Skip to content
2000
image of Effect of Azadirachta indica Leaf Extract on the Toxicity Induced by Ethyl Methanesulphonate (EMS) in the Third Instar Larvae of Transgenic Drosophila melanogaster (hsp70-lacZ) Bg9

Abstract

Background

Neem, known for its medicinal benefits, such as anti-inflammatory, antioxidant, and anti-cancer properties, can serve as a complementary or alternative treatment. Research has also indicated that neem extracts lessen the harmful effects of the chemotherapy drug cisplatin on healthy cells while still preserving its ability to target cancer cells effectively. Different parts of the Neem tree, such as leaves, bark, fruit, flowers, oil, and gum, have been traditionally used in herbal medicine for treating various health conditions, including cancer, hypertension, heart disease, and diabetes.

Objective

The effect of neem extract was studied on the Ethyl methanesulphonate (EMS) (an anti-cancerous drug)-induced toxicity in the third instar larvae of transgenic () .

Methods

The third instar larvae were exposed to 25 µM of EMS alone and along with 4×10-3g/ml, 8×10-3g/ml, 12×10-3g/ml, and 16×10-3g/ml of neem extract (NE) mixed in diet for 24 hrs.

Results

A significant increase in toxicity was observed in the larvae exposed to 25 µM of EMS. A dose-dependent significant decrease in the toxic effects was observed in the larvae exposed to various doses of neem extract. The GCMS analysis of the neem extract showed the presence of Phytol and α-tocopherol as major compounds.

Conclusion

The reduction in the toxicity induced by EMS is mainly attributed to phytol and α-tocopherol.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/0126659786331452241101053153
2024-12-03
2024-12-28
Loading full text...

Full text loading...

References

  1. Islas J.F. Acosta E. G-Buentello Z. Delgado-Gallegos J.L. Moreno-Treviño M.G. Escalante B. Moreno-Cuevas J.E. An overview of Neem (Azadirachta indica) and its potential impact on health. J. Funct. Foods 2020 74 104171 10.1016/j.jff.2020.104171
    [Google Scholar]
  2. Dash S.P. Dixit S. Sahoo S. Phytochemical and biochemical characterizations from leaf extracts from Azadirachta Indica: An important medicinal plant. Biochem. Anal. Biochem. 2017 6 323 2161 1009
    [Google Scholar]
  3. Chattopadhyay R.R. Possible mechanism of antihyperglycemic effect of Azadirachta indica leaf extract: Part V. J. Ethnopharmacol. 1999 67 3 373 376 10.1016/S0378‑8741(99)00094‑X 10617075
    [Google Scholar]
  4. Salehzadeh A. Akhkha A. Cushley W. Adams R.L.P. Kusel J.R. Strang R.H.C. The antimitotic effect of the neem terpenoid azadirachtin on cultured insect cells. Insect Biochem. Mol. Biol. 2003 33 7 681 689 10.1016/S0965‑1748(03)00057‑2 12826095
    [Google Scholar]
  5. Narkhede A.N. Jagtap S.D. Kasote D.M. Kulkarni O.P. Harsulkar A.M. Comparative immunomodulation potential of Tinospora cordifolia (Willd.) Miers ex Hook. F., Tinospora sinensis (Lour.) Merrill and Tinospora cordifolia growing on Azadirachta indica A. Juss. Indian J. Exp. Biol. 2014 52 8 808 813
    [Google Scholar]
  6. Hwang S.J. Kim Y.W. Park Y. Lee H.J. Kim K.W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 2014 63 1 81 90 10.1007/s00011‑013‑0674‑4 24127072
    [Google Scholar]
  7. Schumacher M. Cerella C. Reuter S. Dicato M. Diederich M. Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway. Genes Nutr. 2011 6 2 149 160 10.1007/s12263‑010‑0194‑6 21484152
    [Google Scholar]
  8. Niture N.T. Ansari A.A. Naik S.R. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J. Exp. Biol. 2014 52 7 720 727 25059040
    [Google Scholar]
  9. Bharat P. Sagar R. Sulav R. Ankit P. Investigations of antioxidant and antibacterial activity of leaf extracts of Azadirachta indica. Afr. J. Biotechnol. 2015 14 46 3159 3163 10.5897/AJB2015.14811
    [Google Scholar]
  10. Brahmachari G. Neem--an omnipotent plant: a retrospection. ChemBioChem 2004 5 4 408 421 10.1002/cbic.200300749 15185362
    [Google Scholar]
  11. Paul R. Prasad M. Sah N.K. Anticancer biology of Azadirachta indica L (neem): A mini review. Cancer Biol. Ther. 2011 12 6 467 476 10.4161/cbt.12.6.16850 21743298
    [Google Scholar]
  12. Yadav D.K. Bharitkar Y.P. Chatterjee K. Ghosh M. Mondal N.B. Swarnaka S. Importance of Neem Leaf: An insight into its role in combating diseases. Indian J. Exp. Biol. 2016 54 11 708 718 30179391
    [Google Scholar]
  13. Gocke E. Bürgin H. Müller L. Pfister T. Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate. Toxicol. Lett. 2009 190 3 254 265 10.1016/j.toxlet.2009.03.016 19857796
    [Google Scholar]
  14. Mukhopadhyay I. Chowdhuri D.K. Bajpayee M. Dhawan A. Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline Comet assay. Mutagenesis 2004 19 2 85 90 10.1093/mutage/geh007 14981154
    [Google Scholar]
  15. Festing M.F.W. Baumans V. Combes R.D. Haider M. Hendriksen C.F.M. Howard B.R. Lovell D.P. Moore G.J. Overend P. Wilson M.S. Reducing the use of laboratory animals in biomedical research: problems and possible solutions. Altern. Lab. Anim. 1998 26 3 283 301 10.1177/026119299802600305 26042346
    [Google Scholar]
  16. Benford D.J. Hanley A.B. Bottrill K. Oehlschlager S. Balls M. Branca F. Castegnaro J.J. Descotes J. Hemminiki K. Lindsay D. Schilter B. Biomarkers as Predictive Tools in Toxicity Testing. Altern. Lab. Anim. 2000 28 1 119 131 10.1177/026119290002800104
    [Google Scholar]
  17. Rand M.D. Dao J.C. Clason T.A. Methylmercury disruption of embryonic neural development in Drosophila. Neurotoxicology 2009 30 5 794 802 10.1016/j.neuro.2009.04.006 19409416
    [Google Scholar]
  18. Hirsch H.V.B. Mercer J. Sambaziotis H. Huber M. Stark D.T. Torno-Morley T. Hollocher K. Ghiradella H. Ruden D.M. Behavioral effects of chronic exposure to low levels of lead in Drosophila melanogaster. Neurotoxicology 2003 24 3 435 442 10.1016/S0161‑813X(03)00021‑4 12782108
    [Google Scholar]
  19. Muñiz Ortiz J.G. Opoka R. Kane D. Cartwright I.L. Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase. Toxicol. Sci. 2009 107 2 416 426 10.1093/toxsci/kfn192 18779381
    [Google Scholar]
  20. Bonilla E. Contreras R. Medina-Leendertz S. Mora M. Villalobos V. Bravo Y. Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster. Toxicology 2012 294 1 50 53 10.1016/j.tox.2012.01.016 22330257
    [Google Scholar]
  21. Ranganathan S. Davis D.G. Hood R.D. Developmental toxicity of ethanol in Drosophila melanogaster. Teratology 1987 36 1 45 49 10.1002/tera.1420360107 3118495
    [Google Scholar]
  22. Posgai R. Cipolla-McCulloch C.B. Murphy K.R. Hussain S.M. Rowe J.J. Nielsen M.G. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: Size, coatings and antioxidants matter. Chemosphere 2011 85 1 34 42 10.1016/j.chemosphere.2011.06.040 21733543
    [Google Scholar]
  23. Gupta S. Knowlton A.A. HSP60, Bax, apoptosis and the heart. J. Cell. Mol. Med. 2005 9 1 51 58 10.1111/j.1582‑4934.2005.tb00336.x 15784164
    [Google Scholar]
  24. Siddique Y.H. Akhtar S. Rahul Ansari M.S. Shakya B. Jyoti S. Naz F. Protective effect of Luteolin against methyl methanesulfonate-induced toxicity. Toxin Rev. 2021 40 1 65 76 10.1080/15569543.2018.1564142
    [Google Scholar]
  25. Ali Khan M. Jyoti S. Rahul Naz F. Ara G. Afzal M. Siddique Y.H. Effect of lemon grass extract against methyl methanesulfonate-induced toxicity. Toxin Rev. 2021 40 4 1172 1186 10.1080/15569543.2019.1657152
    [Google Scholar]
  26. Fatima A. Khanam S. Rahul R. Jyoti S. Naz F. Ali F. Siddique Y.H. Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease. Front. Biosci. (Elite Ed.) 2017 9 1 44 53 27814588
    [Google Scholar]
  27. Khanam S. Fatima A. Jyoti R.S. Ali F. Naz F. Shakya B. Siddique Y.H. Protective effect of capsaicin against methyl methanesulphonate induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. Chin. J. Nat. Med. 2017 15 4 271 280 10.1016/S1875‑5364(17)30044‑4 28527512
    [Google Scholar]
  28. Siddique Y.H. Ara G. Afzal M. Effect of ethinylestradiol on hsp70 expression in transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Pharmacologyonline 2011 1 398 405
    [Google Scholar]
  29. Siddique Y.H. Ara G. Afzal M. Effect of the steroid K-canrenoate on hsp70 expression and tissue damage in transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. J. Insect Sci. 2012 12 1 92 23427921
    [Google Scholar]
  30. Misra J.R. Horner M.A. Lam G. Thummel C.S. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev. 2011 25 17 1796 1806 10.1101/gad.17280911 21896655
    [Google Scholar]
  31. Glover J.R. Tkach J.M. Crowbars and ratchets: Hsp100 chaperones as tools in reversing protein aggregation. Biochem. Cell Biol. 2001 79 5 557 568 10.1139/o01‑148 11716297
    [Google Scholar]
  32. Houry W. Chaperone-assisted protein folding in the cell cytoplasm. Curr. Protein Pept. Sci. 2001 2 3 227 244 10.2174/1389203013381134 12369934
    [Google Scholar]
  33. Pratt W.B. Toft D.O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 2003 228 2 111 133 10.1177/153537020322800201 12563018
    [Google Scholar]
  34. Nazir A. Mukhopadhyay I. Saxena D.K. Chowdhuri D.K. Chlorpyrifos-induced hsp70 expression and effect on reproductive performance in transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Arch. Environ. Contam. Toxicol. 2001 41 4 443 449 10.1007/s002440010270 11598781
    [Google Scholar]
  35. Nazir A. Mukhopadhyay I. Saxena D.K. Siddiqui M.S. Chowdhuri D.K. Evaluation of toxic potential of captan: Induction of hsp70 and tissue damage in transgenic drosophila melanogaster (hsp70‐lacZ) Bg 9. J. Biochem. Mol. Toxicol. 2003 17 2 98 107 10.1002/jbt.10066 12717743
    [Google Scholar]
  36. Lis J.T. Simon J.A. Sutton C.A. New heat shock puffs and β=galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell 1983 35 2 403 410 10.1016/0092‑8674(83)90173‑3 6418386
    [Google Scholar]
  37. Kar Chowdhuri D. Saxena D.K. Viswanathan P.N. Effect of Hexachlorocyclohexane (HCH), Its Isomers, and Metabolites on Hsp70 Expression in TransgenicDrosophila melanogaster. Pestic. Biochem. Physiol. 1999 63 1 15 25 10.1006/pest.1998.2390
    [Google Scholar]
  38. Jollow D.J. Mitchell J.R. Zampaglione N. Gillette J.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974 11 3 151 169 10.1159/000136485 4831804
    [Google Scholar]
  39. Habig W.H. Pabst M.J. Fleischner G. Gatmaitan Z. Arias I.M. Jakoby W.B. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc. Natl. Acad. Sci. USA 1974 71 10 3879 3882 10.1073/pnas.71.10.3879 4139704
    [Google Scholar]
  40. Ohkawa H. Ohishi N. Yagi K. Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J. Lipid Res. 1978 19 8 1053 1057 10.1016/S0022‑2275(20)40690‑X 103988
    [Google Scholar]
  41. Hawkins C.L. Morgan P.E. Davies M.J. Quantification of protein modification by oxidants. Free Radic. Biol. Med. 2009 46 8 965 988 10.1016/j.freeradbiomed.2009.01.007 19439229
    [Google Scholar]
  42. Katerji M. Duerksen-Hughes P.J. DNA damage in cancer development: special implications in viral oncogenesis. Am. J. Cancer Res. 2021 11 8 3956 3979 34522461
    [Google Scholar]
  43. Parry J.M. Comparison of the effects of ultraviolet light and ethylmethanesulphonate upon the frequency of mitotic recombination in yeast. Mol. Gen. Genet. 1969 106 1 66 72 10.1007/BF00332821 5370118
    [Google Scholar]
  44. Morran L.T. Ohdera A.H. Phillips P.C. Purging deleterious mutations under self fertilization: paradoxical recovery in fitness with increasing mutation rate in Caenorhabditis elegans. PLoS One 2010 5 12 e14473 10.1371/journal.pone.0014473 21217820
    [Google Scholar]
  45. Head R.J. Fay M.F. Cosgrove L. Y C Fung K. Rundle-Thiele D. Martin J.H. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma. Cancer Biol. Ther. 2017 18 12 917 926 10.1080/15384047.2017.1385680 29020502
    [Google Scholar]
  46. Owagboriaye F.O. Dedeke G.A. Ashidi J.S. Aladesida A.A. Olooto W.E. Effect of gasoline fumes on reproductive function in male albino rats. Environ. Sci. Pollut. Res. Int. 2018 25 5 4309 4319 10.1007/s11356‑017‑0786‑4 29181751
    [Google Scholar]
  47. Danish M. Fatima A. Khanam S. Jyoti S. Rahul Ali F. Naz F. Siddique Y.H. Evaluation of the toxic potential of calcium carbide in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. Chemosphere 2015 139 469 478 10.1016/j.chemosphere.2015.07.077 26298668
    [Google Scholar]
  48. Mukhtar-Un-Nisar Andrabi S. Tamanna S. Rahul Naz F. Siddique Y.H. Toxic potential of sodium hypochlorite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Toxin Rev. 2022 41 3 891 903 10.1080/15569543.2021.1955711
    [Google Scholar]
  49. Guven K. Power R.S. Avramides S. Allender R. de Pomerai D.I. The toxicity of dithiocarbamate fungicides to soil nematodes, assessed using a stress-inducible transgenic strain ofCaenorhabditis elegans. J. Biochem. Mol. Toxicol. 1999 13 6 324 333 10.1002/(SICI)1099‑0461(1999)13:6<324::AID‑JBT6>3.0.CO;2‑Q 10487420
    [Google Scholar]
  50. Stringham E.G. Candido E.P.M. Transgenic hsp 16‐Lacz strains of the soil nematode caenorhabditis elegans as biological monitors of environmental stress. Environmental Toxicology and Chemistry: An International Journal 1994 13 8 1211 1220
    [Google Scholar]
  51. Gary R.K. Kindell S.M. Quantitative assay of senescence-associated β-galactosidase activity in mammalian cell extracts. Anal. Biochem. 2005 343 2 329 334 10.1016/j.ab.2005.06.003 16004951
    [Google Scholar]
  52. Forman H.J. Zhang H. Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 2009 30 1-2 1 12 10.1016/j.mam.2008.08.006 18796312
    [Google Scholar]
  53. Kumar S. Trivedi P.K. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants. Front. Plant Sci. 2018 9 751 10.3389/fpls.2018.00751 29930563
    [Google Scholar]
  54. Cheung T. Nigam P. Owusu-Apenten R. Antioxidant activity of curcumin and neem (Azadirachta indica) powders: Combination studies with ALA using MCF-7 breast cancer cells. Journal of Applied Life Sciences International 2016 4 3 1 12 10.9734/JALSI/2016/22273
    [Google Scholar]
  55. Pandey G. Verma K.K. Singh M. Evaluation of phytochemical, antibacterial and free radical scavenging properties of Azadirachta indica (neem) leaves. Int. J. Pharm. Pharm. Sci. 2014 6 2 444 447
    [Google Scholar]
  56. Chun H.S. Gibson G.E. DeGiorgio L.A. Zhang H. Kidd V.J. Son J.H. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J. Neurochem. 2001 76 4 1010 1021 10.1046/j.1471‑4159.2001.00096.x 11181820
    [Google Scholar]
  57. Tada-Oikawa S. Hiraku Y. Kawanishi M. Kawanishi S. Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis. Life Sci. 2003 73 25 3277 3288 10.1016/j.lfs.2003.06.013 14561532
    [Google Scholar]
  58. Carvour M. Song C. Kaul S. Anantharam V. Kanthasamy A. Kanthasamy A. Chronic low-dose oxidative stress induces caspase-3-dependent PKCdelta proteolytic activation and apoptosis in a cell culture model of dopaminergic neurodegeneration. Ann. N. Y. Acad. Sci. 2008 1139 1 197 205 10.1196/annals.1432.020 18991865
    [Google Scholar]
  59. Slee E.A. Harte M.T. Kluck R.M. Wolf B.B. Casiano C.A. Newmeyer D.D. Wang H.G. Reed J.C. Nicholson D.W. Alnemri E.S. Green D.R. Martin S.J. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 1999 144 2 281 292 10.1083/jcb.144.2.281 9922454
    [Google Scholar]
  60. Zuo Y. Xiang B. Yang J. Sun X. Wang Y. Cang H. Yi J. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1. Cell Res. 2009 19 4 449 457 10.1038/cr.2009.19 19238172
    [Google Scholar]
  61. Munné-Bosch S. The role of -tocopherol in plant stress tolerance. J. Plant Physiol. 2005 162 7 743 748 10.1016/j.jplph.2005.04.022 16008098
    [Google Scholar]
  62. Wijtmans M. Pratt D.A. Valgimigli L. DiLabio G.A. Pedulli G.F. Porter N.A. 6-Amino-3-pyridinols: towards diffusion-controlled chain-breaking antioxidants. Angew. Chem. Int. Ed. 2003 42 36 4370 4373 10.1002/anie.200351881 14502714
    [Google Scholar]
  63. Nagano M. Batalini C. Phytochemical screening, antioxidant activity and potential toxicity of Azadirachta indica A. Juss (neem) leaves. Colombian J. Chem. Pharmaceut. Sci. 2021 50 1 29 47
    [Google Scholar]
  64. Agrawal S. Bablani Popli D. Sircar K. Chowdhry A. A review of the anticancer activity of Azadirachta indica (Neem) in oral cancer. J. Oral Biol. Craniofac. Res. 2020 b 10 2 206 209 10.1016/j.jobcr.2020.04.007 32489822
    [Google Scholar]
  65. Biswas K. Biological activities and medicinal properties of neem (Azadirachta indica). Curr. Sci. 2002 82 11 1336 1345
    [Google Scholar]
  66. Alabi O.A. Anokwuru C.P. Ezekiel C.N. Ajibaye O. Nwadike U.J. Fasasi O. Abu M. Anti-mutagenic and Anti-genotoxic Effect of Ethanolic Extract of Neem on Dietary-aflatoxin Induced Genotoxicity in Mice. J. Biol. Sci. (Faisalabad, Pak.) 2011 11 4 307 313 10.3923/jbs.2011.307.313
    [Google Scholar]
  67. Govindachari T.R. Chemical and biological investigations on Azadirachta indica (the neem tree). Curr. Sci. 1992 63 3 117 122
    [Google Scholar]
  68. Schaaf O. Jarvis A.P. van der Esch S.A. Giagnacovo G. Oldham N.J. Rapid and sensitive analysis of azadirachtin and related triterpenoids from Neem (Azadirachta indica) by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2000 886 1-2 89 97 10.1016/S0021‑9673(00)00492‑1 10950279
    [Google Scholar]
  69. Upadhyay S.N. Dhawan S. Garg S. Talwar G.P. Immunomodulatory effects of neem (Azadirachta indica) oil. Int. J. Immunopharmacol. 1992 14 7 1187 1193 10.1016/0192‑0561(92)90054‑O 1452404
    [Google Scholar]
  70. Islam M.T. Ali E.S. Uddin S.J. Shaw S. Islam M.A. Ahmed M.I. Chandra Shill M. Karmakar U.K. Yarla N.S. Khan I.N. Billah M.M. Pieczynska M.D. Zengin G. Malainer C. Nicoletti F. Gulei D. Berindan-Neagoe I. Apostolov A. Banach M. Yeung A.W.K. El-Demerdash A. Xiao J. Dey P. Yele S. Jóźwik A. Strzałkowska N. Marchewka J. Rengasamy K.R.R. Horbańczuk J. Kamal M.A. Mubarak M.S. Mishra S.K. Shilpi J.A. Atanasov A.G. Phytol: A review of biomedical activities. Food Chem. Toxicol. 2018 121 82 94 10.1016/j.fct.2018.08.032 30130593
    [Google Scholar]
  71. Guimarães A.G. Oliveira G.F. Melo M.S. Cavalcanti S.C.H. Antoniolli A.R. Bonjardim L.R. Silva F.A. Santos J.P.A. Rocha R.F. Moreira J.C.F. Araújo A.A.S. Gelain D.P. Quintans-Júnior L.J. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin. Pharmacol. Toxicol. 2010 107 6 949 957 10.1111/j.1742‑7843.2010.00609.x 20849525
    [Google Scholar]
  72. Lima R.K. Cardoso M.G. Família Lamiaceae: Importantes Óleos Essenciais com Ação Biológica e Antioxidante. Revista Fitos 2007 3 3 14 24 10.32712/2446‑4775.2007.78
    [Google Scholar]
  73. Perumal S.S. Shanthi P. Sachdanandam P. Combined efficacy of tamoxifen and coenzyme Q10 on the status of lipid peroxidation and antioxidants in DMBA induced breast cancer. Mol. Cell. Biochem. 2005 273 1-2 151 160 10.1007/s11010‑005‑0325‑3 16013450
    [Google Scholar]
  74. Massacci A. Nabiev S.M. Pietrosanti L. Nematov S.K. Chernikova T.N. Thor K. Leipner J. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol. Biochem. 2008 46 2 189 195 10.1016/j.plaphy.2007.10.006 18053735
    [Google Scholar]
  75. Lopez-Huertas E. Charlton W.L. Johnson B. Graham I.A. Baker A. Stress induces peroxisome biogenesis genes. EMBO J. 2000 19 24 6770 6777 10.1093/emboj/19.24.6770 11118212
    [Google Scholar]
  76. Nordberg J. Arnér E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1 1This review is based on the licentiate thesis “Thioredoxin reductase—interactions with the redox active compounds 1-chloro-2,4-dinitrobenzene and lipoic acid” by Jonas Nordberg, 2001, Karolinska Institute, Stockholm, ISBN 91-631-1064-4. Free Radic. Biol. Med. 2001 31 11 1287 1312 10.1016/S0891‑5849(01)00724‑9 11728801
    [Google Scholar]
  77. Rocco L. Mottola F. Santonastaso M. Saputo V. Cusano E. Costagliola D. Suero T. Pacifico S. Stingo V. Anti-genotoxic ability of α-tocopherol and Anthocyanin to counteract fish DNA damage induced by musk xylene. Ecotoxicology 2015 24 9 2026 2035 10.1007/s10646‑015‑1538‑1 26407710
    [Google Scholar]
  78. Packer L. Weber S.U. Rimbach G. Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J. Nutr. 2001 131 2 369S 373S 10.1093/jn/131.2.369S 11160563
    [Google Scholar]
  79. Azzi A. Molecular mechanism of α-tocopherol action. Free Radic. Biol. Med. 2007 43 1 16 21 10.1016/j.freeradbiomed.2007.03.013 17561089
    [Google Scholar]
  80. Azzi A. Breyer I. Feher M. Pastori M. Ricciarelli R. Spycher S. Staffieri M. Stocker A. Zimmer S. Zingg J.M. Specific cellular responses to α-tocopherol. J. Nutr. 2000 130 7 1649 1652 10.1093/jn/130.7.1649 10867030
    [Google Scholar]
  81. Ayed-Boussema I. Abassi H. Bouaziz C. Hlima W.B. Ayed Y. Bacha H. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. Environ. Toxicol. 2013 28 6 299 306 10.1002/tox.20720 21656641
    [Google Scholar]
  82. Kiani A.K. Pheby D. Henehan G. Brown R. Sieving P. Sykora P. Marks R. Falsini B. Capodicasa N. Miertus S. Lorusso L. Dondossola D. Tartaglia G.M. Ergoren M.C. Dundar M. Michelini S. Malacarne D. Bonetti G. Dautaj A. Donato K. Medori M.C. Beccari T. Samaja M. Connelly S.T. Martin D. Morresi A. Bacu A. Herbst K.L. Kapustin M. Stuppia L. Lumer L. Farronato G. Bertelli M. INTERNATIONAL BIOETHICS STUDY GROUP Ethical considerations regarding animal experimentation. J. Prev. Med. Hyg. 2022 63 2 Suppl. 3 E255 E266 36479489
    [Google Scholar]
  83. Tyagi N. Kumar S. Gangenahalli G. Verma Y.K. Computational methods (in silico) and stem cells as alternatives to animals in research. Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences. Academic Press 2021 389 42 10.1016/B978‑0‑12‑821748‑1.00003‑8
    [Google Scholar]
  84. Kaul R. Swaminathan S. Kumar V. Need for alternatives to animals in experimentation: An Indian perspective. Indian J. Med. Res. 2019 149 5 584 592 10.4103/ijmr.IJMR_2047_17 31417025
    [Google Scholar]
/content/journals/cnt/10.2174/0126659786331452241101053153
Loading
/content/journals/cnt/10.2174/0126659786331452241101053153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test