google Scholar]
  5. OkadaH. OhnishiT. HirashimaM. FujitaJ. YamajiY. TakaharaJ. TodaniT. Anti-asthma effect of an antiviral drug, acyclovir: A clinical case and experimental study.Clin. Exp. Allergy199727443143710.1111/j.1365‑2222.1997.tb00729.x9146937
    [Google Scholar]
  6. ShenT. YangZ. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis.Drug Des. Devel. Ther.2021152099210710.2147/DDDT.S30844834040348
    [Google Scholar]
  7. MammadovI. NagiyevF. SafarovaA. Synthesis of pyrido-pyrimidine and imidazo-pyridine derivatives.Chemical problems of today202360
    [Google Scholar]
  8. AnsariW.A. Luteolin: A dietary molecule as potential anti-COVID-19 agent.Research Square202010.21203/rs.3.rs‑35368/v1
    [Google Scholar]
  9. SathishaK. GopalS. RangappaK. Biological activities of synthetic pyrimidine derivatives.World J. Pharm. Res.20165214671491
    [Google Scholar]
  10. NJ.B. GoudgaonN.M. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential.J. Mol. Struct.2021124613116810.1016/j.molstruc.2021.131168
    [Google Scholar]
  11. HasegawaT. TakagiK. NadaiM. OguraY. NabeshimaT. Kinetic interaction between theophylline and a newly developed anti-allergic drug, pemirolast potassium.Eur. J. Clin. Pharmacol.1994461555810.1007/BF001959168005187
    [Google Scholar]
  12. LagojaI.M. Pyrimidine as constituent of natural biologically active compounds.Chem. Biodivers.20052115010.1002/cbdv.20049017317191918
    [Google Scholar]
  13. Al-MasoudiW.A. Al-RikabyA.A. FaazR.A. Pharmacology study of pyrimidine derivative.IJCTR20147626602664
    [Google Scholar]
  14. YerraguntaV. Pyrimidine and its biological activity: A review.PharmaTutor2013123944
    [Google Scholar]
  15. GuptaR. Biological significance of nitrogen containing heterocyclic compounds-a mini review.Int. J. Comput. Appl.20159758887
    [Google Scholar]
  16. AronsonJ.K. Pemirolast.Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions.15th edAmsterdamElsevier20062728
    [Google Scholar]
  17. GousP. RopoA. A comparative trial of the safety and efficacy of 0.1 percent pemirolast potassium ophthalmic solution dosed twice or four times a day in patients with seasonal allergic conjunctivitis.J. Ocul. Pharmacol. Ther.200420213915010.1089/10807680477371081215117570
    [Google Scholar]
  18. GohdaT. RaC. HamadaC. TsugeT. KawachiH. TominoY. Suppressive activity of pemirolast potassium, an antiallergic drug, on glomerulonephritis. Studies in glomerulonephritis model rats and in patients with chronic glomerulonephritis concurrently affected by allergic rhinitis.Arzneimittelforschung2008581182318368946
    [Google Scholar]
  19. AroraS. KumarR. FDA approved six-membered ring fused pyrimidine-based derivatives.Fused Pyrimidine-Based Drug Discovery.Elsevier202322124810.1016/B978‑0‑443‑18616‑5.00011‑9
    [Google Scholar]
  20. ItohY. SendoT. HirakawaT. GoromaruT. TakasakiS. YahataH. NakanoH. OishiR. Role of sensory nerve peptides rather than mast cell histamine in paclitaxel hypersensitivity.Am. J. Respir. Crit. Care Med.2004169111311910.1164/rccm.200307‑901OC14563655
    [Google Scholar]
  21. ItohY. SendoT. HirakawaT. TakasakiS. GoromaruT. NakanoH. OishiR. Pemirolast potently attenuates paclitaxel hypersensitivity reactions through inhibition of the release of sensory neuropeptides in rats.Neuropharmacology200446688889410.1016/j.neuropharm.2003.11.01815033348
    [Google Scholar]
  22. YanagiharaY. KasaiH. MatsuiS. NinomiyaK. Immunopharmacological studies on TBX, a new antiallergic drug (3). Inhibitory effects on histamine release from lung fragments and bronchoconstriction in guinea pigs.Jpn. J. Pharmacol.1989511839210.1016/S0021‑5198(19)40140‑62478743
    [Google Scholar]
  23. TatsushimaY. EgashiraN. MatsushitaN. KurobeK. KawashiriT. YanoT. OishiR. Pemirolast reduces cisplatin-induced kaolin intake in rats.Eur. J. Pharmacol.20116611-3576210.1016/j.ejphar.2011.04.02621539837
    [Google Scholar]
  24. MinamiK. HossenM.A. KameiC. Increasing effect by simultaneous use of levocabastine and pemirolast on experimental allergic conjunctivitis in rats.Biol. Pharm. Bull.200528347347610.1248/bpb.28.47315744071
    [Google Scholar]
  25. DobrekŁ. BaranowskaA. ThorP.J. The influence of pemirolast on autonomic imbalance in rat cystitis model.Cent. Eur. J. Med.20138766775
    [Google Scholar]
  26. MiyazawaN. UmemuraK. KondoK. NakashimaM. Effects of pemirolast and tranilast on intimal thickening after arterial injury in the rat.J. Cardiovasc. Pharmacol.199730215716210.1097/00005344‑199708000‑000029269941
    [Google Scholar]
  27. TatsushimaY. EgashiraN. KawashiriT. MiharaY. YanoT. MishimaK. OishiR. Involvement of substance P in peripheral neuropathy induced by paclitaxel but not oxaliplatin.J. Pharmacol. Exp. Ther.2011337122623510.1124/jpet.110.17597621233199
    [Google Scholar]
  28. MinodaR. MasuyamaK. ToriyaT. UnoK. EuraM. IshikawaT. Recurrent hearing impairment and nystagmus induced by repeated antigen exposure in actively sensitized guinea pigs.Int. Arch. Allergy Immunol.1996111216617210.1159/0002373638859226
    [Google Scholar]
  29. Tahami MonfaredA.A. ByrnesM.J. WhiteL.A. ZhangQ. Alzheimer’s disease: Epidemiology and clinical progression.Neurol. Ther.202211255356910.1007/s40120‑022‑00338‑835286590
    [Google Scholar]
  30. IsikA.T. Late onset Alzheimer’s disease in older people.Clin. Interv. Aging2010530731110.2147/CIA.S1171821103401
    [Google Scholar]
  31. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑034456336
    [Google Scholar]
  32. CongdonE.E. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.201814739941510.1038/s41582‑018‑0013‑z29895964
    [Google Scholar]
  33. FuW.Y. WangX. IpN.Y. Targeting neuroinflammation as a therapeutic strategy for Alzheimer’s disease: Mechanisms, drug candidates, and new opportunities.ACS Chem. Neurosci.201910287287910.1021/acschemneuro.8b0040230221933
    [Google Scholar]
  34. MeccaA.P. van DyckC.H. Alzheimer’s & dementia: The journal of the Alzheimer’s Association.Alzheimers Dement.202117231631710.1002/alz.1219033047474
    [Google Scholar]
  35. Cárdenas-AguayoM.C. Gómez-VirgilioL. DeRosaS. Meraz-RíosM.A. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology.ACS Chem. Neurosci.20145121178119110.1021/cn500148z25268947
    [Google Scholar]
  36. Schraen-MaschkeS. Tau as a biomarker of neurodegenerative diseases.Biomark Med. 20082436338410.2217/17520363.2.4.363
    [Google Scholar]
  37. ChristenY. Oxidative stress and Alzheimer disease.Am. J. Clin. Nutr.2000712621S629S10.1093/ajcn/71.2.621s10681270
    [Google Scholar]
  38. KozlowskiH. Janicka-KlosA. BrasunJ. GaggelliE. ValensinD. ValensinG. Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation).Coord. Chem. Rev.200925321-222665268510.1016/j.ccr.2009.05.011
    [Google Scholar]
  39. ValkoM. MorrisH. CroninM. Metals, toxicity and oxidative stress.Curr. Med. Chem.200512101161120810.2174/092986705376463515892631
    [Google Scholar]
  40. StrozykD. LaunerL.J. AdlardP.A. ChernyR.A. TsatsanisA. VolitakisI. BlennowK. PetrovitchH. WhiteL.R. BushA.I. Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid.Neurobiol. Aging20093071069107710.1016/j.neurobiolaging.2007.10.01218068270
    [Google Scholar]
  41. Allan ButterfieldD. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer’s disease brain. A review.Free Radic. Res.200236121307131310.1080/107157602100004989012607822
    [Google Scholar]
  42. HuangW.J. ZhangX. ChenW.W. Role of oxidative stress in Alzheimer’s disease.Biomed. Rep.20164551952210.3892/br.2016.63027123241
    [Google Scholar]
  43. SjogrenT. SjogrenH. LindgrenA.G. Morbus Alzheimer and morbus Pick; A genetic, clinical and patho-anatomical study.Acta Psychiatr. Neurol. Scand., Suppl.195282115213171126
    [Google Scholar]
  44. EimerW.A. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection.Neuron20189915663
    [Google Scholar]
  45. FanL. MaoC. HuX. ZhangS. YangZ. HuZ. SunH. FanY. DongY. YangJ. ShiC. XuY. New insights into the pathogenesis of Alzheimer’s disease.Front. Neurol.202010131210.3389/fneur.2019.0131231998208
    [Google Scholar]
  46. NairN. Antioxidant potential of pyrimidine derivatives against oxidative stress.Indian J. Pharm. Sci.2022841
    [Google Scholar]
  47. HassanA.S. MorsyN.M. AboulthanaW.M. RagabA. In vitro enzymatic evaluation of some pyrazolo[1,5‐ a ]pyrimidine derivatives: Design, synthesis, antioxidant, anti‐diabetic, anti‐Alzheimer, and anti‐arthritic activities with molecular modeling simulation.Drug Dev. Res.202384132410.1002/ddr.2200836380556
    [Google Scholar]
  48. DasS. Structural activity relationship based medicinal perspectives of pyrimidine derivatives as anti-Alzheimer’s agents: A comprehensive reviewCNS Neurol Disord Drug Targets.2022211092693910.2174/1871527321666220107154617
    [Google Scholar]
  49. OroianM. EscricheI. Antioxidants: Characterization, natural sources, extraction and analysis.Food Res. Int.201574103610.1016/j.foodres.2015.04.01828411973
    [Google Scholar]
  50. KostovaI. AtanasovP.Y. Antioxidant properties of pyrimidine and uracil derivatives.Curr. Org. Chem.201721202096210810.2174/1385272820666161025152154
    [Google Scholar]
  51. JavedM.A. JanM.S. ShbeerA.M. Al-GhorbaniM. RaufA. WilairatanaP. MannanA. SadiqA. FarooqU. RashidU. Evaluation of pyrimidine/pyrrolidine-sertraline based hybrids as multitarget anti-Alzheimer agents: In-vitro, in-vivo, and computational studies.Biomed. Pharmacother.202315911423910.1016/j.biopha.2023.11423936638595
    [Google Scholar]
  52. SlonirnC.B. BooneR. The ocular allergic response: A pharmacotherapeutic review.Formulary2004394
    [Google Scholar]
  53. FujimiyaH. NakashimaS. MiyataH. NozawaY. Effect of a novel antiallergic drug, pemirolast, on activation of rat peritoneal mast cells: Inhibition of exocytotic response and membrane phospholipid turnover.Int. Arch. Allergy Immunol.1991961626710.1159/0002355361721611
    [Google Scholar]
  54. KawashimaT. IwamotoI. NakagawaN. TomiokaH. YoshidaS. Inhibitory effect of pemirolast, a novel antiallergic drug, on leukotriene C4 and granule protein release from human eosinophils.Int. Arch. Allergy Immunol.1994103440540910.1159/0002366628130655
    [Google Scholar]
  55. BieloryL. FriedlaenderM.H. Allergic conjunctivitis.Immunol. Allergy Clin. North Am.20082814358, vi10.1016/j.iac.2007.12.00518282545
    [Google Scholar]
  56. MantelliF. CalderV.L. BoniniS. The anti-inflammatory effects of therapies for ocular allergy.J. Ocul. Pharmacol. Ther.201329978679310.1089/jop.2013.016124044620
    [Google Scholar]
  57. CookE.B. StahlJ.L. BarneyN.P. GrazianoF.M. Mechanisms of antihistamines and mast cell stabilizers in ocular allergic inflammation.Curr. Drug Targets Inflamm. Allergy20021216718010.2174/156801002334473314561198
    [Google Scholar]
  58. RidoloE. MontagniM. CaminatiM. SennaG. IncorvaiaC. CanonicaG.W. Emerging drugs for allergic conjunctivitis.Expert Opin. Emerg. Drugs201419229130210.1517/14728214.2014.90244324661261
    [Google Scholar]
  59. TinkelmanD.G. BerkowitzR.B. A pilot study of pemirolast in patients with seasonal allergic rhinitis.Ann. Allergy19916621621651994787
    [Google Scholar]
  60. PayerolsA. FrouinE. SchiffmannA. Menjot de ChampfleurN. CanioniD. ChandesrisO. CostesV. VillainM. MuraF. Exophthalmos, diplopia, and bilateral eyelid edema: Symptoms of ocular mastocytosis.Optom. Vis. Sci.201693111440144310.1097/OPX.000000000000096727560850
    [Google Scholar]
  61. SinghalD. SahayP. MaharanaP.K. RajN. SharmaN. TitiyalJ.S. Vernal Keratoconjunctivitis.Surv. Ophthalmol.201964328931110.1016/j.survophthal.2018.12.00130550738
    [Google Scholar]
  62. AbelsonM.B. GranetD. Ocular allergy in pediatric practice.Curr. Allergy Asthma Rep.20066430631110.1007/s11882‑006‑0064‑x16822383
    [Google Scholar]
  63. CruzatA. ColbyK. Corneal diseases in children: Allergic diseases.Corneal Diseases in Children: Challenges and ControversiesSpringer, Cham2017394910.1007/978‑3‑319‑55298‑9_4
    [Google Scholar]
  64. SchechterB.A. Use of topical bromfenac for treating ocular pain and inflammation beyond cataract surgery: A review of published studies.Clin. Ophthalmol.2019131439146010.2147/OPTH.S20870031534309
    [Google Scholar]
  65. DivortyN. MackenzieA.E. NicklinS.A. MilliganG. G protein-coupled receptor 35: An emerging target in inflammatory and cardiovascular disease.Front. Pharmacol.201564110.3389/fphar.2015.0004125805994
    [Google Scholar]
  66. MacKenzieA.E. CaltabianoG. KentT.C. JenkinsL. McCallumJ.E. HudsonB.D. NicklinS.A. FawcettL. MarkwickR. CharltonS.J. MilliganG. The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35.Mol. Pharmacol.20148519110410.1124/mol.113.08948224113750
    [Google Scholar]
  67. QUX. Preparation and quality control of pemirolast potassium nasal spray.Chin. J. Biochem. Pharm.2015154156
    [Google Scholar]
  68. ChopraB. BarrickS.R. MeyersS. BeckelJ.M. ZeidelM.L. FordA.P.D.W. De GroatW.C. BirderL.A. Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium.J. Physiol.2005562385987110.1113/jphysiol.2004.07115915576455
    [Google Scholar]
  69. KorkmazA. TopalT. OterS. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation.Cell Biol. Toxicol.200723530331210.1007/s10565‑006‑0078‑017225077
    [Google Scholar]
  70. WoerlyG. LoiseauS. LoyensM. SchochC. CapronM. Inhibitory effects of ketotifen on eotaxin-dependent activation of eosinophils: Consequences for allergic eye diseases.Allergy200358539740610.1034/j.1398‑9995.2003.00081.x12752326
    [Google Scholar]
  71. GyörfiA. FazekasÁ. PóschE. IrmesF. RosivallL. Role of histamine in the development of neurogenic inflammation of rat oral mucosa.Agents Actions1991323-422923610.1007/BF019808791677794
    [Google Scholar]
  72. DobrekŁ. ThorP. Experimental research Heart rate variability in overactive bladder experimental model.Arch. Med. Sci.20135593093510.5114/aoms.2012.3094624273581
    [Google Scholar]
  73. OnoS.J. AbelsonM.B. Allergic conjunctivitis: Update on pathophysiology and prospects for future treatment.J. Allergy Clin. Immunol.2005115111812210.1016/j.jaci.2004.10.04215637556
    [Google Scholar]
  74. LeonardiA. Allergy and allergic mediators in tears.Exp. Eye Res.201311710611710.1016/j.exer.2013.07.01923891862
    [Google Scholar]
  75. Ben-EliH. SolomonA. Topical antihistamines, mast cell stabilizers, and dual-action agents in ocular allergy: Current trends.Curr. Opin. Allergy Clin. Immunol.201818541141610.1097/ACI.000000000000047330020258
    [Google Scholar]
  76. CastilloM. Topical antihistamines and mast cell stabilisers for treating seasonal and perennial allergic conjunctivitis.Cochrane Database Syst. Rev.201520156CD00956610.1002/14651858.CD009566.pub2
    [Google Scholar]
  77. KimataH. MikawaH. Nedocromil sodium selectively inhibits IgE and IgG4 production in human B cells stimulated with IL-4.J. Immunol.19931511267236732
    [Google Scholar]
  78. PodleskiW.K. PanaszekB.A. SchmidtJ.L. BurnsR.B. Inhibition of eosinophils degranulation by Ketotifen in a patient with milk allergy, manifested as bronchial asthma—an electron microscopic study.Agents Actions1984153-417718110.1007/BF019723466524518
    [Google Scholar]
  79. MillerS. CookE. GrazianoF. SpellmanJ. YanniJ. Human conjunctival mast cell responses in vitro to various secretagogues.Ocul. Immunol. Inflamm.199641395010.3109/0927394960906912622827332
    [Google Scholar]
  80. CookE.B. StahlJ.L. MillerS.T. GernJ.E. SukowK.A. GrazianoF.M. BarneyN.P. Isolation of human conjunctival mast cells and epithelial cells: Tumor necrosis factor-alpha from mast cells affects intercellular adhesion molecule 1 expression on epithelial cells.Invest. Ophthalmol. Vis. Sci.19983923363439477991
    [Google Scholar]
  81. CookE.B. StahlJ.L. BarneyN.P. GrazianoF.M. Mechanisms of antihistamines and mast cell stabilizers in ocular allergic inflammation.Med Chem Rev Online.20041333334710.2174/1567203043401662
    [Google Scholar]
  82. NakamuraY. NakashimaS. OjioK. ItoY. HayakawaK. MiyataH. NozawaY. Stimulatory effect of cytochalasin D on antigen-induced phospholipase D activation in a murine mast cell model (RBL-2H3).Allergol. Int.199948423924510.1046/j.1440‑1592.1999.00139.x
    [Google Scholar]
  83. SkonerD.P. Allergic rhinitis: Definition, epidemiology, pathophysiology, detection, and diagnosis.J. Allergy Clin. Immunol.20011081Suppl.S2S810.1067/mai.2001.11556911449200
    [Google Scholar]
  84. VarshneyJ. VarshneyH. Allergic rhinitis: An overview.Indian J. Otolaryngol. Head Neck Surg.201567214314910.1007/s12070‑015‑0828‑526075169
    [Google Scholar]
  85. WachholzP.A. DearmanR.J. KimberI. Detection of allergen-specific IgE antibody responses.J. Immunotoxicol.200513-418919910.1080/1547691049091914018958652
    [Google Scholar]
  86. MandhaneS.N. ShahJ.H. ThennatiR. Allergic rhinitis: An update on disease, present treatments and future prospects.Int. Immunopharmacol.201111111646166210.1016/j.intimp.2011.07.00521784174
    [Google Scholar]
  87. MinY.G. The pathophysiology, diagnosis and treatment of allergic rhinitis.Allergy Asthma Immunol. Res.201022657610.4168/aair.2010.2.2.6520358020
    [Google Scholar]
  88. SmithL.J. Pharmacology and safety of the leukotriene antagonists.Clin. Rev. Allergy Immunol.1999171-219521210.1007/BF0273760410436866
    [Google Scholar]
  89. SalibR.J. HowarthP.H. Choosing the right pharmacological therapy in allergic rhinitis.Nurse Prescribing200422768210.12968/npre.2004.2.2.12562
    [Google Scholar]
  90. TakharP. SmurthwaiteL. CokerH.A. FearD.J. BanfieldG.K. CarrV.A. DurhamS.R. GouldH.J. Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis.J. Immunol.200517485024503210.4049/jimmunol.174.8.502415814733
    [Google Scholar]
  91. OkuboK. KuronoY. IchimuraK. EnomotoT. OkamotoY. KawauchiH. SuzakiH. FujiedaS. MasuyamaK. Japanese Society of Allergology Japanese guidelines for allergic rhinitis 2020.Allergol. Int.202069333134510.1016/j.alit.2020.04.00132473790
    [Google Scholar]
  92. VasconcelosL.H.C. SilvaM.C.C. CostaA.C. OliveiraG.A. SouzaI.L.L. QueirogaF.R. AraujoL.C.C. CardosoG.A. RighettiR.F. SilvaA.S. da SilvaP.M. CarvalhoC.R.O. VieiraG.C. TibérioI.F.L.C. CavalcanteF.A. SilvaB.A. A Guinea pig model of airway smooth muscle hyperreactivity induced by chronic allergic lung inflammation: Contribution of epithelium and oxidative stress.Front. Pharmacol.20199154710.3389/fphar.2018.0154730814952
    [Google Scholar]
  93. PatadiaM.O. MurrillL.L. CoreyJ. Asthma.Otolaryngol. Clin. North Am.2014471233210.1016/j.otc.2013.10.00124286676
    [Google Scholar]
  94. LeeJ. McDonaldC. Review: Immunotherapy improves some symptoms and reduces long-term medication use in mild to moderate asthma.Ann. Intern. Med.20181694JC17JC1710.7326/ACPJC‑2018‑169‑4‑01730128507
    [Google Scholar]
  95. SciricaC.V. CeledónJ.C. Genetics of Asthma.Chest20071325Suppl.770S781S10.1378/chest.07‑190517998341
    [Google Scholar]
  96. AroraS. TagdeP. AlamS. AkramW. GuptaS. Role of toll-like receptor-3 antagonist on viral load of asthma in swiss albino mice.Res J Pharm Technol.20231662829283410.52711/0974‑360X.2023.00466
    [Google Scholar]
  97. CastilloJ.R. PetersS.P. BusseW.W. Asthma exacerbations: Pathogenesis, prevention, and treatment.J. Allergy Clin. Immunol. Pract.20175491892710.1016/j.jaip.2017.05.00128689842
    [Google Scholar]
  98. JacksonD.J. SykesA. MalliaP. JohnstonS.L. Asthma exacerbations: Origin, effect, and prevention.J. Allergy Clin. Immunol.201112861165117410.1016/j.jaci.2011.10.02422133317
    [Google Scholar]
  99. AroraS. Evaluation of bronchial inflammatory response via expression of NF-κB & IL-1β in mice airways by TAK242 and LPS administration: Targeting TLR4/MD2 signalling pathway.Int. J. Health Sci.20226S371017115
    [Google Scholar]
  100. DoeingD.C. SolwayJ. Airway smooth muscle in the pathophysiology and treatment of asthma.J. Appl. Physiol.2013114783484310.1152/japplphysiol.00950.201223305987
    [Google Scholar]
  101. StrupczewskiJ.D. EllisD.B. To market, to market - 1991.Annu. Rep. Med. Chem.19922732133710.1016/S0065‑7743(08)60431‑5
    [Google Scholar]
  102. YanagiharaY. KasaiH. ShidaT. Immunopharmacological studies on TBX, a new antiallergic drug (2). Inhibitory effects on histamine release from peritoneal mast cells and lung fragments of rats.Jpn. J. Pharmacol.198848110311210.1254/jjp.48.1032462073
    [Google Scholar]
  103. MATSUIH. Inhibition of human eosinophil chemotaxis by pemirolast potassium and hydrocortisone.Inflammation.1992125467473
    [Google Scholar]
  104. YamashitaN. AkimotoY. MinoguchiK. SekineK. NakajimaM. OkanoY. OhtaK. SakaneT. Inhibitory effects of pemirolast potassium and FK506 on degranulation and IL-8 production of eosinophils.Allergol. Int.1999481374210.1046/j.1440‑1592.1999.00115.x
    [Google Scholar]
  105. GomesB.F. AccardoC.M. Immunoinflammatory mediators in the pathogenesis of diabetes mellitus.Einstein (Sao Paulo)2019171eRB459610.31744/einstein_journal/2019RB459630810587
    [Google Scholar]
  106. BaynesH.W. Classification, pathophysiology, diagnosis and management of diabetes mellitus.J. Diabetes Metab.20156519
    [Google Scholar]
  107. CareD. American Diabetes Association Classification and diagnosis of diabetes.Diabetes Care2016391Suppl. 1S13S2226696675
    [Google Scholar]
  108. AssociationA.D. American Diabetes Association 2. Classification and diagnosis of diabetes.Diabetes Care201740Suppl. 1S11S2410.2337/dc17‑S00527979889
    [Google Scholar]
  109. RorsmanP. AshcroftF.M. Pancreatic β-cell electrical activity and insulin secretion: of mice and men.Physiol. Rev.201898111721410.1152/physrev.00008.201729212789
    [Google Scholar]
  110. AkramW. TagdeP. AhmedS. AroraS. EmranT.B. BabalghithA.O. SweilamS.H. Simal-GandaraJ. Guaiazulene and related compounds: A review of current perspective on biomedical applications.Life Sci.202331612138910.1016/j.lfs.2023.12138936646376
    [Google Scholar]
  111. MuirL.A. NeeleyC.K. MeyerK.A. BakerN.A. BrosiusA.M. WashabaughA.R. VarbanO.A. FinksJ.F. ZamarronB.F. FlesherC.G. ChangJ.S. DelPropostoJ.B. GeletkaL. Martinez-SantibanezG. KacirotiN. LumengC.N. O’RourkeR.W. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity.Obesity (Silver Spring)201624359760510.1002/oby.2137726916240
    [Google Scholar]
  112. SpencerM. YangL. AduA. FinlinB.S. ZhuB. ShippL.R. RasouliN. PetersonC.A. KernP.A. Pioglitazone treatment reduces adipose tissue inflammation through reduction of mast cell and macrophage number and by improving vascularity.PLoS One201497e10219010.1371/journal.pone.010219025010722
    [Google Scholar]
  113. ShiG.P. BotI. KovanenP.T. Mast cells in human and experimental cardiometabolic diseases.Nat. Rev. Cardiol.2015121164365810.1038/nrcardio.2015.11726259935
    [Google Scholar]
  114. GejalakshmiS. Microwave assisted synthesis of tetrahydropyrmidine and in silico screening of antidiabetic drug.Int. J. Curr. Pharm. Res.20201211013
    [Google Scholar]
  115. SahooB.M. BanikB.K. KumarB.V.V.R. PandaK.C. TiwariA. TiwariV. SinghS. KumarM. Microwave induced green synthesis: Sustainable technology for efficient development of bioactive pyrimidine scaffolds.Curr. Med. Chem.20233091029105910.2174/092986732966622062215001335733315
    [Google Scholar]
  116. BhosleM.R. MaliJ.R. PratapU.R. ManeR.A. An efficient synthesis of new pyrazolines and isoxazolines bearing thiazolyl and etheral pharmacophores.Bull. Korean Chem. Soc.20123362012201610.5012/bkcs.2012.33.6.2012
    [Google Scholar]
  117. BhosleM.R. DeshmukhA.R. PalS. SrivastavaA.K. ManeR.A. Synthesis of new thiazolylmethoxyphenyl pyrimidines and antihyperglycemic evaluation of the pyrimidines, analogues isoxazolines and pyrazolines.Bioorg. Med. Chem. Lett.201525112442244610.1016/j.bmcl.2015.03.06825937008
    [Google Scholar]
  118. SarkarS. HornG. MoultonK. OzaA. BylerS. KokolusS. LongacreM. Cancer development, progression, and therapy: An epigenetic overview.Int. J. Mol. Sci.20131410210872111310.3390/ijms14102108724152442
    [Google Scholar]
  119. KohalR. BishtP. GuptaG.D. VermaS.K. Targeting JAK2/STAT3 for the treatment of cancer: A review on recent advancements in molecular development using structural analysis and SAR investigations.Bioorg. Chem.202414310709510.1016/j.bioorg.2023.10709538211548
    [Google Scholar]
  120. OlssonM. ZhivotovskyB. Caspases and cancer.Cell Death Differ.20111891441144910.1038/cdd.2011.3021455218
    [Google Scholar]
  121. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑918626751
    [Google Scholar]
  122. BukhtoyarovO.V. SamarinD.M. Pathogenesis of cancer: Cancer reparative trap.J. Cancer Ther.20156539941210.4236/jct.2015.65043
    [Google Scholar]
  123. KimJ.Y. KimK.S. KimI.S. YoonS. Histamine receptor antagonists, loratadine and azelastine, sensitize P-gp-overexpressing antimitotic drug-resistant KBV20C cells through different molecular mechanisms.Anticancer Res.20193973767377510.21873/anticanres.1352531262903
    [Google Scholar]
  124. PantziarkaP. CairnsL. Recycling existing drugs for cancer therapy: delivering low cost cancer care.Ecancermedicalscience20148ed4010.3332/ecancer.2014.ed4025075221
    [Google Scholar]
  125. CheonJ.H. LeeB.M. KimH.S. YoonS. Highly halaven-resistant KBV20C cancer cells can be sensitized by co-treatment with fluphenazine.Anticancer Res.201636115867587410.21873/anticanres.1117227793910
    [Google Scholar]
  126. ClarkK.B. New therapeutic bearings for repositioned drugs.Curr Top Med Chem.2013131822812282
    [Google Scholar]
  127. YoonS. A single treatment of selenate, a repositioning drug, specifically sensitizes P-gp-overexpressing resistant cancer cells.Cancer Cell Microenviron.201524957e
    [Google Scholar]
  128. SchmidtN.B. LerewD.R. JoinerT.E.Jr Anxiety sensitivity and the pathogenesis of anxiety and depression: evidence for symptom specificity.Behav. Res. Ther.199836216517710.1016/S0005‑7967(98)00011‑49613023
    [Google Scholar]
  129. DomhardtM. GeßleinH. von RezoriR.E. BaumeisterH. Internet- and mobile-based interventions for anxiety disorders: A meta-analytic review of intervention components.Depress. Anxiety201936321322410.1002/da.2286030450811
    [Google Scholar]
  130. RapoluS. AllaM. GanjiR.J. SaddanapuV. KishorC. BommenaV.R. AddlagattaA. Synthesis, cytotoxicity and hDHFR inhibition studies of 2H-pyrido[1,2-a]pyrimidin-2-ones.MedChemComm20134581782110.1039/c3md00013c
    [Google Scholar]
  131. KennisL.E.J. BischoffF.P. MertensC.J. LoveC.J. Van den KeybusF.A.F. PietersS. BraekenM. MegensA.A.H.P. LeysenJ.E. New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2- c ]pyridine having highly active and potent central α 2 -antagonistic activity as potential antidepressants.Bioorg. Med. Chem. Lett.2000101717410.1016/S0960‑894X(99)00591‑010636247
    [Google Scholar]
  132. McSheffreyG.G. Gray-OwenS.D. Neisseria gonorrhoeae.Molecular medical microbiology.Elsevier201514711485
    [Google Scholar]
  133. UnemoM. SeifertH.S. HookE.W.III HawkesS. NdowaF. DillonJ.A.R. Gonorrhoea.Nat. Rev. Dis. Primers2019517910.1038/s41572‑019‑0128‑631754194
    [Google Scholar]
  134. PalmaE. TiloccaB. RoncadaP. Antimicrobial resistance in veterinary medicine: An overview.Int. J. Mol. Sci.2020216191410.3390/ijms2106191432168903
    [Google Scholar]
  135. Cartelle GestalM. DedloffM.R. Torres-SangiaoE. Computational health engineering applied to model infectious diseases and antimicrobial resistance spread.Appl. Sci.2019912248610.3390/app9122486
    [Google Scholar]
  136. VashishthaS. ThakurS. SinghJ. AdhanaS. KunduB. Evolutionarily conserved heat shock protein, HtpX, as an adjunct target against antibiotic‐resistant Neisseria gonorrhoeae.J. Cell. Biochem.2023124101516152910.1002/jcb.3046137566682
    [Google Scholar]
  137. VashishthaS. Exploring the role of L-asparaginase and HtpX as potential targets against Neisseria gonorrhoeae.IIT Delhi2023
    [Google Scholar]
  138. TsaiP.W. ChenY-T. HsuP-C. LanC-Y. Study of Candida albicans and its interactions with the host: A mini review.Biomedicine201331516410.1016/j.biomed.2012.12.004
    [Google Scholar]
  139. da Silva DantasA. LeeK.K. RaziunaiteI. SchaeferK. WagenerJ. YadavB. GowN.A.R. Cell biology of Candida albicans–host interactions.Curr. Opin. Microbiol.20163411111810.1016/j.mib.2016.08.00627689902
    [Google Scholar]
  140. OddsF.C. Pathogenesis of Candida infections.J. Am. Acad. Dermatol.1994313S2S510.1016/S0190‑9622(08)81257‑18077502
    [Google Scholar]
  141. WilliamsD.W. JordanR.P.C. WeiX.Q. AlvesC.T. WiseM.P. WilsonM.J. LewisM.A.O. Interactions of Candida albicans with host epithelial surfaces.J. Oral Microbiol.2013512243410.3402/jom.v5i0.2243424155995
    [Google Scholar]
  142. OstrovskiiV. Comprehensive heterocyclic chemistry III.Elsevier: Oxford20086257
    [Google Scholar]
  143. AshokD. NagarajuN. LakshmiB.V. SarasijaM. Microwave assisted synthesis of 5-[4-(3-phenyl-4,5-dihydro-1h-pyrazol-5-yl)phenyl]-1h-tetrazole derivatives and their antimicrobial activity.Russ. J. Gen. Chem.20198991905191010.1134/S1070363219090275
    [Google Scholar]
  144. LiuD.X. LiangJ.Q. FungT.S. Human coronavirus-229E,-OC43,-NL63, and-HKU1 (Coronaviridae).Encyclopedia of Virology.2021428440
    [Google Scholar]
  145. PyrcK. BerkhoutB. van der HoekL. The novel human coronaviruses NL63 and HKU1.J. Virol.20078173051305710.1128/JVI.01466‑0617079323
    [Google Scholar]
  146. Al-SharifE. StrianeseD. AlMadhiN.H. D’AponteA. dell’OmoR. Di BenedettoR. CostagliolaC. Ocular tropism of coronavirus (CoVs): A comparison of the interaction between the animal-to-human transmitted coronaviruses (SARS-CoV-1, SARS-CoV-2, MERS-CoV, CoV-229E, NL63, OC43, HKU1) and the eye.Int. Ophthalmol.202141134936210.1007/s10792‑020‑01575‑232880786
    [Google Scholar]
  147. OnomotoK. OnoguchiK. YoneyamaM. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors.Cell. Mol. Immunol.202118353955510.1038/s41423‑020‑00602‑733462384
    [Google Scholar]
  148. LukheleS. BoukhaledG.M. BrooksD.G. Type I interferon signaling, regulation and gene stimulation in chronic virus infection.Seminars in immunology.Elsevier201910.1016/j.smim.2019.05.001
    [Google Scholar]
  149. WeberF. Antiviral innate immunity: Introduction.Encyclopedia of Virology2021577583
    [Google Scholar]
  150. DeshpandeR.R. TiwariA.P. NyayanitN. ModakM. In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2.Eur. J. Pharmacol.202088617343010.1016/j.ejphar.2020.17343032758569
    [Google Scholar]
  151. TerraccianoE. AmadoriF. ZarattiL. FrancoE. Tuberculosis: An ever present disease but difficult to prevent.Ig. Sanita Pubbl.2020761596632668448
    [Google Scholar]
  152. SwaminathanA. Interactions shaping the interactome: Genome surveillance inclusive of host–pathogen.Genomic Surveillance and Pandemic Preparedness.Elsevier202330134710.1016/B978‑0‑443‑18769‑8.00001‑5
    [Google Scholar]
  153. LugtonI.W. Mucosa‐associated lymphoid tissues as sites for uptake, carriage and excretion of tubercle bacilli and other pathogenic mycobacteria.Immunol. Cell Biol.199977436437210.1046/j.1440‑1711.1999.00836.x10457205
    [Google Scholar]
  154. SelvakaniP. MuruganS. RajanM. The pulmonary administration route: Advantages and challenges.A Mechanistic Approach to Medicines for Tuberculosis Nanotherapy.Elsevier2021315810.1016/B978‑0‑12‑819985‑5.00007‑3
    [Google Scholar]
  155. RyndakM.B. LaalS. Mycobacterium tuberculosis primary infection and dissemination: A critical role for alveolar epithelial cells.Front. Cell. Infect. Microbiol.2019929910.3389/fcimb.2019.0029931497538
    [Google Scholar]
  156. SmithI. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence.Clin. Microbiol. Rev.200316346349610.1128/CMR.16.3.463‑496.200312857778
    [Google Scholar]
  157. PatilS.B. Biological and medicinal significance of pyrimidines: A review.Int. J. Pharm. Sci. Res.2018914452
    [Google Scholar]
  158. MohrF.C. HersheyP.E.C. ZimányiI. PessahI.N. Regulation of inositol 1,4,5-trisphosphate receptors in rat basophilic leukemia cells. I. Multiple conformational states of the receptor in a microsomal preparation.Biochim. Biophys. Acta Biomembr.19931147110511410.1016/0005‑2736(93)90320‑Y8385492
    [Google Scholar]
  159. HersheyP.E.C. PessahI.N. MohrF.C. Regulation of inositol 1,4,5-trisphosphate receptors in rat basophilic leukemia cells. II. Modulation of the receptor in permeabilized cells by the cytosolic compartment.Biochim. Biophys. Acta Biomembr.19931147111512410.1016/0005‑2736(93)90321‑P8385493
    [Google Scholar]
  160. LyngholmM.J. NielsenH.V. HolmM. SchiøtzP.O. JohnsenA.H. Calreticulin is an interleukin‐3‐sensitive calcium‐binding protein in human basophil leukocytes.Allergy2001561212810.1034/j.1398‑9995.2001.00115.x11167348
    [Google Scholar]
  161. FerrisC.D. HuganirR.L. SupattaponeS. SnyderS.H. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles.Nature19893426245878910.1038/342087a02554143
    [Google Scholar]
  162. CadiouH. SienaertI. VanlingenS. ParysJ.B. MolleG. DuclohierH. Basic properties of an inositol 1,4,5‐trisphosphate‐gated channel in carp olfactory cilia.Eur. J. Neurosci.20001282805281110.1046/j.1460‑9568.2000.00166.x10971622
    [Google Scholar]
  163. VanlingenS. ParysJ.B. MissiaenL. De SmedtH. WuytackF. CasteelsR. Distribution of inositol 1,4,5-trisphosphate receptor isoforms, SERCA isoforms and Ca2+ binding proteins in RBLm2H3 rat basophilic leukemia cells.Cell Calcium199722647548610.1016/S0143‑4160(97)90075‑09502197
    [Google Scholar]
  164. NakamuraY. Effects of antiallergic drug, pemirolast potassium on phospholipase D activation in antigen-stimulated rat basophilic leukemia (RBL-2H3) cells.Arerugi1995446624629
    [Google Scholar]
  165. NakamuraY. NakashimaS. FujimiyaH. KumadaT. KatoY. MiyataH. NozawaY. Effects of an antiallergic drug, pemirolast potassium on tyrosine phosphorylation and map kinase activation in antigen-stimulated rat basophilic leukemia (RBL-2H3) cells.Arerugi199544134447702453
    [Google Scholar]
  166. FujimiyaH. An antiallergic drug, pemirolast potassium, inhibits inositol 1, 4, 5-trisphosphate production and Ca2+ mobilization in antigen-stimulated rat basophilic leukemia (RBL-2H3) cells.Arerugi1994432 Pt 1142151
    [Google Scholar]
  167. PolakB. Drugs used in ocular treatment.Side Effects of Drugs Annual.Elsevier2001533536
    [Google Scholar]
  168. OhsawaH. Preventive effect of an antiallergic drug, pemirolast potassium, on restenosis after stent placement: Quantitative coronary angiography and intravascular ultrasound studies.J. Cardiol.2003421132212892037
    [Google Scholar]
  169. MishraG.P. TamboliV. JwalaJ. MitraA.K. Recent patents and emerging therapeutics in the treatment of allergic conjunctivitis.Recent Pat. Inflamm. Allergy Drug Discov.201151263610.2174/18722131179447488321171952
    [Google Scholar]
  170. XUQ.-e. Clinical trial report of two doses of pemirolast potassium.Chin. J. Clin. Pharmacol. Ther.2007124465
    [Google Scholar]
  171. OhsawaH. NoikeH. KanaiM. YoshinumaM. MineokaK. HitsumotoT. AoyagiK. SakuraiT. SatoS. UchiT. KawamuraK. TokuhiroK. UchidaY. TomiokaH. Preventive effects of an antiallergic drug, pemirolast potassium, on restenosis after percutaneous transluminal coronary angioplasty.Am. Heart J.199813661081108710.1016/S0002‑8703(98)70167‑X9842024
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882308410240607053814
Loading
/content/journals/nemj/10.2174/0102506882308410240607053814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test