Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Micronutrient deficiencies can cause serious health issues in developing countries such as most of the Asian and African countries, where millions of people are already suffering from inadequate micronutrient intake. In Bangladesh, micronutrient deficiency is found to be severe due to low income, food habits, and rice-based staple food consumption (rice has an insufficiency of different types of vitamins and minerals). To prevent micronutrient malnutrition, supplementation has been employed but failed to reach the goal so far. Agronomic and genetic biofortification has the potential to address micronutrient deficiencies. Biofortification in rice grain is a convenient and affordable way to supply the desired micronutrients. The development of micronutrient-rich popular rice cultivars through conventional breeding is currently being harnessed to increase their micronutrient contents. However, conventional breeding faces a lot of issues and to overcome these hurdles, genetic engineering and genome editing have emerged as promising tools of micronutrient biofortification in rice.. The authors conducted the research of relevant literature in order to explore the potential strategies, information, and requirements for this review. The sources, functions, and requirements of iron, zinc, vitamin-A, vitamin-B1, vitamin-B9, and betanin in rice and their biofortification through conventional breeding, genetic engineering, and genome editing including their promises and hindrances, have been highlighted in this study. New breeding techniques are timely alternatives for developing nutrient-rich rice cultivars to eliminate hidden hunger and poverty in Bangladesh.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999201202114714
2021-07-01
2025-01-10
Loading full text...

Full text loading...

References

  1. The Financial ExpressPromoting nutrition sensitive agriculture in Bangladesh.https://www.thefinancialexpress.com.bd/views/promoting-nutrition-sensitive-agriculture-in-bangladesh-1552061154
    [Google Scholar]
  2. ImtiazM. RashidA. KhanP. MemonM.Y. AslamM. The role of micronutrients in crop production and human health.Pak. J. Bot.201042425652578
    [Google Scholar]
  3. MagginiS. PierreA. CalderP.C. Immune function and micronutrient requirements change over the life course.Nutrients20181010153110.3390/nu1010153130336639
    [Google Scholar]
  4. ShenkinA. Micronutrients in health and disease.Postgrad. Med. J.20068297155956710.1136/pgmj.2006.04767016954450
    [Google Scholar]
  5. TulchinskyT.H. Micronutrient deficiency conditions: global health issues.Public Health Rev.201032124310.1007/BF0339160029451564
    [Google Scholar]
  6. UNICEF and Institute of Public Health and NutritionNational micronutrients status survey.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.702.1742&rep=rep1&type=pdf
    [Google Scholar]
  7. KhushG.S. LeeS. ChoJ.I. JeonJ.S. Biofortification of crops for reducing malnutrition.Plant Biotechnol. Rep.20126319520210.1007/s11816‑012‑0216‑5
    [Google Scholar]
  8. AkhtarS. Malnutrition in South Asia-A Critical Reappraisal.Crit. Rev. Food Sci. Nutr.201656142320233010.1080/10408398.2013.83214325830938
    [Google Scholar]
  9. AhmedT. MahfuzM. IreenS. AhmedA.M. RahmanS. IslamM.M. AlamN. HossainM.I. RahmanS.M. AliM.M. ChoudhuryF.P. CraviotoA. Nutrition of children and women in Bangladesh: trends and directions for the future.J. Health Popul. Nutr.201230111110.3329/jhpn.v30i1.1126822524113
    [Google Scholar]
  10. AnawarH.M. AkaiJ. MostofaK.M.G. SafiullahS. TareqS.M. Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh.Environ. Int.200227759760410.1016/S0160‑4120(01)00116‑711871394
    [Google Scholar]
  11. BergkvistC. AuneM. NilssonI. SandangerT.M. HamadaniJ.D. TofailF. Oyvind-OdlandJ. KabirI. VahterM. Occurrence and levels of organochlorine compounds in human breast milk in Bangladesh.Chemosphere201288778479010.1016/j.chemosphere.2012.03.08322551873
    [Google Scholar]
  12. YosefS. JonesA.D. ChakrabortyB. GillespieS. Agriculture and nutrition in Bangladesh: mapping evidence to pathways.Food Nutr. Bull.201536438740410.1177/037957211560919526446127
    [Google Scholar]
  13. The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food SecurityFAO, IFAD, UNICEF, WFP and WHO.2017http://www.fao.org/3/I9553EN/i9553en.pdf
    [Google Scholar]
  14. QaimM. Plant breeding and agricultural Development.Genetically modified crops and agricultural development.New YorkPalgrave Macmillan2016153810.1057/9781137405722_2
    [Google Scholar]
  15. ZaidiS.S.E.A. VanderschurenH. QaimM. MahfouzM.M. KohliA. MansoorS. TesterM. New plant breeding technologies for food security.Science201936364341390139110.1126/science.aav631630923209
    [Google Scholar]
  16. PhattarakulN. RerkasemB. LiL.J. WuL.H. ZouC.Q. RamH. SohuV.S. KangB.S. SurekH. KalayciM. YaziciA. Biofortification of rice grain with zinc through zinc fertilization in different countries.Plant Soil20123611-213114110.1007/s11104‑012‑1211‑x
    [Google Scholar]
  17. MasudaH. IshimaruY. AungM.S. KobayashiT. KakeiY. TakahashiM. HiguchiK. NakanishiH. NishizawaN.K. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition.Sci. Rep.2012254310.1038/srep0054322848789
    [Google Scholar]
  18. DevS. BabittJ.L. Overview of iron metabolism in health and disease.Hemodial. Int.201721Suppl. 1S6S2010.1111/hdi.1254228296010
    [Google Scholar]
  19. WinterW.E. BazydloL.A. HarrisN.S. The molecular biology of human iron metabolism.Lab. Med.20144529210210.1309/LMF28S2GIMXNWHMM24868988
    [Google Scholar]
  20. GozzelinoR. ArosioP. Iron homeostasis in health and disease.Int. J. Mol. Sci.201617113010.3390/ijms1701013026805813
    [Google Scholar]
  21. AbbaspourN. HurrellR. KelishadiR. Review on iron and its importance for human health.J. Res. Med. Sci.201419216417424778671
    [Google Scholar]
  22. CamaschellaC. CamaschellaC. Iron-deficiency anemia.N. Engl. J. Med.2015372191832184310.1056/NEJMra140103825946282
    [Google Scholar]
  23. AuerbachM. AdamsonJ.W. How we diagnose and treat iron deficiency anemia.Am. J. Hematol.2016911313810.1002/ajh.2420126408108
    [Google Scholar]
  24. HassanT.H. BadrM.A. KaramN.A. ZkariaM. El SaadanyH.F. Abdel RahmanD.M. ShahbahD.A. Al MorshedyS.M. FathyM. EshA.M.H. SelimA.M. Impact of iron deficiency anemia on the function of the immune system in children.Medicine (Baltimore)2016954710.1097/MD.000000000000539527893677
    [Google Scholar]
  25. GanzT. NemethE. Iron homeostasis in host defence and inflammation.Nat. Rev. Immunol.201515850051010.1038/nri386326160612
    [Google Scholar]
  26. LarsonL.M. PhiriK.S. PasrichaS.R. Iron and cognitive development: what is the evidence?Ann. Nutr. Metab.201771Suppl. 3253810.1159/00048074229268256
    [Google Scholar]
  27. Shah-KulkarniS. HaM. KimB.M. KimE. HongY.C. ParkH. KimY. KimB.N. ChangN. OhS.Y. KimY.J. LeeB. HaE.H. Neurodevelopment in early childhood affected by prenatal lead exposure and iron intake.Medicine (Baltimore)201695410.1097/MD.000000000000250826825887
    [Google Scholar]
  28. MirzaeianS. GhiasvandR. SadeghianF. SheikhiM. KhosraviZ.S. AskariG. ShiranianA. YadegarfarG. Assessing the micronutrient and macronutrient intakes in female students and comparing them with the set standard values.J. Edu. Health Promot20132
    [Google Scholar]
  29. CakmakI. KutmanU.B. Agronomic biofortification of cereals with zinc: a review.Eur. J. Soil Sci.201869117218010.1111/ejss.12437
    [Google Scholar]
  30. PrashanthL. KattapagariK.K. ChitturiR.T. BaddamV.R.R. PrasadL.K. A review on role of essential trace elements in health and disease.J. Dr. NTR Univ. Health Sci.2015427510.4103/2277‑8632.158577
    [Google Scholar]
  31. HojyoS. FukadaT. Roles of zinc signaling in the immune system.J. Immunol. Res.2016201610.1155/2016/676234327872866
    [Google Scholar]
  32. HaaseH. RinkL. Multiple impacts of zinc on immune function.Metallomics2014671175118010.1039/c3mt00353a24531756
    [Google Scholar]
  33. HaaseH. RinkL. Zinc signals and immune function.Biofactors2014401274010.1002/biof.111423804522
    [Google Scholar]
  34. MargerL. SchubertC.R. BertrandD. Zinc: an underappreciated modulatory factor of brain function.Biochem. Pharmacol.201491442643510.1016/j.bcp.2014.08.00225130547
    [Google Scholar]
  35. PrakashA. BhartiK. MajeedA.B.A. Zinc: indications in brain disorders.Fundam. Clin. Pharmacol.201529213114910.1111/fcp.1211025659970
    [Google Scholar]
  36. Tyszka-CzocharaM. GrzywaczA. Gdula-ArgasińskaJ. LibrowskiT. WilińskiB. OpokaW. The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function.Acta Pol. Pharm.201471336937725265815
    [Google Scholar]
  37. JaroszM. OlbertM. WyszogrodzkaG. MłyniecK. LibrowskiT. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling.Inflammopharmacology2017251112410.1007/s10787‑017‑0309‑428083748
    [Google Scholar]
  38. ChabosseauP. RutterG.A. Zinc and diabetes.Arch. Biochem. Biophys.2016611798510.1016/j.abb.2016.05.02227262257
    [Google Scholar]
  39. GrüngreiffK. ReinholdD. WedemeyerH. The role of zinc in liver cirrhosis.Ann. Hepatol.201615171610.5604/16652681.118419126626635
    [Google Scholar]
  40. MasonJ. GreinerT. ShrimptonR. SandersD. YukichJ. Vitamin A policies need rethinking.Int. J. Epidemiol.201544128329210.1093/ije/dyu19425306559
    [Google Scholar]
  41. SaariJ.C. Vitamin A and vision.The Biochemistry of Retinoid Signaling II.DordrechtSpringer201623125910.1007/978‑94‑024‑0945‑1_9
    [Google Scholar]
  42. da Rocha LimaB. PichiF. LowderC.Y. Night blindness and Crohn’s disease.Int. Ophthalmol.20143451141114410.1007/s10792‑014‑9940‑x24715231
    [Google Scholar]
  43. DarlowB.A. GrahamP.J. Rojas‐ReyesM.X. Vitamin A supplementation to prevent mortality and short‐and long‐term morbidity in very low birth weight infants.Cochrane Database Syst. Rev.2016810.1002/14651858.CD000501.pub4
    [Google Scholar]
  44. ImdadA. Mayo‐WilsonE. HerzerK. BhuttaZ.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age.Cochrane Database Syst. Rev.2017310.1002/14651858.CD008524.pub3
    [Google Scholar]
  45. McCauleyM.E. van den BroekN. DouL. OthmanM. Vitamin A supplementation during pregnancy for maternal and newborn outcomes.Cochrane Database Syst. Rev.20151010.1002/14651858.CD008666.pub3
    [Google Scholar]
  46. SirisinhaS. The pleiotropic role of vitamin A in regulating mucosal immunity.Asian Pac. J. Allergy Immunol.2015332718926141028
    [Google Scholar]
  47. MartelJ.L. KerndtC.C. FranklinD.S. Vitamin B1 (thiamine) In: Stat Pearls. StatPearls Publishing: USA2019
    [Google Scholar]
  48. BaşaranoğluS. AğaçayakE. UçmakF. TunçS.Y. DeregözüA. AkkurtZ.M. PekerN. AcetM. YükselH. GülT. The role of vitamin B1-B2 and plasma lipid profile in intrahepatic cholestasis of pregnancy.J. Perinat. Med.201745446146510.1515/jpm‑2015‑033727049609
    [Google Scholar]
  49. GibsonG.E. HirschJ.A. FonzettiP. JordanB.D. CirioR.T. ElderJ. Vitamin B1 (thiamine) and dementia.Ann. N. Y. Acad. Sci.201613671213010.1111/nyas.1303126971083
    [Google Scholar]
  50. JainA. MehtaR. Al-AniM. HillJ.A. WinchesterD.E. Determining the role of thiamine deficiency in systolic heart failure: a meta-analysis and systematic review.J. Card. Fail.201521121000100710.1016/j.cardfail.2015.10.00526497757
    [Google Scholar]
  51. KattoorA.J. GoelA. MehtaJ.L. Thiamine therapy for heart failure: a promise or fiction?Cardiovasc. Drugs Ther.201832431331710.1007/s10557‑018‑6808‑830022355
    [Google Scholar]
  52. MollR. DavisB. Iron, vitamin B12 and folate.Medicine (Baltimore)201745419820310.1016/j.mpmed.2017.01.007
    [Google Scholar]
  53. DuthieS.J. Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis.J. Inherit. Metab. Dis.201134110110910.1007/s10545‑010‑9128‑020544289
    [Google Scholar]
  54. De‐RegilL.M. Peña‐RosasJ.P. Fernández‐GaxiolaA.C. Rayco‐SolonP. Effects and safety of periconceptional oral folate supplementation for preventing birth defects.Cochrane Database Syst. Rev.20151210.1002/14651858.CD007950.pub3
    [Google Scholar]
  55. BenderA. HaganK.E. KingstonN. The association of folate and depression: A meta-analysis.J. Psychiatr. Res.20179591810.1016/j.jpsychires.2017.07.01928759846
    [Google Scholar]
  56. NazkiF.H. SameerA.S. GanaieB.A. Folate: metabolism, genes, polymorphisms and the associated diseases.Gene20145331112010.1016/j.gene.2013.09.06324091066
    [Google Scholar]
  57. EbaraS. Nutritional role of folate.Congenit. Anom. (Kyoto)201757513814110.1111/cga.1223328603928
    [Google Scholar]
  58. EsatbeyogluT. WagnerA.E. Schini-KerthV.B. RimbachG. Betanin-a food colorant with biological activity.Mol. Nutr. Food Res.2015591364710.1002/mnfr.20140048425178819
    [Google Scholar]
  59. TanD. WangY. BaiB. YangX. HanJ. Betanin attenuates oxidative stress and inflammatory reaction in kidney of paraquat-treated rat.Food Chem. Toxicol.20157814114610.1016/j.fct.2015.01.01825662031
    [Google Scholar]
  60. CliffordT. HowatsonG. WestD.J. StevensonE.J. The potential benefits of red beetroot supplementation in health and disease.Nutrients2015742801282210.3390/nu704280125875121
    [Google Scholar]
  61. AmjadiS. HamishehkarH. GhorbaniM. A novel smart PEGylated gelatin nanoparticle for co-delivery of doxorubicin and betanin: A strategy for enhancing the therapeutic efficacy of chemotherapy.Mater. Sci. Eng. C20199783384110.1016/j.msec.2018.12.10430678974
    [Google Scholar]
  62. MerrillR.D. ShamimA.A. AliH. LabriqueA.B. SchulzeK. ChristianP. WestK.P.Jr High prevalence of anemia with lack of iron deficiency among women in rural Bangladesh: a role for thalassemia and iron in groundwater.Asia Pac. J. Clin. Nutr.201221341642422705433
    [Google Scholar]
  63. RahmanS. AhmedT. RahmanA.S. AlamN. AhmedA.S. IreenS. ChowdhuryI.A. ChowdhuryF.P. RahmanS.M. Determinants of iron status and Hb in the Bangladesh population: the role of groundwater iron.Public Health Nutr.201619101862187410.1017/S136898001500365126818180
    [Google Scholar]
  64. EnerothH. PerssonL.Å. El ArifeenS. EkströmE.C. Infant anaemia is associated with infection, low birthweight and iron deficiency in rural Bangladesh.Acta Paediatr.2011100222022510.1111/j.1651‑2227.2010.02011.x20868371
    [Google Scholar]
  65. AkhtarS. Zinc status in South Asian populations-an update.J. Health Popul. Nutr.201331213914910.3329/jhpn.v31i2.1637823930332
    [Google Scholar]
  66. BaquiA.H. ZamanK. PerssonL.A. El ArifeenS. YunusM. BegumN. BlackR.E. Simultaneous weekly supplementation of iron and zinc is associated with lower morbidity due to diarrhea and acute lower respiratory infection in Bangladeshi infants.J. Nutr.2003133124150415710.1093/jn/133.12.415014652364
    [Google Scholar]
  67. AhmedF. MahmudaI. SattarA. AkhtaruzzamanM. Anaemia and vitamin A deficiency in poor urban pregnant women of Bangladesh.Asia Pac. J. Clin. Nutr.200312446046614672871
    [Google Scholar]
  68. LeeV. AhmedF. WadaS. AhmedT. AhmedA.S. Parvin BanuC. AkhterN. Extent of vitamin A deficiency among rural pregnant women in Bangladesh.Public Health Nutr.200811121326133110.1017/S136898000800272318547455
    [Google Scholar]
  69. RahmanS. RahmanA.S. AlamN. AhmedA.S. IreenS. ChowdhuryI.A. ChowdhuryF.P. RahmanS.M. AhmedT. Vitamin A deficiency and determinants of vitamin A status in Bangladeshi children and women: findings of a national survey.Public Health Nutr.20172061114112510.1017/S136898001600304927890019
    [Google Scholar]
  70. DubockA. An overview of agriculture, nutrition and fortification, supplementation and biofortification: Golden Rice as an example for enhancing micronutrient intake.Agric. Food Secur.20176112010.1186/s40066‑017‑0135‑3
    [Google Scholar]
  71. AhmedF. PrendivilleN. NarayanA. Micronutrient deficiencies among children and women in Bangladesh: progress and challenges.J. Nutr. Sci.2016510.1017/jns.2016.3928620473
    [Google Scholar]
  72. HassanM. RahmanH. YasmeenB.N. MuktiA. HaqueH. KhanM. BegumM. RoyS. AhmedT.U. AhmedA.U. TabassumS. Thiamine deficiency-Beriberi–A forgotten disease.North. Int. Med. Coll. J.201810135135410.3329/nimcj.v10i1.39331
    [Google Scholar]
  73. World Health Organization (WHO)Biofortification of staple crops.https://www.who.int/elena/titles/biofortification/en/
    [Google Scholar]
  74. De SteurH. GellynckX. BlancquaertD. LambertW. Van Der StraetenD. QaimM. Potential impact and cost-effectiveness of multi-biofortified rice in China.N. Biotechnol.201229343244210.1016/j.nbt.2011.11.01222154941
    [Google Scholar]
  75. JainH.K. KharkwalM.C. Plant breeding: Mendelian to molecular approaches.1st edDordrechtSpringer Science & Business Media2016
    [Google Scholar]
  76. HartungF. SchiemannJ. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU.Plant J.201478574275210.1111/tpj.1241324330272
    [Google Scholar]
  77. MajumderS. DattaK. DattaS.K. Rice Biofortification: High Iron, Zinc, and Vitamin-A to Fight against “Hidden Hunger”.Agronomy (Basel)201991280310.3390/agronomy9120803
    [Google Scholar]
  78. NeelamrajuS. Increasing iron and zinc in rice grains using deep water rices and wild species–identifying genomic segments and candidate genes.Qual. Assur. Saf. Crops Foods20124313813810.1111/j.1757‑837X.2012.00142.x
    [Google Scholar]
  79. SamalK.C. RoutG.R. Genetic Improvement of Vegetables Using Transgenic Technology.Genetic Engineering of Horticultural Crops.CambridgeAcademic Press201819322410.1016/B978‑0‑12‑810439‑2.00010‑6
    [Google Scholar]
  80. MasudaH. AungM.S. NishizawaN.K. Iron biofortification of rice using different transgenic approaches.Rice (N. Y.)2013614010.1186/1939‑8433‑6‑4024351075
    [Google Scholar]
  81. WirthJ. PolettiS. AeschlimannB. YakandawalaN. DrosseB. OsorioS. TohgeT. FernieA.R. GüntherD. GruissemW. SautterC. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin.Plant Biotechnol. J.20097763164410.1111/j.1467‑7652.2009.00430.x19702755
    [Google Scholar]
  82. TrijatmikoK.R. DueñasC. TsakirpaloglouN. TorrizoL. ArinesF.M. AdevaC. BalindongJ. OlivaN. SapasapM.V. BorreroJ. ReyJ. FranciscoP. NelsonA. NakanishiH. LombiE. TakoE. GlahnR.P. StangoulisJ. Chadha-MohantyP. JohnsonA.A. TohmeJ. BarryG. Slamet-LoedinI.H. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field.Sci. Rep.201661979210.1038/srep1979226806528
    [Google Scholar]
  83. MasudaH. SuzukiM. MorikawaK.C. KobayashiT. NakanishiH. TakahashiM. SaigusaM. MoriS. NishizawaN.K. Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis.Rice (N. Y.)20081110010810.1007/s12284‑008‑9007‑6
    [Google Scholar]
  84. KumarS. PalveA. JoshiC. SrivastavaR.K. Rukhsar Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches.Heliyon20195610.1016/j.heliyon.2019.e0191431338452
    [Google Scholar]
  85. ZamanQ.U. AslamZ. YaseenM. IhsanM.Z. KhaliqA. FahadS. BashirS. RamzaniP.M. NaeemM. Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries.Arch. Agron. Soil Sci.201864214716110.1080/03650340.2017.1338343
    [Google Scholar]
  86. LudwigY. Slamet-LoedinI.H. Genetic biofortification to enrich rice and wheat grain iron: from genes to product.Front. Plant Sci.20191083310.3389/fpls.2019.0083331379889
    [Google Scholar]
  87. KawakamiY. BhullarN.K. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice.J. Integr. Plant Biol.201860121181119810.1111/jipb.1275130468300
    [Google Scholar]
  88. SuzukiM. MorikawaK.C. NakanishiH. TakahashiM. SaigusaM. MoriS. NishizawaN.K. Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil.Soil Sci. Plant Nutr.2008541778510.1111/j.1747‑0765.2007.00205.x
    [Google Scholar]
  89. DattaS.K. DattaK. Golden Rice.The Future of Rice Demand: Quality Beyond Productivity.ChamSpringer202013514710.1007/978‑3‑030‑37510‑2_6
    [Google Scholar]
  90. BaiC. CapellT. BermanJ. MedinaV. SandmannG. ChristouP. ZhuC. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance.Plant Biotechnol. J.201614119520510.1111/pbi.1237325857664
    [Google Scholar]
  91. TianY.S. FuX.Y. YangZ.Q. WangB. GaoJ.J. WangM.Q. XuJ. HanH.J. LiZ.J. YaoQ.H. PengR.H. Metabolic engineering of rice endosperm for betanin biosynthesis.New Phytol.202022551915192210.1111/nph.1632331737907
    [Google Scholar]
  92. ChatterjeeA. AbeydeeraN.D. BaleS. PaiP.J. DorresteinP.C. RussellD.H. EalickS.E. BegleyT.P. Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase.Nature2011478737054254610.1038/nature1050322031445
    [Google Scholar]
  93. DongW. ThomasN. RonaldP.C. GoyerA. Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae.Front. Plant Sci.2016761610.3389/fpls.2016.0061627242822
    [Google Scholar]
  94. PalmerL.D. DownsD.M. The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites.J. Biol. Chem.201328842306933069910.1074/jbc.M113.50028024014032
    [Google Scholar]
  95. MinhasA.P. TuliR. PuriS. Pathway editing targets for thiamine biofortification in rice grains.Front. Plant Sci.2018997510.3389/fpls.2018.0097530042775
    [Google Scholar]
  96. LuccaP. HurrellR. PotrykusI. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains.Theor. Appl. Genet.20111022-339239710.1007/s001220051659
    [Google Scholar]
  97. ChernM. CanlasP.E. FitzgeraldH.A. RonaldP.C. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1.Plant J.200543562363510.1111/j.1365‑313X.2005.02485.x16115061
    [Google Scholar]
  98. PengB. KongD. PengY. DimunaC. HeL. XinQ. JiangY. SunY. PangR. SongX. LiH. The Synthesis and Regulation of Micronutrients in Rice Grains.J. Biotech Res.20184128997
    [Google Scholar]
  99. BlancquaertD. Van DaeleJ. StorozhenkoS. StoveC. LambertW. Van Der StraetenD. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes.Plant Mol. Biol.2013834-532934910.1007/s11103‑013‑0091‑723771598
    [Google Scholar]
  100. AmiN. BernsteinM. BoucherF. RiederM. ParkerL. Canadian Paediatric Society, Drug Therapy and Hazardous Substances CommitteeFolate and neural tube defects: The role of supplements and food fortification.Paediatr. Child Health201621314515410.1093/pch/21.3.14527398055
    [Google Scholar]
  101. SamantarayS. UmakantaN. KataraJ.L. ParameswaranC. VermaR.L. SubudhiH. KumarA. RoyS. Biotechnology for Rice Improvement: Achievements and Challenges
    [Google Scholar]
  102. AgarwalS. MangrauthiaS.K. SarlaN. Genomic Approaches for Micronutrients Biofortification of Rice.Plant Micronutrient Use Efficiency.CambridgeAcademic Press201824526010.1016/B978‑0‑12‑812104‑7.00014‑9
    [Google Scholar]
  103. KarmakarA. BhattacharyaS. SenguptaS. AliN. SarkarS.N. DattaK. DattaS.K. RNAi-mediated silencing of ITPK gene reduces phytic acid content, alters transcripts of phytic acid biosynthetic genes, and modulates mineral distribution in rice seeds.Rice Sci.202027431532810.1016/j.rsci.2020.05.007
    [Google Scholar]
  104. KuwanoM. MimuraT. TakaiwaF. YoshidaK.T. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter.Plant Biotechnol. J.2009719610510.1111/j.1467‑7652.2008.00375.x19021878
    [Google Scholar]
  105. AliN. PaulS. GayenD. SarkarS.N. DattaK. DattaS.K. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1).PLoS One201387e6816110.1371/journal.pone.006816123844166
    [Google Scholar]
  106. AliN. PaulS. GayenD. SarkarS.N. DattaS.K. DattaK. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice.Rice (N. Y.)2013611210.1186/1939‑8433‑6‑1224280240
    [Google Scholar]
  107. KobayashiT. NagasakaS. SenouraT. ItaiR.N. NakanishiH. NishizawaN.K. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation.Nat. Commun.201341279210.1038/ncomms379224253678
    [Google Scholar]
  108. PaulS. GayenD. DattaS.K. DattaK. Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots.J. Exp. Bot.201667195811582410.1093/jxb/erw34627729476
    [Google Scholar]
  109. EndoA. SaikaH. TakemuraM. MisawaN. TokiS. A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing.Rice (N. Y.)20191218110.1186/s12284‑019‑0345‑331713832
    [Google Scholar]
  110. YangX. ChenL. HeJ. YuW. Knocking out of carotenoid catabolic genes in rice fails to boost carotenoid accumulation, but reveals a mutation in strigolactone biosynthesis.Plant Cell Rep.201736101533154510.1007/s00299‑017‑2172‑628676963
    [Google Scholar]
  111. JonesH.D. Regulatory uncertainty over genome editing.Nat. Plants2015111401110.1038/nplants.2014.1127246057
    [Google Scholar]
  112. PanC. YeL. QinL. LiuX. HeY. WangJ. ChenL. LuG. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations.Sci. Rep.201662476510.1038/srep2476527097775
    [Google Scholar]
  113. Digital Herbarium of Crop Plants.Bangabandhu Sheik Mujibur Agricultural Universityhttp://dhcrop.bsmrau.net/varieties-released/varieties-released-by-bina/
    [Google Scholar]
  114. Al NoorM.M. QuadirQ.F. NaherJ. JewelZ.A. RashidH.O. ChakrobartyT. RaziaS. NathU.K. Inducing Variability in Rice for Enriched Iron and Zinc Content through in vitro Culture.Plant Tissue Cult. Biotechnol.201929216117410.3329/ptcb.v29i2.44505
    [Google Scholar]
  115. JahanG.S. HassanL. BegumS.N. IslamS.N. Identification of iron rich rice genotypes in Bangladesh using chemical analysis.J. Bangladesh Agril. Univ.2013111737810.3329/jbau.v11i1.18216
    [Google Scholar]
  116. HotzC. McClaffertyB. From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status.Food and Nutrition Bulletin2007282_supl2S271S27910.1177/15648265070282S206
    [Google Scholar]
  117. Cereal biofortification: Strategies, challenges and benefits.UPSpace Institutional Repository.https://repository.up.ac.za/handle/2263/19975
    [Google Scholar]
  118. BlancquaertD. De SteurH. GellynckX. Van Der StraetenD. Present and future of folate biofortification of crop plants.J. Exp. Bot.201465489590610.1093/jxb/ert48324574483
    [Google Scholar]
  119. LeeH. KrimskyS. The arrested development of golden rice: The scientific and social challenges of a transgenic biofortified crop.Int. J. Soc. Sci. Stud.201645110.11114/ijsss.v4i11.1941
    [Google Scholar]
  120. MoghissiA.A. PeiS. LiuY. Golden rice: scientific, regulatory and public information processes of a genetically modified organism.Crit. Rev. Biotechnol.201636353554125603722
    [Google Scholar]
  121. TribuneD. Bangladesh Close to Releasing Golden Rice.https://www.dhakatribune.com/bangladesh/agriculture/2019/10/28/bangladesh-close-to-releasing-golden-rice
    [Google Scholar]
  122. GRAINStop Golden Rice in Bangladesh!https://www.grain.org/en/article/6354-stop-golden-rice-in-bangladesh
    [Google Scholar]
  123. Food and Agriculture OrganizationNutrition-Sensitive Agriculture.http://www.fao.org/3/a-as601e.pdf
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999201202114714
Loading
/content/journals/cnt/10.2174/2665978601999201202114714
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Biofortification; genome editing; iron; micronutrient; rice; vitamin-a; zinc
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test