Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882
side by side viewer icon HTML

Abstract

Artificial intelligence (AI) has reshaped significant aspects of our lives, including its role in healthcare.

AI is a machine-based system that can make predictions, recommendations, and decisions influencing real or virtual environments of a given set of human-defined objectives. It is designed to operate with varying levels of autonomy.

Since cardiovascular medicine is rapidly progressing and new technologies are introduced to cardiovascular tools, AI has become valuable in cardiovascular medicine. This narrative review will discuss the general concept of AI and its role in diagnosing cardiovascular diseases, including ECG, echocardiography, cardiac CT, nuclear cardiology, cardiac MRI, cardiac catheterization, electrophysiology, heart failure, clinical decision support system, and face recognition.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882278697231205102229
2024-02-26
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882278697.html?itemId=/content/journals/nemj/10.2174/0102506882278697231205102229&mimeType=html&fmt=ahah

References

  1. Organisation for economic co-operation and development [OECD], recommendation of the council on artificial intelligence.2019Available from: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449#mainText(Accessed in Dec 2023).
  2. RomitiS. VinciguerraM. SaadeW. Anso CortajarenaI. GrecoE. Artificial intelligence (AI) and cardiovascular diseases: An unexpected alliance.Cardiol. Res. Pract.202020201810.1155/2020/497234632676206
    [Google Scholar]
  3. ShashaD. LazereC. Out of their Minds: The Lives and Discoveries of 15 Great Computer Scientists.Springer New York199810.1007/978‑1‑4612‑0831‑0
    [Google Scholar]
  4. KaulV. EnslinS. GrossS.A. History of artificial intelligence in medicine.Gastrointest. Endosc.202092480781210.1016/j.gie.2020.06.04032565184
    [Google Scholar]
  5. XuB. KocyigitD. GrimmR. GriffinB.P. ChengF. Applications of artificial intelligence in multimodality cardiovascular imaging: A state-of-the-art review.Prog. Cardiovasc. Dis.202063336737610.1016/j.pcad.2020.03.00332201286
    [Google Scholar]
  6. NabiW. BansalA. XuB. Applications of artificial intelligence and machine learning approaches in echocardiography.Echocardiography202138698299210.1111/echo.1504833982820
    [Google Scholar]
  7. CliffordG.D. LiuC. MoodyC. AF classification from a short single lead ecg recording: the physionet/computing in cardiology challenge 2017.Comput. Cardiol.2010201744
    [Google Scholar]
  8. ThanM.P. PickeringJ.W. SandovalY. ShahA.S.V. TsanasA. AppleF.S. BlankenbergS. CullenL. MuellerC. NeumannJ.T. TwerenboldR. WestermannD. BeshiriA. MillsN.L. GeorgeP.M. RichardsA.M. TroughtonR.W. AldousS.J. ChapmanA.R. AnandA. GreensladeJ. ParsonageW. BoeddinghausJ. WildiK. NestelbergerT. BadertscherP. DuS. HuangJ. SmithS.W. SörensenN.A. OjedaF. MI3 Collaborative Machine learning to predict the likelihood of acute myocardial infarction.Circulation20191401189990910.1161/CIRCULATIONAHA.119.04198031416346
    [Google Scholar]
  9. NicholsJ.A. Herbert ChanH.W. BakerM.A.B. Machine learning: Applications of artificial intelligence to imaging and diagnosis.Biophys. Rev.201911111111810.1007/s12551‑018‑0449‑930182201
    [Google Scholar]
  10. Sanchez-MartinezS. DuchateauN. ErdeiT. KunsztG. AakhusS. DegiovanniA. MarinoP. CarluccioE. PiellaG. FraserA.G. BijnensB.H. Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction.Circ. Cardiovasc. Imaging2018114e00713810.1161/CIRCIMAGING.117.00713829661795
    [Google Scholar]
  11. HaqI.U. HaqI. XuB. Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging.Cardiovasc. Diagn. Ther.202111391192310.21037/cdt.2020.03.0934295713
    [Google Scholar]
  12. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  13. RetsonT.A. BesserA.H. SallS. GoldenD. HsiaoA. Machine learning and deep neural networks in thoracic and cardiovascular imaging.J. Thorac. Imaging201934319220110.1097/RTI.000000000000038531009397
    [Google Scholar]
  14. KrittanawongC. JohnsonK.W. RosensonR.S. WangZ. AydarM. BaberU. MinJ.K. TangW.H.W. HalperinJ.L. NarayanS.M. Deep learning for cardiovascular medicine: A practical primer.Eur. Heart J.201940252058207310.1093/eurheartj/ehz05630815669
    [Google Scholar]
  15. HannunA.Y. RajpurkarP. HaghpanahiM. TisonG.H. BournC. TurakhiaM.P. NgA.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.Nat. Med.2019251656910.1038/s41591‑018‑0268‑330617320
    [Google Scholar]
  16. MnihV. KavukcuogluK. SilverD. RusuA.A. VenessJ. BellemareM.G. GravesA. RiedmillerM. FidjelandA.K. OstrovskiG. PetersenS. BeattieC. SadikA. AntonoglouI. KingH. KumaranD. WierstraD. LeggS. HassabisD. Human-level control through deep reinforcement learning.Nature2015518754052953310.1038/nature1423625719670
    [Google Scholar]
  17. JohnsonK.W. GlicksbergB.S. HodosR.A. ShameerK. DudleyJ.T. Causal inference on electronic health records to assess blood pressure treatment targets: An application of the parametric g formula.Pac. Symp. Biocomput.20182318019110.1142/9789813235533_001729218880
    [Google Scholar]
  18. AttiaZ.I. KapaS. Lopez-JimenezF. McKieP.M. LadewigD.J. SatamG. PellikkaP.A. Enriquez-SaranoM. NoseworthyP.A. MungerT.M. AsirvathamS.J. ScottC.G. CarterR.E. FriedmanP.A. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram.Nat. Med.2019251707410.1038/s41591‑018‑0240‑230617318
    [Google Scholar]
  19. BachtigerP. PetriC.F. ScottF.E. Ri ParkS. KelshikerM.A. SahemeyH.K. DumeaB. AlqueroR. PadamP.S. HatrickI.R. AliA. RibeiroM. CheungW.S. BualN. RanaB. Shun-ShinM. KramerD.B. FragoyannisA. KeeneD. PlymenC.M. PetersN.S. Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: A prospective, observational, multicentre study.Lancet Digit. Health202242e117e12510.1016/S2589‑7500(21)00256‑934998740
    [Google Scholar]
  20. AkbilgicO. ButlerL. KarabayirI. ChangP.P. KitzmanD.W. AlonsoA. ChenL.Y. SolimanE.Z. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure.European Heart Journal - Digital Health20212462663410.1093/ehjdh/ztab08034993487
    [Google Scholar]
  21. AttiaZ.I. NoseworthyP.A. Lopez-JimenezF. AsirvathamS.J. DeshmukhA.J. GershB.J. CarterR.E. YaoX. RabinsteinA.A. EricksonB.J. KapaS. FriedmanP.A. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction.Lancet20193941020186186710.1016/S0140‑6736(19)31721‑031378392
    [Google Scholar]
  22. PerezM.V. MahaffeyK.W. HedlinH. RumsfeldJ.S. GarciaA. FerrisT. BalasubramanianV. RussoA.M. RajmaneA. CheungL. HungG. LeeJ. KoweyP. TalatiN. NagD. GummidipundiS.E. BeattyA. HillsM.T. DesaiS. GrangerC.B. DesaiM. TurakhiaM.P. Apple Heart Study Investigators Large-scale assessment of a smartwatch to identify atrial fibrillation.N. Engl. J. Med.2019381201909191710.1056/NEJMoa190118331722151
    [Google Scholar]
  23. JalaliA. LeeM. Atrial fibrillation prediction with residual network using sensitivity and orthogonality constraints.IEEE J. Biomed. Health Inform.202024240741310.1109/JBHI.2019.295780931825883
    [Google Scholar]
  24. ShiJ. AlikhaniI. LiX. YuZ. SeppanenT. ZhaoG. Atrial fibrillation detection from face videos by fusing subtle variations.IEEE Trans. Circ. Syst. Video Tech.20203082781279510.1109/TCSVT.2019.2926632
    [Google Scholar]
  25. HanC. KangK.W. KimT.Y. UhmJ.S. ParkJ.W. JungI.H. KimM. BaeS. LimH.S. YoonD. Artificial intelligence-enabled ECG algorithm for the prediction of coronary artery calcification.Front. Cardiovasc. Med.2022984922310.3389/fcvm.2022.84922335463761
    [Google Scholar]
  26. AttiaZ.I. FriedmanP.A. NoseworthyP.A. Lopez-JimenezF. LadewigD.J. SatamG. PellikkaP.A. MungerT.M. AsirvathamS.J. ScottC.G. CarterR.E. KapaS. Age and sex estimation using artificial intelligence from standard 12-lead ECGs.Circ. Arrhythm. Electrophysiol.2019129e00728410.1161/CIRCEP.119.00728431450977
    [Google Scholar]
  27. NarangA. BaeR. HongH. ThomasY. SuretteS. CadieuC. ChaudhryA. MartinR.P. McCarthyP.M. RubensonD.S. GoldsteinS. LittleS.H. LangR.M. WeissmanN.J. ThomasJ.D. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use.JAMA Cardiol.20216662463210.1001/jamacardio.2021.018533599681
    [Google Scholar]
  28. SchneiderM. BartkoP. GellerW. DannenbergV. KönigA. BinderC. GoliaschG. HengstenbergC. BinderT. A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF.Int. J. Cardiovasc. Imaging202137257758610.1007/s10554‑020‑02046‑633029699
    [Google Scholar]
  29. MadaniA. ArnaoutR. MofradM. ArnaoutR. Fast and accurate view classification of echocardiograms using deep learning.NPJ Digit. Med.201811610.1038/s41746‑017‑0013‑130828647
    [Google Scholar]
  30. LeclercS. SmistadE. PedrosaJ. OstvikA. CervenanskyF. EspinosaF. EspelandT. BergE.A.R. JodoinP.M. GrenierT. LartizienC. DhoogeJ. LovstakkenL. BernardO. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography.IEEE Trans. Med. Imaging20193892198221010.1109/TMI.2019.290051630802851
    [Google Scholar]
  31. ZhangJ. GajjalaS. AgrawalP. TisonG.H. HallockL.A. Beussink-NelsonL. LassenM.H. FanE. ArasM.A. JordanC. FleischmannK.E. MeliskoM. QasimA. ShahS.J. BajcsyR. DeoR.C. Fully automated echocardiogram interpretation in clinical practice.Circulation2018138161623163510.1161/CIRCULATIONAHA.118.03433830354459
    [Google Scholar]
  32. DraperB. YeeW.L. PedranaA. KyiK.P. QureshiH. HtayH. NaingW. ThompsonA.J. HellardM. HowellJ. Reducing liver disease-related deaths in the Asia-Pacific: the important role of decentralised and non-specialist led hepatitis C treatment for cirrhotic patients.Lancet Regional Health - Western Pacific20222010035910.1016/j.lanwpc.2021.10035935024676
    [Google Scholar]
  33. KusunoseK. AbeT. HagaA. FukudaD. YamadaH. HaradaM. SataM. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images.JACC Cardiovasc. Imaging202013237438110.1016/j.jcmg.2019.02.02431103590
    [Google Scholar]
  34. YamaguchiN. KosakaY. HagaA. SataM. KusunoseK. Artificial intelligence-assisted interpretation of systolic function by echocardiogram.Open Heart2023102e00228710.1136/openhrt‑2023‑00228737460267
    [Google Scholar]
  35. HeB. KwanA.C. ChoJ.H. YuanN. PollickC. ShiotaT. EbingerJ. BelloN.A. WeiJ. JosanK. DuffyG. JujjavarapuM. SiegelR. ChengS. ZouJ.Y. OuyangD. Blinded, randomized trial of sonographer versus AI cardiac function assessment.Nature2023616795752052410.1038/s41586‑023‑05947‑337020027
    [Google Scholar]
  36. ChandraV. SarkarP.G. SinghV. Mitral valve leaflet tracking in echocardiography using custom Yolo3.Procedia Comput. Sci.202017182082810.1016/j.procs.2020.04.089
    [Google Scholar]
  37. ThalappillilR. DattaP. DattaS. ZhanY. WellsS. MahmoodF. CobeyF.C. Artificial Intelligence for the Measurement of the Aortic Valve Annulus.J. Cardiothorac. Vasc. Anesth.2020341657110.1053/j.jvca.2019.06.01731351874
    [Google Scholar]
  38. Casaclang-VerzosaG. ShresthaS. KhalilM.J. ChoJ.S. TokodiM. BallaS. AlkhouliM. BadhwarV. NarulaJ. MillerJ.D. SenguptaP.P. Network tomography for understanding phenotypic presentations in aortic stenosis.JACC Cardiovasc. Imaging201912223624810.1016/j.jcmg.2018.11.02530732719
    [Google Scholar]
  39. SalteI.M. ØstvikA. SmistadE. MelichovaD. NguyenT.M. KarlsenS. BrunvandH. HaugaaK.H. EdvardsenT. LovstakkenL. GrenneB. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography.JACC cardiovasc. imaging202114101918192810.1016/j.jcmg.2021.04.01834147442
    [Google Scholar]
  40. NasirK. RubinJ. BlahaM.J. ShawL.J. BlanksteinR. RiveraJ.J. KhanA.N. BermanD. RaggiP. CallisterT. RumbergerJ.A. MinJ. JonesS.R. BlumenthalR.S. BudoffM.J. Interplay of coronary artery calcification and traditional risk factors for the prediction of all-cause mortality in asymptomatic individuals.Circ. Cardiovasc. Imaging20125446747310.1161/CIRCIMAGING.111.96452822718782
    [Google Scholar]
  41. TakxR.A.P. de JongP.A. LeinerT. OudkerkM. de KoningH.J. MolC.P. ViergeverM.A. IšgumI. Automated coronary artery calcification scoring in non-gated chest CT: Agreement and reliability.PLoS One201493e9123910.1371/journal.pone.009123924625525
    [Google Scholar]
  42. XuC. GuoH. XuM. DuanM. WangM. LiuP. LuoX. JinZ. LiuH. WangY. Automatic coronary artery calcium scoring on routine chest computed tomography (CT): Comparison of a deep learning algorithm and a dedicated calcium scoring CT.Quant. Imaging Med. Surg.20221252684269510.21037/qims‑21‑101735502379
    [Google Scholar]
  43. van den OeverL.B. CornelissenL. VonderM. XiaC. van BolhuisJ.N. VliegenthartR. VeldhuisR.N.J. de BockG.H. OudkerkM. van OoijenP.M.A. Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium.Eur. J. Radiol.202012910911410.1016/j.ejrad.2020.10911432531719
    [Google Scholar]
  44. SunZ. NgC.K.C. Artificial Intelligence (Enhanced Super-Resolution Generative Adversarial Network) for Calcium Deblooming in Coronary Computed Tomography Angiography: A Feasibility Study.Diagnostics (Basel)202212499110.3390/diagnostics1204099135454039
    [Google Scholar]
  45. ForouzandehF. ChangS.M. MuhyieddeenK. ZaidR.R. TrevinoA.R. XuJ. NabiF. MahmarianJ.J. Does quantifying epicardial and intrathoracic fat with noncontrast computed tomography improve risk stratification beyond calcium scoring alone?Circ. Cardiovasc. Imaging201361586610.1161/CIRCIMAGING.112.97631623192847
    [Google Scholar]
  46. GoellerM. AchenbachS. MarwanM. DorisM.K. CadetS. CommandeurF. ChenX. SlomkaP.J. GransarH. CaoJ.J. WongN.D. AlbrechtM.H. RozanskiA. TamarappooB.K. BermanD.S. DeyD. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects.J. Cardiovasc. Comput. Tomogr.2018121677310.1016/j.jcct.2017.11.00729233634
    [Google Scholar]
  47. EisenbergE. McElhinneyP.A. CommandeurF. ChenX. CadetS. GoellerM. RazipourA. GransarH. CantuS. MillerR.J.H. SlomkaP.J. WongN.D. RozanskiA. AchenbachS. TamarappooB.K. BermanD.S. DeyD. Deep learning–based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects.Circ. Cardiovasc. Imaging2020132e00982910.1161/CIRCIMAGING.119.00982932063057
    [Google Scholar]
  48. MillerJ.M. RochitteC.E. DeweyM. Arbab-ZadehA. NiinumaH. GottliebI. PaulN. ClouseM.E. ShapiroE.P. HoeJ. LardoA.C. BushD.E. de RoosA. CoxC. BrinkerJ. LimaJ.A.C. Diagnostic performance of coronary angiography by 64-row CT.N. Engl. J. Med.2008359222324233610.1056/NEJMoa080657619038879
    [Google Scholar]
  49. CoenenA. KimY.H. KrukM. TescheC. De GeerJ. KurataA. LubbersM.L. DaemenJ. ItuL. RapakaS. SharmaP. SchwemmerC. PerssonA. SchoepfU.J. KepkaC. Hyun YangD. NiemanK. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography–based fractional flow reserve.Circ. Cardiovasc. Imaging2018116e00721710.1161/CIRCIMAGING.117.00721729914866
    [Google Scholar]
  50. HampeN. van VelzenS.G.M. PlankenR.N. HenriquesJ.P.S. ColletC. AbenJ.P. VoskuilM. LeinerT. IšgumI. Deep learning-based detection of functionally significant stenosis in coronary CT angiography.Front. Cardiovasc. Med.2022996435510.3389/fcvm.2022.96435536457806
    [Google Scholar]
  51. TsangT.S.M. BarnesM.E. BaileyK.R. LeibsonC.L. MontgomeryS.C. TakemotoY. DiamondP.M. MarraM.A. GershB.J. WiebersD.O. PettyG.W. SewardJ.B. Left atrial volume: Important risk marker of incident atrial fibrillation in 1655 older men and women.Mayo Clin. Proc.200176546747510.4065/76.5.46711357793
    [Google Scholar]
  52. BrattA. GuentherZ. HahnL.D. KadochM. AdamsP.L. LeungA.N.C. GuoH.H. Left atrial volume as a biomarker of atrial fibrillation at routine chest CT: Deep learning approach.Radiol. Cardiothorac. Imaging201915e19005710.1148/ryct.201919005733778529
    [Google Scholar]
  53. ChoiA.D. MarquesH. KumarV. GriffinW.F. RahbanH. KarlsbergR.P. ZemanR.K. KatzR.J. EarlsJ.P. CT evaluation by artificial intelligence for atherosclerosis, stenosis and vascular morphology (clarify): A multi-center, international study.J. Cardiovasc. Comput. Tomogr.202115647047610.1016/j.jcct.2021.05.00434127407
    [Google Scholar]
  54. GarciaE. SPECT attenuation correction: An essential tool to realize nuclear cardiology’s manifest destiny.J. Nucl. Cardiol.2007141162410.1016/j.nuclcard.2006.12.14417276302
    [Google Scholar]
  55. WuJ. LiuC. Recent advances in cardiac SPECT instrumentation and imaging methods.Phys. Med. Biol.201964606TR0110.1088/1361‑6560/ab04de30726779
    [Google Scholar]
  56. LiuH. WuJ. ShiL. LiuY. MillerE. SinusasA. LiuY.H. LiuC. Post-reconstruction attenuation correction for SPECT myocardium perfusion imaging facilitated by deep learning-based attenuation map generation.J. Nucl. Cardiol.20222962881289210.1007/s12350‑021‑02817‑134671940
    [Google Scholar]
  57. ShanbhagA.D. MillerR.J.H. PieszkoK. LemleyM. KavanaghP. FeherA. MillerE.J. SinusasA.J. KaufmannP.A. HanD. HuangC. LiangJ.X. BermanD.S. DeyD. SlomkaP.J. Deep learning–based attenuation correction improves diagnostic accuracy of cardiac SPECT.J. Nucl. Med.202364347247810.2967/jnumed.122.26442936137759
    [Google Scholar]
  58. WellsR.G. Dose reduction is good but it is image quality that matters.J. Nucl. Cardiol.202027123824010.1007/s12350‑018‑1378‑530043253
    [Google Scholar]
  59. Aghakhan OliaN. Kamali-AslA. Hariri TabriziS. GeramifarP. SheikhzadehP. FarzanefarS. ArabiH. ZaidiH. Deep learning–based denoising of low-dose SPECT myocardial perfusion images: Quantitative assessment and clinical performance.Eur. J. Nucl. Med. Mol. Imaging20224951508152210.1007/s00259‑021‑05614‑734778929
    [Google Scholar]
  60. HuL.H. MillerR.J.H. SharirT. CommandeurF. RiosR. EinsteinA.J. FishM.B. RuddyT.D. KaufmannP.A. SinusasA.J. MillerE.J. BatemanT.M. DorbalaS. Di CarliM. LiangJ.X. EisenbergE. DeyD. BermanD.S. SlomkaP.J. Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT.Eur. Heart J. Cardiovasc. Imaging202122670571410.1093/ehjci/jeaa13432533137
    [Google Scholar]
  61. ChowB.J.W. DorbalaS. Di CarliM.F. MerhigeM.E. WilliamsB.A. VeledarE. MinJ.K. PencinaM.J. YamY. ChenL. AnandS.P. RuddyT.D. BermanD.S. ShawL.J. BeanlandsR.S. Prognostic value of PET myocardial perfusion imaging in obese patients.JACC Cardiovasc. Imaging20147327828710.1016/j.jcmg.2013.12.00824560212
    [Google Scholar]
  62. PieszkoK. ShanbhagA.D. SinghA. HauserM.T. MillerR.J.H. LiangJ.X. MotwaniM. KwiecińskiJ. SharirT. EinsteinA.J. FishM.B. RuddyT.D. KaufmannP.A. SinusasA.J. MillerE.J. BatemanT.M. DorbalaS. Di CarliM. BermanD.S. DeyD. SlomkaP.J. Time and event-specific deep learning for personalized risk assessment after cardiac perfusion imaging.NPJ Digit. Med.2023617810.1038/s41746‑023‑00806‑x37127660
    [Google Scholar]
  63. MillerR.J.H. KuronumaK. SinghA. OtakiY. HayesS. ChareonthaitaweeP. KavanaghP. ParekhT. TamarappooB.K. SharirT. EinsteinA.J. FishM.B. RuddyT.D. KaufmannP.A. SinusasA.J. MillerE.J. BatemanT. DorbalaS. Di CarliM.F. CadetS. LiangJ.X. DeyD. BermanD.S. SlomkaP.J. Explainable deep learning improves physician interpretation of myocardial perfusion imaging.J. Nucl. Med.20226311jnumed.121.26368610.2967/jnumed.121.26368635512997
    [Google Scholar]
  64. ChenY. SchonliebC-B. LioP. LeinerT. DragottiP.L. WangG. RueckertD. FirminD. YangG. AI-based reconstruction for fast MRI—A systematic review and meta-analysis.Proc. IEEE2022110222424510.1109/JPROC.2022.3141367
    [Google Scholar]
  65. ZhangN. YangG. GaoZ. XuC. ZhangY. ShiR. KeeganJ. XuL. ZhangH. FanZ. FirminD. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI.Radiology2019291360661710.1148/radiol.201918230431038407
    [Google Scholar]
  66. XueH. ArticoJ. FontanaM. MoonJ.C. DaviesR.H. KellmanP. Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network.Radiol. Artif. Intell.202135e20019710.1148/ryai.202120019734617022
    [Google Scholar]
  67. RuijsinkB. Puyol-AntónE. OksuzI. SinclairM. BaiW. SchnabelJ.A. RazaviR. KingA.P. Fully automated, quality-controlled cardiac analysis from CMR.JACC Cardiovasc. Imaging202013368469510.1016/j.jcmg.2019.05.03031326477
    [Google Scholar]
  68. DaviesR.H. AugustoJ.B. BhuvaA. XueH. TreibelT.A. YeY. HughesR.K. BaiW. LauC. ShiwaniH. FontanaM. KozorR. HerreyA. LopesL.R. MaestriniV. RosminiS. PetersenS.E. KellmanP. RueckertD. GreenwoodJ.P. CapturG. ManistyC. SchelbertE. MoonJ.C. Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning.J. Cardiovasc. Magn. Reson.20222411610.1186/s12968‑022‑00846‑435272664
    [Google Scholar]
  69. KüstnerT. ArmaniousK. YangJ. YangB. SchickF. GatidisS. Retrospective correction of motion‐affected MR images using deep learning frameworks.Magn. Reson. Med.20198241527154010.1002/mrm.2778331081955
    [Google Scholar]
  70. OmoriH. KawaseY. MizukamiT. TanigakiT. HirataT. OkuboM. KamiyaH. HirakawaA. KawasakiM. KondoT. SuzukiT. MatsuoH. Diagnostic accuracy of artificial intelligence-based angiography-derived fractional flow reserve using pressure wire-based fractional flow reserve as a reference.Circ. J.202387678379010.1253/circj.CJ‑22‑077136990778
    [Google Scholar]
  71. CookC.M. WarisawaT. HowardJ.P. KeebleT.R. IglesiasJ.F. SchampaertE. BhindiR. AmbrosiaA. MatsuoH. NishinaH. KikutaY. ShionoY. NakayamaM. DoiS. TakaiM. GotoS. YakutaY. KarubeK. AkashiY.J. CleshamG.J. KellyP.A. DaviesJ.R. KaramasisG.V. KawaseY. RobinsonN.M. SharpA.S.P. EscanedJ. DaviesJ.E. Algorithmic versus expert human interpretation of instantaneous wave-free ratio coronary pressure-wire pull back data.JACC Cardiovasc. Interv.201912141315132410.1016/j.jcin.2019.05.02531320025
    [Google Scholar]
  72. MolonyD. HosseiniH. SamadyH. TCT-2 Deep IVUS: A machine learning framework for fully automatic IVUS segmentation.J. Am. Coll. Cardiol.20187213B110.1016/j.jacc.2018.08.1077
    [Google Scholar]
  73. WileyB.M. EleidM.F. ThadenJ.J. Fusion Imaging for Procedural Guidance.Rev. Esp. Cardiol.201871537338110.1016/j.rec.2017.10.02929191779
    [Google Scholar]
  74. GaoG. ReddyK. MaY. RhodeK.S. Real-time compounding of three-dimensional transesophageal echocardiographic volumes: the phantom study.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.2009200949950219963968
    [Google Scholar]
  75. CleggS.D. ChenS.J. NijhofN. KimM.S. SalcedoE.E. QuaifeR.A. MessengerJ.C. BrackenJ. CarrollJ.D. Integrated 3D echo-x ray to optimize image guidance for structural heart intervention.JACC Cardiovasc. Imaging20158337137410.1016/j.jcmg.2014.06.02425772840
    [Google Scholar]
  76. ChenierM. TuzcuE.M. KapadiaS.R. KrishnaswamyA. Multimodality imaging in the cardiac catheterization laboratory: A new era in sight.Interv. Cardiol.20135333534410.2217/ica.13.26
    [Google Scholar]
  77. SilvaJ.N.A. SouthworthM. RaptisC. SilvaJ. Emerging applications of virtual reality in cardiovascular medicine.JACC Basic Transl. Sci.20183342043010.1016/j.jacbts.2017.11.00930062228
    [Google Scholar]
  78. Case western reserve university, case western reserve, cleveland clinic collaborate with microsoft on ‘earth-shattering’ mixed-reality technology for education.2015Available from: https://case.edu/medicine/about/newsroom/our-latest-news/case-western-reserve-cleveland-clinic-collaborate-microsoft-earth-shattering-mixed-reality-technology-education (Accessed in: Dec. 2023)
  79. StevensonA. KirreshA. AhmadM. CandilioL. Robotic-Assisted PCI: The future of coronary intervention?Cardiovasc. Revasc. Med.20223516116810.1016/j.carrev.2021.03.02533867293
    [Google Scholar]
  80. VernooyK. van DeursenC.J.M. StrikM. PrinzenF.W. Strategies to improve cardiac resynchronization therapy.Nat. Rev. Cardiol.201411848149310.1038/nrcardio.2014.6724839977
    [Google Scholar]
  81. FeenyA.K. RickardJ. PatelD. ToroS. TrulockK.M. ParkC.J. LaBarberaM.A. VarmaN. NiebauerM.J. SinhaS. GorodeskiE.Z. GrimmR.A. JiX. BarnardJ. MadabhushiA. SpraggD.D. ChungM.K. Machine learning prediction of response to cardiac resynchronization therapy.Circ. Arrhythm. Electrophysiol.2019127e00731610.1161/CIRCEP.119.00731631216884
    [Google Scholar]
  82. GatzoulisK. AndrikopoulosG. ApostolopoulosT. SotiropoulosE. ZervopoulosG. AntoniouJ. BriliS. StefanadisC. Electrical storm is an independent predictor of adverse long-term outcome in the era of implantable defibrillator therapy.Europace20057218419210.1016/j.eupc.2005.01.00315763536
    [Google Scholar]
  83. ShakibfarS. KrauseO. Lund-AndersenC. ArandaA. MollJ. AndersenT.O. SvendsenJ.H. PetersenH.H. IgelC. Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning.Europace201921226827410.1093/europace/euy25730508072
    [Google Scholar]
  84. GiudicessiJ.R. SchramM. BosJ.M. GallowayC.D. ShreibatiJ.B. JohnsonP.W. CarterR.E. DisrudL.W. KleimanR. AttiaZ.I. NoseworthyP.A. FriedmanP.A. AlbertD.E. AckermanM.J. Artificial intelligence–enabled assessment of the heart rate corrected QT interval using a mobile electrocardiogram device.Circulation2021143131274128610.1161/CIRCULATIONAHA.120.05023133517677
    [Google Scholar]
  85. BosJ.M. AttiaZ.I. AlbertD.E. NoseworthyP.A. FriedmanP.A. AckermanM.J. Use of artificial intelligence and deep neural networks in evaluation of patients with electrocardiographically concealed long qt syndrome from the surface 12-lead electrocardiogram.JAMA Cardiol.20216553253810.1001/jamacardio.2020.742233566059
    [Google Scholar]
  86. HongS. LeeS. LeeJ. ChaW.C. KimK. Prediction of cardiac arrest in the emergency department based on machine learning and sequential characteristics: model development and retrospective clinical validation study.JMIR Med. Inform.202088e1593210.2196/1593232749227
    [Google Scholar]
  87. ShadeJ.K. PrakosaA. PopescuD.M. YuR. OkadaD.R. ChrispinJ. TrayanovaN.A. Predicting risk of sudden cardiac death in patients with cardiac sarcoidosis using multimodality imaging and personalized heart modeling in a multivariable classifier.Sci. Adv.2021731eabi802010.1126/sciadv.abi802034321202
    [Google Scholar]
  88. NakashimaT. OgataS. NoguchiT. TaharaY. OnozukaD. KatoS. YamagataY. KojimaS. IwamiT. SakamotoT. NagaoK. NonogiH. YasudaS. IiharaK. NeumarR. NishimuraK. Machine learning model for predicting out-of-hospital cardiac arrests using meteorological and chronological data.Heart2021107131084109110.1136/heartjnl‑2020‑31872634001636
    [Google Scholar]
  89. AverbuchT. SullivanK. SauerA. MamasM.A. VoorsA.A. GaleC.P. MetraM. RavindraN. Van SpallH.G.C. Applications of artificial intelligence and machine learning in heart failure.European Heart Journal - Digital Health20223231132210.1093/ehjdh/ztac02536713018
    [Google Scholar]
  90. AbrahamW.T. StevensonL.W. BourgeR.C. LindenfeldJ.A. BaumanJ.G. AdamsonP.B. CHAMPION Trial Study Group Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial.Lancet20163871001745346110.1016/S0140‑6736(15)00723‑026560249
    [Google Scholar]
  91. PerlL. SoiferE. BartunekJ. ErdheimD. KöhlerF. AbrahamW.T. MeerkinD. A novel wireless left atrial pressure monitoring system for patients with heart failure, first ex-vivo and animal experience.J. Cardiovasc. Transl. Res.201912429029810.1007/s12265‑018‑9856‑330604310
    [Google Scholar]
  92. ConraadsV.M. SpruitM.A. BraunschweigF. CowieM.R. TavazziL. BorggrefeM. HillM.R.S. JacobsS. GerritseB. van VeldhuisenD.J. Physical activity measured with implanted devices predicts patient outcome in chronic heart failure.Circ. Heart Fail.20147227928710.1161/CIRCHEARTFAILURE.113.00088324519908
    [Google Scholar]
  93. DastjerdiA.V. BuyyaR. Fog computing: Helping the internet of things realize its potential.Computer201649811211610.1109/MC.2016.245
    [Google Scholar]
  94. LuY. MelnickE.R. KrumholzH.M. Clinical decision support in cardiovascular medicine.BMJ2022377e05981810.1136/bmj‑2020‑05981835613721
    [Google Scholar]
  95. LinS. LiZ. FuB. ChenS. LiX. WangY. WangX. LvB. XuB. SongX. ZhangY.J. ChengX. HuangW. PuJ. ZhangQ. XiaY. DuB. JiX. ZhengZ. Feasibility of using deep learning to detect coronary artery disease based on facial photo.Eur. Heart J.202041464400441110.1093/eurheartj/ehaa64032818267
    [Google Scholar]
  96. SkalidisI. CagninaA. LuangphiphatW. MahendiranT. MullerO. AbbeE. FournierS. ChatGPT takes on the european exam in core cardiology: An artificial intelligence success story?European Heart Journal - Digital Health20234327928110.1093/ehjdh/ztad02937265864
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882278697231205102229
Loading
/content/journals/nemj/10.2174/0102506882278697231205102229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test