Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Local hypothermia has protective effects on injured endothelial cells, cardiomyocytes, and neurocytes. Unfortunately, the underlying mechanism of local hypothermia is still unknown. The overall effect of local hypothermia involves changes in cellular and extracellular homeostasis. Reduction in cellular metabolism is the hallmark effect of local hypothermia, resulting in a reduction in energy expenditure already impaired by starvation conditions, such as ischemia. However, on a molecular basis, local hypothermia modifies cell physiology according to the type and the vitality of the cells (brain cells are more important than skin cells; therefore, local hypothermia of the brain tissue is more critical than skin tissue, and the overall reaction of the organism is to prevent the brain from dying). This involves activating survival mechanisms, such as autophagy of brain tissue and apoptosis. The activated signaling pathways are not identical in various tissues. However, the whole machinery signaling axes have not yet been elucidated. Local hypothermia promotes the healing of the injury and improves the proliferation of regenerative tissue, but not differentiation. Hypothermia prevents the transdifferentiation of endothelial cells, neurons, and myocardiocytes. Finally, the therapeutic effects of hypothermia involve activating the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1).

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0250688204666230710102624
2024-01-01
2025-06-21
The full text of this item is not currently available.

References

  1. PasqualiP. TrakatelliM.G. Cryotherapy.Hyperpigmentation2021202125826510.1201/9781315162478
    [Google Scholar]
  2. PaalP. PasquierM. DarochaT. LechnerR. KosinskiS. WallnerB. ZafrenK. BruggerH. Accidental Hypothermia: 2021 Update.Int. J. Environ. Res. Public Health202219150110.3390/ijerph1901050135010760
    [Google Scholar]
  3. LeegwaterN.C. NolteP.A. de KorteN. HeetveldM.J. KalisvaartK.J. SchönhuthC.P. PijnenburgB. BurgerB.J. PonsenK.J. BloemersF.W. MaierA.B. van RoyenB.J. The efficacy of continuous-flow cryo and cyclic compression therapy after hip fracture surgery on postoperative pain: design of a prospective, open-label, parallel, multicenter, randomized controlled, clinical trial.BMC Musculoskelet. Disord.201617115310.1186/s12891‑016‑1000‑427059990
    [Google Scholar]
  4. SunW. WangD. LiangJ. ZhangJ. LiuS. Mild hypothermia combined with a scaffold of NgR-silenced neural stem cells/Schwann cells to treat spinal cord injury.Neural Regen. Res.20149242189219610.4103/1673‑5374.14795225657741
    [Google Scholar]
  5. StravitzR.T. LarsenF.S. Therapeutic hypothermia for acute liver failure.Crit. Care Med.2009377Suppl.S258S26410.1097/CCM.0b013e3181aa5fb819535956
    [Google Scholar]
  6. LiuL.Q. LiuX.R. ZhaoJ.Y. YanF. WangR.L. WenS.H. WangL. LuoY.M. JiX.M. Brain-selective mild hypothermia promotes long-term white matter integrity after ischemic stroke in mice.CNS Neurosci. Ther.201824121275128510.1111/cns.1306130295998
    [Google Scholar]
  7. LaneW.C. DunnM.D. GardnerC.L. LamL.K.M. WatsonA.M. HartmanA.L. RymanK.D. KlimstraW.B. The Efficacy of the Interferon Alpha/Beta Response versus Arboviruses Is Temperature Dependent.MBio201892e00535-1810.1128/mBio.00535‑1829691338
    [Google Scholar]
  8. LiuX. RenW. JiangZ. SuZ. MaX. LiY. JiangR. ZhangJ. YangX. Hypothermia inhibits the proliferation of bone marrow-derived mesenchymal stem cells and increases tolerance to hypoxia by enhancing SUMOylation.Int. J. Mol. Med.20174061631163810.3892/ijmm.2017.316729039464
    [Google Scholar]
  9. NielsenN. WetterslevJ. CronbergT. ErlingeD. GascheY. HassagerC. HornJ. HovdenesJ. KjaergaardJ. KuiperM. PellisT. StammetP. WanscherM. WiseM.P. ÅnemanA. Al-SubaieN. BoesgaardS. Bro-JeppesenJ. BrunettiI. BuggeJ.F. HingstonC.D. JuffermansN.P. KoopmansM. KøberL. LangørgenJ. LiljaG. MøllerJ.E. RundgrenM. RylanderC. SmidO. WererC. WinkelP. FribergH. TTM Trial Investigators Targeted temperature management at 33°C versus 36°C after cardiac arrest.N. Engl. J. Med.2013369232197220610.1056/NEJMoa131051924237006
    [Google Scholar]
  10. BazleyF.A. PashaiN. KerrC.L. AllA.H. The effects of local and general hypothermia on temperature profiles of the central nervous system following spinal cord injury in rats.Ther. Hypothermia Temp. Manag.20144311512410.1089/ther.2014.000225019643
    [Google Scholar]
  11. MednikovaY.S. ZakharovaN.M. PasikovaN.V. MednikovaY.S. ZakharovaN.M. PasikovaN.V. Functional and pathological influence of hypothermia on spike activity of cortical neurons.J. Behav. Brain Sci.202111510713010.4236/jbbs.2021.115009
    [Google Scholar]
  12. ZhaoH. LiC.S. GongP. TangZ.R. HuaR. MeiX. ZhangM.Y. CuiJ. Molecular mechanisms of therapeutic hypothermia on neurological function in a swine model of cardiopulmonary resuscitation.Resuscitation201283791392010.1016/j.resuscitation.2012.01.00122245747
    [Google Scholar]
  13. AydinH. ŞimşekT. DemiraranY. Effects of inadvertent perioperative hypothermia on metabolic and inflammatory mediators.Turk. J. Anaesthesiol. Reanim.201947644845510.5152/TJAR.2019.9471531828241
    [Google Scholar]
  14. XuX. LiN. ZhuL. ZhouY. ChengH. Beneficial effects of local profound hypothermia and the possible mechanism after experimental spinal cord injury in rats.J. Spinal Cord Med.201639222022810.1179/2045772315Y.000000005126322652
    [Google Scholar]
  15. YousefifardM. Vazirizadeh-MahabadiM.H. HaghaniL. ShokranehF. VaccaroA.R. Rahimi-MovagharV. HosseiniM. Early general hypothermia improves motor function after spinal cord injury in rats; a systematic review and meta-analysis.Arch. Acad. Emerg. Med.202081e8033251525
    [Google Scholar]
  16. BatchelorP.E. SkeersP. AntonicA. WillsT.E. HowellsD.W. MacleodM.R. SenaE.S. Systematic review and meta-analysis of therapeutic hypothermia in animal models of spinal cord injury.PLoS One201388e7131710.1371/journal.pone.007131723951131
    [Google Scholar]
  17. O’tooleJ. E. WangM. C. KaiserM. G. Hypothermia and Human Spinal Cord Injury: Updated Position Statement and Evidence Based Recommendations from the AANS/CNS Joint Section on Disorders of the Spine Peripheral Nerves.2013 Available from: https://spinesection.org/about/position-statements/hypothermia-and-human-spinal-cord-injury/=
  18. MooreE.M. NicholA.D. BernardS.A. BellomoR. Therapeutic hypothermia: Benefits, mechanisms and potential clinical applications in neurological, cardiac and kidney injury.Injury201142984385410.1016/j.injury.2011.03.02721481385
    [Google Scholar]
  19. TestoriC. BeitzkeD. MangoldA. SterzF. LoeweC. WeiserC. ScherzT. HerknerH. LangI. Out-of-hospital initiation of hypothermia in ST-segment elevation myocardial infarction: a randomised trial.Heart2019105753153710.1136/heartjnl‑2018‑31370530361270
    [Google Scholar]
  20. WangY.S. ZhangJ. LiY.F. ChenB.R. KhurwolahM.R. TianY.F. ShiH.J. YangZ.J. WangL.S. A pilot clinical study of adjunctive therapy with selective intracoronary hypothermia in patients with ST-segment elevation myocardial infarction.Catheter. Cardiovasc. Interv.2018927E433E44010.1002/ccd.2786430265431
    [Google Scholar]
  21. GötbergM. OlivecronaG.K. KoulS. CarlssonM. EngblomH. UganderM. van der PalsJ. AlgotssonL. ArhedenH. ErlingeD. A pilot study of rapid cooling by cold saline and endovascular cooling before reperfusion in patients with ST-elevation myocardial infarction.Circ. Cardiovasc. Interv.20103540040710.1161/CIRCINTERVENTIONS.110.95790220736446
    [Google Scholar]
  22. NocM. ErlingeD. NeskovicA. KafedzicS. MerkelyB. ZimaE. FisterM. PetrovićM. ČankovićM. VeressG. LaanmetsP. PernT. VukcevicV. DedovicV. ŚredniawaB. ŚwiątkowskiA. KeebleT. DaviesJ. WarenitsA.M. OlivecronaG. PerugaJ. CiszewskiM. HorvathI. EdesI. NagyG. AradiD. HolzerM. COOL AMI EU pilot trial: a multicentre, prospective, randomised controlled trial to assess cooling as an adjunctive therapy to percutaneous intervention in patients with acute myocardial infarction.EuroIntervention2017135e531e53910.4244/EIJ‑D‑17‑0027928506940
    [Google Scholar]
  23. HaleS.L. KlonerR.A. Mild hypothermia as a cardioprotective approach for acute myocardial infarction: laboratory to clinical application.J. Cardiovasc. Pharmacol. Ther.201116213113910.1177/107424841038728021149829
    [Google Scholar]
  24. ShaoZ.H. SharpW.W. WojcikK.R. LiC.Q. HanM. ChangW.T. RamachandranS. LiJ. HamannK.J. Vanden HoekT.L. Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants.Am. J. Physiol. Heart Circ. Physiol.20102986H2164H217310.1152/ajpheart.00994.200920382860
    [Google Scholar]
  25. HjortbakM.V. JespersenN.R. JensenR.V. LassenT.R. HjortJ. PovlsenJ.A. StøttrupN.B. HansenJ. HausenloyD.J. BøtkerH.E. Cardioprotective effect of combination therapy by mild hypothermia and local or remote ischemic preconditioning in isolated rat hearts.Sci. Rep.202111126510.1038/s41598‑020‑79449‑x33431942
    [Google Scholar]
  26. Marek-IannucciS. ThomasA. HouJ. CrupiA. SinJ. TaylorD.J. CzerL.S. EsmailianF. MentzerR.M.Jr AndresA.M. GottliebR.A. Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury.Sci. Rep.2019911000110.1038/s41598‑019‑46452‑w31292486
    [Google Scholar]
  27. MarzoogB.A. VlasovaT.I. Myocardiocyte autophagy in the context of myocardiocytes regeneration: a potential novel therapeutic strategy.Egypt. J. Med. Hum. Genet.20222314110.1186/s43042‑022‑00250‑8
    [Google Scholar]
  28. MarzoogB.A. VlasovaT.I. Systemic and local hypothermia in the context of cell regeneration.Cryo Lett.2022432667310.54680/fr2221011011236626147
    [Google Scholar]
  29. SuM. WangJ. WangC. WangX. DongW. QiuW. WangY. ZhaoX. ZouY. SongL. ZhangL. HuiR. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis.Cell Death Differ.201522698699910.1038/cdd.2014.18725394488
    [Google Scholar]
  30. HaleS.L. HerringM.J. KlonerR.A. Delayed treatment with hypothermia protects against the no-reflow phenomenon despite failure to reduce infarct size.J. Am. Heart Assoc.201321e00423410.1161/JAHA.112.00423423525431
    [Google Scholar]
  31. ErlingeD. GötbergM. NocM. LangI. HolzerM. ClemmensenP. JensenU. MetzlerB. JamesS. BøtkerH.E. OmerovicE. KoulS. EngblomH. CarlssonM. ArhedenH. ÖstlundO. WallentinL. KlosB. HarnekJ. OlivecronaG.K. Therapeutic hypothermia for the treatment of acute myocardial infarction-combined analysis of the RAPID MI-ICE and the CHILL-MI trials.Ther. Hypothermia Temp. Manag.201552778410.1089/ther.2015.000925985169
    [Google Scholar]
  32. ErlingeD. GötbergM. GrinesC. DixonS. BaranK. KandzariD. OlivecronaG.K. A pooled analysis of the effect of endovascular cooling on infarct size in patients with ST-elevation myocardial infarction.EuroIntervention20138121435144010.4244/EIJV8I12A21723164721
    [Google Scholar]
  33. NingX.H. ChiE.Y. BurokerN.E. ChenS.H. XuC.S. TienY.T. HyytiO.M. GeM. PortmanM.A. Moderate hypothermia (30°C) maintains myocardial integrity and modifies response of cell survival proteins after reperfusion.Am. J. Physiol. Heart Circ. Physiol.20072934H2119H212810.1152/ajpheart.00123.200717660400
    [Google Scholar]
  34. YangX. LiuY. YangX.M. HuF. CuiL. SwingleM.R. HonkanenR.E. SoltaniP. TissierR. CohenM.V. DowneyJ.M. Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity.Basic Res. Cardiol.2011106342143010.1007/s00395‑011‑0165‑021399968
    [Google Scholar]
  35. OtakeH. ShiteJ. ParedesO.L. ShinkeT. YoshikawaR. TaninoY. WatanabeS. OzawaT. MatsumotoD. OgasawaraD. YokoyamaM. Catheter-based transcoronary myocardial hypothermia attenuates arrhythmia and myocardial necrosis in pigs with acute myocardial infarction.J. Am. Coll. Cardiol.200749225026010.1016/j.jacc.2006.06.08017222738
    [Google Scholar]
  36. RolfastC.L. LustE.J. de CockC.C. Electrocardiographic changes in therapeutic hypothermia.Crit. Care2012163R10010.1186/cc1136922673196
    [Google Scholar]
  37. FilippiS. GizziA. CherubiniC. LutherS. FentonF.H. Mechanistic insights into hypothermic ventricular fibrillation: the role of temperature and tissue size.Europace201416342443410.1093/europace/euu03124569897
    [Google Scholar]
  38. GötbergM. van der PalsJ. OlivecronaG.K. GötbergM. KoulS. ErlingeD. Mild hypothermia reduces acute mortality and improves hemodynamic outcome in a cardiogenic shock pig model.Resuscitation20108191190119610.1016/j.resuscitation.2010.04.03320627520
    [Google Scholar]
  39. TaylorD. GermanoJ. SongY. Hadj-MoussaH. Marek-IannucciS. DhanjiR. SinJ. CzerL.S.C. StoreyK.B. GottliebR.A. Hypothermia promotes mitochondrial elongation In cardiac cells via inhibition of Drp1.Cryobiology2021102425510.1016/j.cryobiol.2021.07.01334331901
    [Google Scholar]
  40. XueQ. ZhangQ. GuoZ. WuL. ChenY. ChenZ. YangK. CaoJ. Therapeutic Hypothermia Inhibits Hypoxia-Induced Cardiomyocyte Apoptosis Via the MiR-483-3p/Cdk9 Axis.J. Am. Heart Assoc.2023124e02616010.1161/JAHA.122.02616036789845
    [Google Scholar]
  41. SinghJ. BarrettJ. SangalettiR. DietrichW.D. RajguruS.M. Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress.Ther. Hypothermia Temp. Manag.2021112778710.1089/ther.2019.003432302519
    [Google Scholar]
  42. EsklaK.L. PoroskR. ReimetsR. VisnapuuT. VasarE. HundahlC.A. LuukH. Hypothermia augments stress response in mammalian cells.Free Radic. Biol. Med.201812115716810.1016/j.freeradbiomed.2018.04.57129704622
    [Google Scholar]
  43. CoassinM. DuncanK.G. BaileyK.R. SinghA. SchwartzD.M. Hypothermia reduces secretion of vascular endothelial growth factor by cultured retinal pigment epithelial cells.Br. J. Ophthalmol.201094121678168310.1136/bjo.2009.16886420805126
    [Google Scholar]
  44. LeegwaterN.C. BakkerA.D. HogervorstJ.M.A. NolteP.A. Klein-NulendJ. Hypothermia reduces VEGF-165 expression, but not osteogenic differentiation of human adipose stem cells under hypoxia.PLoS One2017122e017149210.1371/journal.pone.017149228166273
    [Google Scholar]
  45. PanS. LuoC. The pathways by which mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury.Neural Regen. Res.201510115315810.4103/1673‑5374.15072525788937
    [Google Scholar]
  46. YangD. GuoS. ZhangT. LiH. Hypothermia attenuates ischemia/reperfusion-induced endothelial cell apoptosis via alterations in apoptotic pathways and JNK signaling.FEBS Lett.2009583152500250610.1016/j.febslet.2009.07.00619596001
    [Google Scholar]
  47. YangD. XieP. GuoS. LiH. Induction of MAPK phosphatase-1 by hypothermia inhibits TNF- -induced endothelial barrier dysfunction and apoptosis.Cardiovasc. Res.201085352052910.1093/cvr/cvp32319793766
    [Google Scholar]
  48. MarzoogB. Lipid Behavior in Metabolic Syndrome Pathophysiology.Curr. Diabetes Rev.2022186e15092119649710.2174/157339981766621091510132134525924
    [Google Scholar]
  49. RókaA. BekőG. HalászJ. ToldiG. LakatosP. AzzopardiD. TulassayT. SzabóM. Changes in serum cytokine and cortisol levels in normothermic and hypothermic term neonates after perinatal asphyxia.Inflamm. Res.2013621818710.1007/s00011‑012‑0554‑322986466
    [Google Scholar]
  50. HuangC.H. ChiangC.Y. PenR.H. TsaiM.S. ChenH.W. HsuC.Y. WangT.D. MaM.H.M. ChenS.C. ChenW.J. Hypothermia treatment preserves mitochondrial integrity and viability of cardiomyocytes after ischaemic reperfusion injury.Injury201546223323910.1016/j.injury.2014.10.05525467711
    [Google Scholar]
  51. TanY.L. HoH.K. Hypothermia Advocates Functional Mitochondria and Alleviates Oxidative Stress to Combat Acetaminophen-Induced Hepatotoxicity.Cells2020911235410.3390/cells911235433114500
    [Google Scholar]
  52. ChisholmK. DaviesA. SingerM. DysonA. IdaK. TachtsidisI. DuchenM. SmithK. Hypothermia Protects Brain Mitochondrial Function from Hypoxia in Sepsis. Intensive Care Med. Exp.2014211210.1186/2197‑425X‑2‑S1‑O6
    [Google Scholar]
  53. PamenterM.E. LauG.Y. RichardsJ.G. Effects of cold on murine brain mitochondrial function.PLoS One20181312e020845310.1371/journal.pone.020845330521596
    [Google Scholar]
  54. AslamiH. BeurskensC. J. P. TuipA. M. HornJ. JuffermansN. P. Induced hypothermia is associated with reduced circulating subunits of mitochondrial dna in cardiac arrest patients.Mitochondrial DNA A DNA Mapp Seq Anal.201729452552810.1080/24701394.2017.1315568
    [Google Scholar]
  55. ChisholmK.I. IdaK.K. DaviesA.L. TachtsidisI. PapkovskyD.B. DysonA. SingerM. DuchenM.R. SmithK.J. Hypothermia protects brain mitochondrial function from hypoxemia in a murine model of sepsis.J. Cereb. Blood Flow Metab.201636111955196410.1177/0271678X1560645726661160
    [Google Scholar]
  56. WeiH. YinM. LuY. YangY. LiB. LiaoX.X. DaiG. JingX. XiongY. HuC. Mild hypothermia improves neurological outcome in mice after cardiopulmonary resuscitation through Silent Information Regulator 1-actviated autophagy.Cell Death Discov.20195112910.1038/s41420‑019‑0209‑z31428461
    [Google Scholar]
  57. SchlegelA. MullerX. MuellerM. StepanovaA. KronP. de RougemontO. MuiesanP. ClavienP.A. GalkinA. MeierhoferD. DutkowskiP. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation.EBioMedicine20206010301410.1016/j.ebiom.2020.10301432979838
    [Google Scholar]
  58. HackenhaarF.S. MedeirosT.M. HeemannF.M. BehlingC.S. PuttiJ.S. MahlC.D. VeronaC. da SilvaA.C.A. GuerraM.C. GonçalvesC.A.S. OliveiraV.M. RiveiroD.F.M. VieiraS.R.R. BenfatoM.S. Therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses after cardiac arrest.Oxid. Med. Cell. Longev.2017201711010.1155/2017/870435228553435
    [Google Scholar]
  59. ZoernerF. WiklundL. MiclescuA. MartijnC. Therapeutic hypothermia activates the endothelin and nitric oxide systems after cardiac arrest in a pig model of cardiopulmonary resuscitation.PLoS One201385e6479210.1371/journal.pone.006479223717659
    [Google Scholar]
  60. DiestelA. RoesslerJ. BergerF. SchmittK.R.L. Hypothermia downregulates inflammation but enhances IL-6 secretion by stimulated endothelial cells.Cryobiology200857321622210.1016/j.cryobiol.2008.08.00518790695
    [Google Scholar]
  61. AhnJ. H. LeeT. K. KimD. W. ShinM. C. ChoJ. H. LeeJ. C. TaeH. J. ParkJ. H. HongS. LeeC. H. Therapeutic hypothermia after cardiac arrest attenuates hindlimb paralysis and damage of spinal motor neurons and astrocytes through modulating Nrf2/HO-1 signaling pathway in rats. Cells202312341410.3390/cells12030414
    [Google Scholar]
  62. ShenX.Y. GaoZ.K. HanY. YuanM. GuoY.S. BiX. Activation and role of astrocytes in ischemic stroke.Front. Cell. Neurosci.20211575595510.3389/fncel.2021.75595534867201
    [Google Scholar]
  63. HaaseK.K. GrelleJ.L. KhasawnehF.A. IkeC. Variability in glycemic control with temperature transitions during therapeutic hypothermia.Crit. Care Res. Pract.201720171710.1155/2017/483148029075530
    [Google Scholar]
  64. TorresM. ZúñigaR. GutierrezM. VergaraM. CollazoN. ReyesJ. BerriosJ. AguillonJ.C. MolinaM.C. AltamiranoC. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells.PLoS One2018133e019451010.1371/journal.pone.019451029566086
    [Google Scholar]
  65. MochizukiT. YuS. KatohT. AokiK. SatoS. Cardioprotective effect of therapeutic hypothermia at 34°C against ischaemia/reperfusion injury mediated by PI3K and nitric oxide in a rat isolated heart model.Resuscitation201283223824210.1016/j.resuscitation.2011.08.01321875500
    [Google Scholar]
  66. YamadaK.P. KariyaT. AikawaT. IshikawaK. Effects of therapeutic hypothermia on normal and ischemic heart.Front. Cardiovasc. Med.2021864284310.3389/fcvm.2021.64284333659283
    [Google Scholar]
  67. StrausD. PrasadV. MunozL. Selective therapeutic hypothermia: A review of invasive and noninvasive techniques.Arq. Neuropsiquiatr.201169698198710.1590/S0004‑282X201100070002522297891
    [Google Scholar]
/content/journals/nemj/10.2174/0250688204666230710102624
Loading
/content/journals/nemj/10.2174/0250688204666230710102624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test