Skip to content
2000
image of Harnessing Nature's Arsenal: Phytoconstituents Targeting Mediators Involved in Pathogenesis of Asthma

Abstract

Asthma is a persistent respiratory disorder characterized by inflammation and constriction of the air passages, resulting in recurrent symptoms, including difficulty breathing, wheezing, coughing, and a sensation of tightness in the chest. It requires ongoing management through medications and lifestyle adjustments. The use of natural bioactive compounds in asthma management is on the rise. Researchers are increasingly exploring the potential of compounds derived from plants and herbs, such as quercetin, resveratrol, and Boswellia extracts, for their anti-inflammatory and bronchodilator properties. Compounds like quercetin and resveratrol are known to reduce inflammation by inhibiting enzymes like PDE4 and LOX-5, which play key roles in asthma-related inflammation. They can additionally regulate immune reactions by inhibiting the secretion of pro-inflammatory cytokines like “IL-6, IL-5, and IL-4”. Additionally, some compounds, like those found in Boswellia extracts, inhibit NF-κB activation, which further reduces the production of inflammatory mediators. These natural remedies offer a promising avenue for complementing traditional asthma treatments, potentially providing relief from symptoms and reducing the reliance on synthetic drugs. The aim of this review is to offer an outline of well-researched plant-derived phytoconstituents that influence cellular activity to control inflammatory mediators associated with asthma. Nevertheless, additional high-quality research is essential to validate the clinical effectiveness of plant-based treatments for asthma.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/0126659786311384241018091201
2024-12-03
2024-12-29
Loading full text...

Full text loading...

References

  1. Abdala-Valencia H. Berdnikovs S. Cook-Mills J. Vitamin E isoforms as modulators of lung inflammation. Nutrients 2013 5 11 4347 4363 10.3390/nu5114347 24184873
    [Google Scholar]
  2. Abdurrahman M.I. Chaki S. Saini G. Stubble burning: Effects on health & environment, regulations and management practices. Environ. Adv. 2020 2 100011 10.1016/j.envadv.2020.100011
    [Google Scholar]
  3. Accomazzo M.R. Rovati G.E. Viganò T. Hernandez A. Bonazzi A. Bolla M. Fumagalli F. Viappiani S. Galbiati E. Ravasi S. Albertoni C. Di Luca M. Caputi A. Zannini P. Chiesa G. Villa A.M. Doglia S.M. Folco G. Nicosia S. Leukotriene D4-induced activation of smooth-muscle cells from human bronchi is partly Ca2+-independent. Am. J. Respir. Crit. Care Med. 2001 163 1 266 272 10.1164/ajrccm.163.1.9912019 11208655
    [Google Scholar]
  4. Aghasafari P. George U. Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm. Res. 2019 68 1 59 74 10.1007/s00011‑018‑1191‑2 30306206
    [Google Scholar]
  5. Ahn K.S. Noh E.J. Zhao H.L. Jung S.H. Kang S.S. Kim Y.S. Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factor-κB activation in RAW 264.7 cells. Life Sci. 2005 76 20 2315 2328 10.1016/j.lfs.2004.10.042 15748625
    [Google Scholar]
  6. Albuquerque U.P. Hanazaki N. As pesquisas etnodirigidas na descoberta de novos fármacos de interesse médico e farmacêutico: Fragilidades e pespectivas. Rev. Bras. Farmacogn. 2006 16 678 689 10.1590/S0102‑695X2006000500015
    [Google Scholar]
  7. Alonso P.T. Schapochnik A. Klein S. Brochetti R. Damazo A.S. de Souza Setubal Destro M.F. Lino-dos-Santos-Franco A. Transcutaneous systemic photobiomodulation reduced lung inflammation in experimental model of asthma by altering the mast cell degranulation and interleukin 10 level. Lasers Med. Sci. 2022 37 2 1101 1109 10.1007/s10103‑021‑03359‑1 34146193
    [Google Scholar]
  8. Al-Yasiry A.R.M. Kiczorowska B. Frankincense – therapeutic properties. Postepy Hig. Med. Dosw. 2016 70 380 391 10.5604/17322693.1200553 27117114
    [Google Scholar]
  9. Amaral-Machado L. Oliveira W.N. Moreira-Oliveira S.S. Pereira D.T. Alencar É.N. Tsapis N. Egito E.S.T. Use of natural products in asthma treatment. Evid. Based Complement. Alternat. Med. 2020 2020 1 1021258 10.1155/2020/1021258 32104188
    [Google Scholar]
  10. Ammon H.P.T. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine 2010 17 11 862 867 10.1016/j.phymed.2010.03.003 20696559
    [Google Scholar]
  11. Anticevich S.Z. Hughes J.M. Black J.L. Armour C.L. Induction of hyperresponsiveness in human airway tiss by neutrophils — mechanism of action. Clin. Exp. Allergy 1996 26 5 549 556 10.1111/j.1365‑2222.1996.tb00575.x 8735867
    [Google Scholar]
  12. Zia N. Pathological pathway and protective mechanisms of phytobioactives used in diabetic retinopathy: A review Preprints 2023 10.22541/au.168084544.45550001/v1
    [Google Scholar]
  13. Bae Y. Lee S. Kim S.H. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol. Appl. Pharmacol. 2011 254 1 56 64 10.1016/j.taap.2011.04.008 21515303
    [Google Scholar]
  14. Baldacci S. Maio S. Cerrai S. Sarno G. Baïz N. Simoni M. Annesi-Maesano I. Viegi G. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respir. Med. 2015 109 9 1089 1104 10.1016/j.rmed.2015.05.017 26073963
    [Google Scholar]
  15. Bergantini L. Cameli P. d’Alessandro M. Vietri L. Perruzza M. Pieroni M. Lanzarone N. Refini R.M. Fossi A. Bargagli E. Regulatory T cells in severe persistent asthma in the era of monoclonal antibodies target therapies. Inflammation 2020 43 2 393 400 10.1007/s10753‑019‑01157‑0 31853715
    [Google Scholar]
  16. Bradding P. Redington A.E. Djukanovic R. Conrad D.J. Holgate S.T. 15-lipoxygenase immunoreactivity in normal and in asthmatic airways. Am. J. Respir. Crit. Care Med. 1995 151 4 1201 1204 10.1164/ajrccm/151.4.1201 7697253
    [Google Scholar]
  17. Brinkmann V. Zychlinsky A. Beneficial suicide: Why neutrophils die to make NETs. Nat. Rev. Microbiol. 2007 5 8 577 582 10.1038/nrmicro1710 17632569
    [Google Scholar]
  18. Brüll F. De Smet E. Mensink R.P. Vreugdenhil A. Kerksiek A. Lütjohann D. Wesseling G. Plat J. Dietary plant stanol ester consumption improves immune function in asthma patients: Results of a randomized, double-blind clinical trial. Am. J. Clin. Nutr. 2016 103 2 444 453 10.3945/ajcn.115.117531 26762374
    [Google Scholar]
  19. Bunte K. Beikler T. Th17 cells and the IL-23/IL-17 Axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int. J. Mol. Sci. 2019 20 14 3394 10.3390/ijms20143394 31295952
    [Google Scholar]
  20. Carsono N. Tumilaar S.G. Kurnia D. Latipudin D. Satari M.H. A review of bioactive compounds and antioxidant activity properties of piper species. Molecules 2022 27 19 6774 10.3390/molecules27196774 36235309
    [Google Scholar]
  21. Tereza Cerqueira-Lima A. Maria Alcantara-Neves N. Carlos Pontes de Carvalho L. Santos Costa R. Maria Barbosa-Filho J. Piuvezam M. Russo M. Barboza R. de Jesus Oliveira E. Marinho A. Alexandrina Figueiredo C. Effects of cissampelos sympodialis eichl. and its alkaloid, warifteine, in an experimental model of respiratory allergy to Blomia tropicalis. Curr. Drug Targets 2010 11 11 1458 1467 10.2174/1389450111009011458 20583974
    [Google Scholar]
  22. Chen C.H. Hwang T.L. Chen L.C. Chang T.H. Wei C.S. Chen J.J. Isoflavones and anti-inflammatory constituents from the fruits of psoralea corylifolia. Phytochemistry 2017 143 186 193 10.1016/j.phytochem.2017.08.004 28825980
    [Google Scholar]
  23. Chen T. Xiao L. Zhu L. Ma S. Yan T. Ji H. Anti-asthmatic effects of ginsenoside rb1 in a mouse model of allergic asthma through relegating Th1/Th2. Inflammation 2015 38 5 1814 1822 10.1007/s10753‑015‑0159‑4 25832478
    [Google Scholar]
  24. Chen Y. Zhang Y. Xu M. Luan J. Piao S. Chi S. Wang H. Catalpol alleviates ovalbumin-induced asthma in mice: Reduced eosinophil infiltration in the lung. Int. Immunopharmacol. 2017 43 140 146 10.1016/j.intimp.2016.12.011 27992791
    [Google Scholar]
  25. Chong L. Zhang W. Nie Y. Yu G. Liu L. Lin L. Wen S. Zhu L. Li C. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway. Inflammation 2014 37 5 1476 1485 10.1007/s10753‑014‑9873‑6 24706026
    [Google Scholar]
  26. Chu H.W. Balzar S. Westcott J.Y. Trudeau J.B. Sun Y. Conrad D.J. Wenzel S.E. Expression and activation of 15‐lipoxygenase pathway in severe asthma: Relationship to eosinophilic phenotype and collagen deposition. Clin. Exp. Allergy 2002 32 11 1558 1565 10.1046/j.1365‑2222.2002.01477.x 12569975
    [Google Scholar]
  27. Chu H.W. Trudeau J.B. Balzar S. Wenzel S.E. Peripheral blood and airway tissue expression of transforming growth factor β by neutrophils in asthmatic subjects and normal control subjects. J. Allergy Clin. Immunol. 2000 106 6 1115 1123 10.1067/mai.2000.110556 11112895
    [Google Scholar]
  28. Chung M.J. Pandey R.P. Choi J.W. Sohng J.K. Choi D.J. Park Y.I. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. Int. Immunopharmacol. 2015 25 2 302 310 10.1016/j.intimp.2015.01.031 25698556
    [Google Scholar]
  29. Cook-Mills J.M. McCary C.A. Isoforms of vitamin E differentially regulate inflammation. Endocr. Metab. Immune Disord. Drug Targets 2010 10 4 348 366 10.2174/1871530311006040348 20923401
    [Google Scholar]
  30. Costa R.S. Brasil T.C. Santos C.J. Santos D.B. Barreto M.L. Neves N.M.A. Figueiredo C.A.V. Produtos naturais utilizados para tratamento de asma em crianças residentes na cidade de Salvador-BA, Brasil. Rev. Bras. Farmacogn. 2010 20 4 594 599 10.1590/S0102‑695X2010000400020
    [Google Scholar]
  31. De Cássia da Silveira e Sá R. Andrade L. De Sousa D. A review on anti-inflammatory activity of monoterpenes. Molecules 2013 18 1 1227 1254 10.3390/molecules18011227 23334570
    [Google Scholar]
  32. Denburg J.A. The origins of basophils and eosinophils in allergic inflammation. J. Allergy Clin. Immunol. 1998 102 5 S74 S76 10.1016/S0091‑6749(98)70034‑X 9819312
    [Google Scholar]
  33. Dunican E.M. Fahy J.V. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann. Am. Thorac. Soc. 2015 12 Suppl 2 S144 S149 10.1513/AnnalsATS.201506‑377AW 26595730
    [Google Scholar]
  34. Dworski R. Simon H.U. Hoskins A. Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J. Allergy Clin. Immunol. 2011 127 5 1260 1266 10.1016/j.jaci.2010.12.1103 21315435
    [Google Scholar]
  35. Edwards M.R. Bartlett N.W. Clarke D. Birrell M. Belvisi M. Johnston S.L. Targeting the NF-κB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol. Ther. 2009 121 1 1 13 10.1016/j.pharmthera.2008.09.003 18950657
    [Google Scholar]
  36. Fareed S. Siddiqui H.H. Haque S.E. Khalid M. Akhtar J. Psychoimmunomodulatory effects of onosma bracteatum wall.(gaozaban) on stress model in sprague dawley rats. J. Clin. Diagn. Res. 2012 6 7 1356 1360
    [Google Scholar]
  37. Fuchs S. Hsieh L.T. Saarberg W. Erdelmeier C.A.J. Wichelhaus T.A. Schaefer L. Koch E. Fürst R. Haemanthus coccineus extract and its main bioactive component narciclasine display profound anti‐inflammatory activities in vitro and in vivo. J. Cell. Mol. Med. 2015 19 5 1021 1032 10.1111/jcmm.12493 25754537
    [Google Scholar]
  38. Fukuda T. Fukushima Y. Numao T. Ando N. Arima M. Nakajima H. Sagara H. Adachi T. Motojima S. Makino S. Role of interleukin-4 and vascular cell adhesion molecule-1 in selective eosinophil migration into the airways in allergic asthma. Am. J. Respir. Cell Mol. Biol. 1996 14 1 84 94 10.1165/ajrcmb.14.1.8534490 8534490
    [Google Scholar]
  39. Gagliardo R. Chanez P. Mathieu M. Bruno A. Costanzo G. Gougat C. Vachier I. Bousquet J. Bonsignore G. Vignola A.M. Persistent activation of nuclear factor-kappaB signaling pathway in severe uncontrolled asthma. Am. J. Respir. Crit. Care Med. 2003 168 10 1190 1198 10.1164/rccm.200205‑479OC 12893643
    [Google Scholar]
  40. Gelfand E.W. Importance of the leukotriene B4-BLT1 and LTB4-BLT2 pathways in asthma. Semin Immunol. 2017 33 44 51 10.1016/j.smim.2017.08.005
    [Google Scholar]
  41. Grabcanovic-Musija F. Obermayer A. Stoiber W. Krautgartner W.D. Steinbacher P. Winterberg N. Bathke A.C. Klappacher M. Studnicka M. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir. Res. 2015 16 1 59 10.1186/s12931‑015‑0221‑7 25994149
    [Google Scholar]
  42. Greiner J.F.W. Müller J. Zeuner M.T. Hauser S. Seidel T. Klenke C. Grunwald L.M. Schomann T. Widera D. Sudhoff H. Kaltschmidt B. Kaltschmidt C. 1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity. Biochim. Biophys. Acta Mol. Cell Res. 2013 1833 12 2866 2878 10.1016/j.bbamcr.2013.07.001 23872422
    [Google Scholar]
  43. Halwani R. Al-Muhsen S. Al-Jahdali H. Hamid Q. Role of transforming growth factor-β in airway remodeling in asthma. Am. J. Respir. Cell Mol. Biol. 2011 44 2 127 133 10.1165/rcmb.2010‑0027TR 20525803
    [Google Scholar]
  44. Hamidpour R. Hamidpour S. Hamidpour M. Shahlari M. Frankincense ( rǔ xiāng; boswellia species): From the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. J. Tradit. Complement. Med. 2013 3 4 221 226 10.4103/2225‑4110.119723 24716181
    [Google Scholar]
  45. Hammad H. Lambrecht B.N. The basic immunology of asthma. Cell 2021 184 6 1469 1485 10.1016/j.cell.2021.02.016 33711259
    [Google Scholar]
  46. Hansen J. Garreta A. Benincasa M. Fusté M.C. Busquets M. Manresa A. Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl. Microbiol. Biotechnol. 2013 97 11 4737 4747 10.1007/s00253‑013‑4887‑9 23624657
    [Google Scholar]
  47. Hart L.A. Krishnan V.L. Adcock I.M. Barnes P.J. Chung K.F. Activation and localization of transcription factor, nuclear factor-kappaB, in asthma. Am. J. Respir. Crit. Care Med. 1998 158 5 1585 1592 10.1164/ajrccm.158.5.9706116 9817712
    [Google Scholar]
  48. Hirota N. Martin J.G. Mechanisms of airway remodeling. Chest 2013 144 3 1026 1032 10.1378/chest.12‑3073 24008953
    [Google Scholar]
  49. Hoskins A. Roberts J.L. II Milne G. Choi L. Dworski R. Natural‐source d‐α‐tocopheryl acetate inhibits oxidant stress and modulates atopic asthma in humans in vivo. Allergy 2012 67 5 676 682 10.1111/j.1398‑9995.2012.02810.x 22435735
    [Google Scholar]
  50. Hough K.P. Curtiss M.L. Blain T.J. Liu R.M. Trevor J. Deshane J.S. Thannickal V.J. Airway remodeling in asthma. Front. Med. (Lausanne) 2020 7 191 10.3389/fmed.2020.00191 32509793
    [Google Scholar]
  51. Houssen M.E. Ragab A. Mesbah A. El-Samanoudy A.Z. Othman G. Moustafa A.F. Badria F.A. Natural anti-inflammatory products and leukotriene inhibitors as complementary therapy for bronchial asthma. Clin. Biochem. 2010 43 10-11 887 890 10.1016/j.clinbiochem.2010.04.061 20430018
    [Google Scholar]
  52. Hu X. Wang J. Xia Y. Simayi M. Ikramullah S. He Y. Cui S. Li S. Wushouer Q. Resveratrol induces cell cycle arrest and apoptosis in human eosinophils from asthmatic individuals. Mol. Med. Rep. 2016 14 6 5231 5236 10.3892/mmr.2016.5884 27779703
    [Google Scholar]
  53. Jang H.Y. Kwon O.K. Oh S.R. Lee H.K. Ahn K.S. Chin Y.W. Mangosteen xanthones mitigate ovalbumin-induced airway inflammation in a mouse model of asthma. Food Chem. Toxicol. 2012 50 11 4042 4050 10.1016/j.fct.2012.08.037 22943973
    [Google Scholar]
  54. Jeon C.M. Shin I.S. Shin N.R. Hong J.M. Kwon O.K. Kim H.S. Oh S.R. Myung P.K. Ahn K.S. Siegesbeckia glabrescens attenuates allergic airway inflammation in LPS-stimulated RAW 264.7 cells and OVA induced asthma murine model. Int. Immunopharmacol. 2014 22 2 414 419 10.1016/j.intimp.2014.07.013 25066761
    [Google Scholar]
  55. Joskova M. Sadlonova V. Nosalova G. Novakova E. Franova S. Polyphenols and their components in experimental allergic asthma. Adv. Exp. Med. Biol. 2013 756 91 98 10.1007/978‑94‑007‑4549‑0_12 22836623
    [Google Scholar]
  56. Kawai M. Hirano T. Higa S. Arimitsu J. Maruta M. Kuwahara Y. Ohkawara T. Hagihara K. Yamadori T. Shima Y. Ogata A. Kawase I. Tanaka T. Flavonoids and related compounds as anti-allergic substances. Allergol. Int. 2007 56 2 113 123 10.2332/allergolint.R‑06‑135 17384531
    [Google Scholar]
  57. Khan M.F. Anwer T. Bakht A. Verma G. Akhtar W. Alam M.M. Rizvi M.A. Akhter M. Shaquiquzzaman M. Unveiling novel diphenyl-1H-pyrazole based acrylates tethered to 1,2,3-triazole as promising apoptosis inducing cytotoxic and anti-inflammatory agents. Bioorg. Chem. 2019 87 667 678 10.1016/j.bioorg.2019.03.071 30953886
    [Google Scholar]
  58. Kim S.H. Hong J. Lee Y.C. Oleanolic acid suppresses ovalbumin-induced airway inflammation and Th2-mediated allergic asthma by modulating the transcription factors T-bet, GATA-3, RORγt and Foxp3 in asthmatic mice. Int. Immunopharmacol. 2014 18 2 311 324 10.1016/j.intimp.2013.12.009 24374304
    [Google Scholar]
  59. Kouyama S. Otomo-Abe A. Kitamura N. Kaminuma O. Mori A. A contraction assay system using primary cultured mouse bronchial smooth muscle cells. Int. Arch. Allergy Immunol. 2013 161 Suppl. 2 93 97 10.1159/000350366 23711859
    [Google Scholar]
  60. Kumar S. Pandey A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013 2013 1 162750 10.1155/2013/162750 24470791
    [Google Scholar]
  61. La Grutta S. Gagliardo R. Mirabella F. Pajno G.B. Bonsignore G. Bousquet J. Bellia V. Vignola A.M. Clinical and biological heterogeneity in children with moderate asthma. Am. J. Respir. Crit. Care Med. 2003 167 11 1490 1495 10.1164/rccm.200206‑549OC 12574073
    [Google Scholar]
  62. Lam K.S. New aspects of natural products in drug discovery. Trends Microbiol. 2007 15 6 279 289 10.1016/j.tim.2007.04.001 17433686
    [Google Scholar]
  63. Lambrecht B.N. Hammad H. Biology of lung dendritic cells at the origin of asthma. Immunity 2009 31 3 412 424 10.1016/j.immuni.2009.08.008 19766084
    [Google Scholar]
  64. Laskar A.H. Maurya A.S. Singh V. Gurjar B.R. Liang M.C. A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2. Environ. Pollut. 2020 263 Pt A 114542 10.1016/j.envpol.2020.114542 32311636
    [Google Scholar]
  65. Leandro L.M. De Sousa Vargas F. Barbosa P.C.S. Neves J.K.O. Da Silva J.A. Da Veiga-Junior V.F. Chemistry and biological activities of terpenoids from copaiba (copaifera spp.) oleoresins. Molecules 2012 17 4 3866 3889 10.3390/molecules17043866 22466849
    [Google Scholar]
  66. Lee M. Kim S. Kwon O.K. Oh S.R. Lee H.K. Ahn K. Anti-inflammatory and anti-asthmatic effects of resveratrol, a polyphenolic stilbene, in a mouse model of allergic asthma. Int. Immunopharmacol. 2009 9 4 418 424 10.1016/j.intimp.2009.01.005 19185061
    [Google Scholar]
  67. Lee M. Ahn K. Kwon O. Kim M. Kim M. Lee I. Oh S. Lee H. Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. Immunobiology 2007 212 8 647 654 10.1016/j.imbio.2007.05.004 17869642
    [Google Scholar]
  68. Lee S.U. Sung M.H. Ryu H.W. Lee J. Kim H.S. In H.J. Ahn K.S. Lee H.J. Lee H.K. Shin D.H. Lee Y. Hong S.T. Oh S.R. Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells. Cytokine 2016 77 168 175 10.1016/j.cyto.2015.08.262 26318254
    [Google Scholar]
  69. Lee T. Lee S. Ho Kim K. Oh K.B. Shin J. Mar W. Effects of magnolialide isolated from the leaves of Laurus nobilis L. (Lauraceae) on immunoglobulin E-mediated type I hypersensitivity in vitro. J. Ethnopharmacol. 2013 149 2 550 556 10.1016/j.jep.2013.07.015 23891890
    [Google Scholar]
  70. León B. Ballesteros-Tato A. Modulating Th2 cell immunity for the treatment of asthma. Front. Immunol. 2021 12 637948 10.3389/fimmu.2021.637948 33643321
    [Google Scholar]
  71. Leung C.Y. Liu L. Wong R.N.S. Zeng Y.Y. Li M. Zhou H. Saikosaponin-d inhibits T cell activation through the modulation of PKCθ, JNK, and NF-κB transcription factor. Biochem. Biophys. Res. Commun. 2005 338 4 1920 1927 10.1016/j.bbrc.2005.10.175 16289105
    [Google Scholar]
  72. Lewis R.A. Soter N.A. Diamond P.T. Austen K.F. Oates J.A. Roberts L.J. 1982. Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J. Immunol. Baltim. Md 1950 129 1627 1631
    [Google Scholar]
  73. Lin C.H. Shen M.L. Zhou N. Lee C.C. Kao S.T. Wu D.C. Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice. PLoS One 2014 9 4 e96091 10.1371/journal.pone.0096091 24755955
    [Google Scholar]
  74. Liu Y.N. Zha W.J. Ma Y. Chen F.F. Zhu W. Ge A. Zeng X.N. Huang M. Galangin attenuates airway remodelling by inhibiting TGF-β1-mediated ROS generation and MAPK/Akt phosphorylation in asthma. Sci. Rep. 2015 5 1 11758 10.1038/srep11758 26156213
    [Google Scholar]
  75. López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009 9 1 31 59 10.2174/138955709787001712 19149659
    [Google Scholar]
  76. Lu Y. Cai S. Nie J. Li Y. Shi G. Hao J. Fu W. Tan H. Chen S. Li B. Xu H. The natural compound nujiangexanthone a suppresses mast cell activation and allergic asthma. Biochem. Pharmacol. 2016 100 61 72 10.1016/j.bcp.2015.11.004 26571438
    [Google Scholar]
  77. Luijk B. Lindemans C. Kanters D. Vanderheijde R. Bertics P. Lammers J. Bates M. Koenderman L. Gradual increase in priming of human eosinophils during extravasation from peripheral blood to the airways in response to allergen challenge. J. Allergy Clin. Immunol. 2005 115 5 997 1003 10.1016/j.jaci.2005.02.002 15867857
    [Google Scholar]
  78. Luo Y. Jin M. Lou L. Yang S. Li C. Li X. Zhou M. Cai C. Role of arachidonic acid lipoxygenase pathway in asthma. Prostaglandins Other Lipid Mediat. 2022 158 106609 10.1016/j.prostaglandins.2021.106609 34954219
    [Google Scholar]
  79. Mahat M.Y.A. Kulkarni N.M. Vishwakarma S.L. Khan F.R. Thippeswamy B.S. Hebballi V. Adhyapak A.A. Benade V.S. Ashfaque S.M. Tubachi S. Patil B.M. Modulation of the cyclooxygenase pathway via inhibition of nitric oxide production contributes to the anti-inflammatory activity of kaempferol. Eur. J. Pharmacol. 2010 642 1-3 169 176 10.1016/j.ejphar.2010.05.062 20558157
    [Google Scholar]
  80. Mahesh S. Ramamurthy M.B. Management of acute asthma in children. Indian J. Pediatr. 2022 89 4 366 372 10.1007/s12098‑021‑04051‑6 35147928
    [Google Scholar]
  81. Marom Z. Shelhamer J.H. Sun F. Kaliner M. Human airway monohydroxyeicosatetraenoic acid generation and mucus release. J. Clin. Invest. 1983 72 1 122 127 10.1172/JCI110949 6308043
    [Google Scholar]
  82. Mesquita-Santos F.P. Vieira-de-Abreu A. Calheiros A.S. Figueiredo I.H. Castro-Faria-Neto H.C. Weller P.F. Bozza P.T. Diaz B.L. Bandeira-Melo C. Cutting edge: prostaglandin D2 enhances leukotriene C4 synthesis by eosinophils during allergic inflammation: Synergistic in vivo role of endogenous eotaxin. J. Immunol. 2006 176 3 1326 1330 10.4049/jimmunol.176.3.1326 16424158
    [Google Scholar]
  83. Mlcek J. Jurikova T. Skrovankova S. Sochor J. Quercetin and its anti-allergic immune response. Molecules 2016 21 5 623 10.3390/molecules21050623 27187333
    [Google Scholar]
  84. Montuschi P. Leukotrienes, antileukotrienes and asthma. Mini Rev. Med. Chem. 2008 8 7 647 656 10.2174/138955708784567395 18537720
    [Google Scholar]
  85. Mortimer K. Reddel H.K. Pitrez P.M. Bateman E.D. Asthma management in low and middle income countries: Case for change. Eur. Respir. J. 2022 60 3 2103179 10.1183/13993003.03179‑2021 35210321
    [Google Scholar]
  86. Mottais A. Riberi L. Falco A. Soccal S. Gohy S. De Rose V. Epithelial–mesenchymal transition mechanisms in chronic airway diseases: A common process to target? Int. J. Mol. Sci. 2023 24 15 12412 10.3390/ijms241512412 37569787
    [Google Scholar]
  87. Moura C.T.M. Batista-Lima F.J. Brito T.S. Silva A.A.V. Ferreira L.C. Roque C.R. Aragão K.S. Havt A. Fonseca F.N. Leal L.K.A.M. Magalhães P.J.C. Inhibitory effects of a standardized extract of Justicia pectoralis in an experimental rat model of airway hyper-responsiveness. J. Pharm. Pharmacol. 2017 69 6 722 732 10.1111/jphp.12689 28211571
    [Google Scholar]
  88. Mursal M. Kumar A. Hasan S.M. Role of natural bioactive compounds in the management of neurodegenerative disorders. Intell. Pharm. 2023 2 1 6 10.1016/j.ipha.2023.09.006
    [Google Scholar]
  89. Nadel J.A. Role of neutrophil elastase in hypersecretion during COPD exacerbations, and proposed therapies. Chest 2000 117 5 Suppl. 2 386S 389S 10.1378/chest.117.5_suppl_2.386S 10843982
    [Google Scholar]
  90. Najeeb-ur-Rehman Bashir S. Al-Rehaily A.J. Gilani A.H. Mechanisms underlying the antidiarrheal, antispasmodic and bronchodilator activities of Fumaria parviflora and involvement of tissue and species specificity. J. Ethnopharmacol. 2012 144 1 128 137 10.1016/j.jep.2012.08.039 22975416
    [Google Scholar]
  91. Nauseef W.M. Borregaard N. Neutrophils at work. Nat. Immunol. 2014 15 7 602 611 10.1038/ni.2921 24940954
    [Google Scholar]
  92. Noor G. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res. 2023 37 11 5058 5079 10.1002/ptr.7969
    [Google Scholar]
  93. Ohnishi H. Miyahara N. Gelfand E.W. The role of leukotriene B(4) in allergic diseases. Allergol. Int. 2008 57 4 291 298 10.2332/allergolint.08‑RAI‑0019 18797182
    [Google Scholar]
  94. Oliveira T.T. Campos K.M. Cerqueira-Lima A.T. Cana Brasil Carneiro T. da Silva Velozo E. Ribeiro Melo I.C.A. Figueiredo E.A. de Jesus Oliveira E. de Vasconcelos D.F.S.A. Pontes-de-Carvalho L.C. Alcântara-Neves N.M. Figueiredo C.A. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. Daru 2015 23 1 18 10.1186/s40199‑015‑0098‑5 25890178
    [Google Scholar]
  95. Papi A. Brightling C. Pedersen S.E. Reddel H.K. Asthma. Lancet 2018 391 10122 783 800 10.1016/S0140‑6736(17)33311‑1 29273246
    [Google Scholar]
  96. Parameswaran K. Radford K. Fanat A. Stephen J. Bonnans C. Levy B.D. Janssen L.J. Cox P.G. Modulation of human airway smooth muscle migration by lipid mediators and Th-2 cytokines. Am. J. Respir. Cell Mol. Biol. 2007 37 2 240 247 10.1165/rcmb.2006‑0172OC 17431098
    [Google Scholar]
  97. Park K. Lee J.S. Choi J.S. Nam Y.J. Han J.H. Byun H.D. Song M.J. Oh J.S. Kim S.G. Choi Y. Identification and characterization of baicalin as a phosphodiesterase 4 inhibitor. Phytother. Res. 2016 30 1 144 151 10.1002/ptr.5515 26549702
    [Google Scholar]
  98. Park S. Park M.S. Jung K.H. Song J. Kim Y.A. Cho H.J. Min B.I. Bae H. Treatment with pyranopyran-1, 8-dione attenuates airway responses in cockroach allergen sensitized asthma in mice. PLoS One 2014 9 1 e87558 10.1371/journal.pone.0087558 24489937
    [Google Scholar]
  99. Patel K.D. Eosinophil tethering to interleukin-4-activated endothelial cells requires both P-selectin and vascular cell adhesion molecule-1. Blood 1998 92 10 3904 3911 10.1182/blood.V92.10.3904 9808584
    [Google Scholar]
  100. Peebles R.S. Jr Aronica M.A. Proinflammatory pathways in the pathogenesis of asthma. Clin. Chest Med. 2019 40 1 29 50 10.1016/j.ccm.2018.10.014 30691715
    [Google Scholar]
  101. Pelaia C. Paoletti G. Puggioni F. Racca F. Pelaia G. Canonica G.W. Heffler E. Interleukin-5 in the pathophysiology of severe asthma. Front. Physiol. 2019 10 1514 10.3389/fphys.2019.01514 31920718
    [Google Scholar]
  102. Prasad S. Tyagi A.K. Historical spice as a future drug: Therapeutic potential of piperlongumine. Curr. Pharm. Des. 2016 22 27 4151 4159 10.2174/1381612822666160601103027 27262330
    [Google Scholar]
  103. Ray A. Kolls J.K. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017 38 12 942 954 10.1016/j.it.2017.07.003 28784414
    [Google Scholar]
  104. Rehman N. Khan A. Alkharfy K.M. Gilani A.H. Pharmacological basis for the medicinal use of lepidium sativum in airways disorders. Evid. Based Complement. Alternat. Med. 2012 2012 1 8 10.1155/2012/596524 22291849
    [Google Scholar]
  105. Rivera D.G. Balmaseda I.H. León A.Á. Hernández B.C. Montiel L.M. Garrido G.G. Hernández R.D. Cuzzocrea S. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin. J. Pharm. Pharmacol. 2010 58 3 385 392 10.1211/jpp.58.3.0014 16536907
    [Google Scholar]
  106. Pa R-C. Amador Barron M.C. Guevara Fefer P. Ocotero V. Reyes Dorantes A. Aguirre Garcia F. Amaya Chavez A. Anti-inflammatory activity of Ziziphus amole. Phyton (B. Aires) 2013 82 1 75 80 10.32604/phyton.2013.82.075
    [Google Scholar]
  107. Rosa S.I.G. Rios-Santos F. Balogun S.O. de Almeida D.A.T. Damazo A.S. da Cruz T.C.D. Pavan E. Barbosa R.S. Alvim T.C. Soares I.M. Ascêncio S.D. Macho A. Martins D.T.O. Hydroethanolic extract from Echinodorus scaber rataj leaves inhibits inflammation in ovalbumin-induced allergic asthma. J. Ethnopharmacol. 2017 203 191 199 10.1016/j.jep.2017.03.025 28342859
    [Google Scholar]
  108. Ryu H.W. Lee S.U. Lee S. Song H.H. Son T.H. Kim Y.U. Yuk H.J. Ro H. Lee C.K. Hong S.T. Oh S.R. 3-Methoxy-catalposide inhibits inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Cytokine 2017 91 57 64 10.1016/j.cyto.2016.12.006 28011397
    [Google Scholar]
  109. Salazar Y. Zheng X. Brunn D. Raifer H. Picard F. Zhang Y. Winter H. Guenther S. Weigert A. Weigmann B. Dumoutier L. Renauld J.C. Waisman A. Schmall A. Tufman A. Fink L. Brüne B. Bopp T. Grimminger F. Seeger W. Pullamsetti S.S. Huber M. Savai R. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. J. Clin. Invest. 2020 130 7 3560 3575 10.1172/JCI124037 32229721
    [Google Scholar]
  110. Santos A.O. Ueda-Nakamura T. Dias Filho B.P. Veiga Junior V.F. Pinto A.C. Nakamura C.V. Antimicrobial activity of brazilian copaiba oils obtained from different species of the copaifera genus. Mem. Inst. Oswaldo Cruz 2008 103 3 277 281 10.1590/S0074‑02762008005000015 18545856
    [Google Scholar]
  111. Schaneberg B.T. Crockett S. Bedir E. Khan I.A. The role of chemical fingerprinting: Application to ephedra. Phytochemistry 2003 62 6 911 918 10.1016/S0031‑9422(02)00716‑1 12590118
    [Google Scholar]
  112. Shah A.J. Gilani A.H. The calcium channel blocking and phosphodiesterase inhibitory activities of the extract of Andropogon muricatus explains its medicinal use in airways disorders. Phytother. Res. 2012 26 8 1256 1258 10.1002/ptr.3687 22170850
    [Google Scholar]
  113. Shah A.J. Gilani A.H. Abbas K. Rasheed M. Ahmed A. Ahmad V.U. Studies on the chemical composition and possible mechanisms underlying the antispasmodic and bronchodilatory activities of the essential oil of artemisia maritima l. Arch. Pharm. Res. 2011 34 8 1227 1238 10.1007/s12272‑011‑0801‑0 21910043
    [Google Scholar]
  114. Shen M.L. Wang C.H. Lin C.H. Zhou N. Kao S.T. Wu D.C. Luteolin attenuates airway mucus overproduction via inhibition of the GABAergic system. Sci. Rep. 2016 6 1 32756 10.1038/srep32756 27595800
    [Google Scholar]
  115. Shin I.S. Shin N.R. Jeon C.M. Hong J.M. Kwon O.K. Kim J.C. Oh S.R. Hahn K.W. Ahn K.S. Inhibitory effects of Pycnogenol® (French maritime pine bark extract) on airway inflammation in ovalbumin-induced allergic asthma. Food Chem. Toxicol. 2013 62 681 686 10.1016/j.fct.2013.09.032 24120901
    [Google Scholar]
  116. Shin I.N.S.I.K. Shin N.A.R.A.E. Jeon C.M. Kwon O.K. Hong J.U.M.I. Kim H.S. Oh S.R. Ahn K.S. Thuja orientalis reduces airway inflammation in ovalbumin-induced allergic asthma. Mol. Med. Rep. 2015 12 3 4640 4646 10.3892/mmr.2015.3910 26063078
    [Google Scholar]
  117. Shin N.R. Shin I.S. Jeon C.M. Hong J.M. Oh S.R. Hahn K.W. Ahn K.S. Inhibitory effects of Picrasma quassioides (D.Don) Benn. on airway inflammation in a murine model of allergic asthma. Mol. Med. Rep. 2014 10 3 1495 1500 10.3892/mmr.2014.2322 24927487
    [Google Scholar]
  118. Silva L.P. Miyasaka C.K. Martins E.F. Leite J.R.S.A. Lacava Z.G.M. Curi R. Azevedo R.B. Effect of bullfrog (Rana catesbeiana) oil administered by gavage on the fatty acid composition and oxidative stress of mouse liver. Braz. J. Med. Biol. Res. 2004 37 10 1491 1496 10.1590/S0100‑879X2004001000007 15448869
    [Google Scholar]
  119. Smit J.J. Lukacs N.W. A closer look at chemokines and their role in asthmatic responses. Eur. J. Pharmacol. 2006 533 1-3 277 288 10.1016/j.ejphar.2005.12.064 16464446
    [Google Scholar]
  120. Soehnlein O. Weber C. Lindbom L. Neutrophil granule proteins tune monocytic cell function. Trends Immunol. 2009 30 11 538 546 10.1016/j.it.2009.06.006 19699683
    [Google Scholar]
  121. Speakman E.A. Dambuza I.M. Salazar F. Brown G.D. T cell antifungal immunity and the role of c-type lectin receptors. Trends Immunol. 2020 41 1 61 76 10.1016/j.it.2019.11.007 31813764
    [Google Scholar]
  122. Stănescu D. Sanna A. Veriter C. Kostianev S. Calcagni P.G. Fabbri L.M. Maestrelli P. Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 1996 51 3 267 271 10.1136/thx.51.3.267 8779129
    [Google Scholar]
  123. Suh M.G. Choi H.S. Cho K. Park S.S. Kim W.J. Suh H.J. Kim H. Anti-inflammatory action of herbal medicine comprised of Scutellaria baicalensis and Chrysanthemum morifolium. Biosci. Biotechnol. Biochem. 2020 84 9 1799 1809 10.1080/09168451.2020.1769464 32448093
    [Google Scholar]
  124. Symon F.A. Lawrence M.B. Williamson M.L. Walsh G.M. Watson S.R. Wardlaw A.J. Functional and structural characterization of the eosinophil P-selectin ligand. J. Immunol. Baltim. Md 1996 157 4 1711 1719
    [Google Scholar]
  125. Székely J.I. Pataki Á. Effects of vitamin D on immune disorders with special regard to asthma, COPD and autoimmune diseases: A short review. Expert Rev. Respir. Med. 2012 6 6 683 704 10.1586/ers.12.57 23234453
    [Google Scholar]
  126. Thio C.L.P. Chang Y.J. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: From inflammatory mediators to environmental and metabolic factors. Exp. Mol. Med. 2023 55 9 1872 1884 10.1038/s12276‑023‑01021‑0 37696890
    [Google Scholar]
  127. Tiotiu A.I. Novakova P. Nedeva D. Chong-Neto H.J. Novakova S. Steiropoulos P. Kowal K. Impact of air pollution on asthma outcomes. Int. J. Environ. Res. Public Health 2020 17 17 6212 10.3390/ijerph17176212 32867076
    [Google Scholar]
  128. Townsend E.A. Emala C.W. Sr Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013 305 5 L396 L403 10.1152/ajplung.00125.2013 23873842
    [Google Scholar]
  129. Usmani K. Jain S.K. Yadav S. Mechanism of action of certain medicinal plants for the treatment of asthma. J. Ethnopharmacol. 2023 317 116828 10.1016/j.jep.2023.116828 37369335
    [Google Scholar]
  130. van der Ploeg E.K. Carreras Mascaro A. Huylebroeck D. Hendriks R.W. Stadhouders R. Group 2 innate lymphoid cells in human respiratory disorders. J. Innate Immun. 2020 12 1 47 62 10.1159/000496212 30726833
    [Google Scholar]
  131. van der Ploeg E.K. Krabbendam L. Vroman H. van Nimwegen M. de Bruijn M.J.W. de Boer G.M. Bergen I.M. Kool M. Tramper-Standers G.A. Braunstahl G.J. Huylebroeck D. Hendriks R.W. Stadhouders R. Type-2 CD8+ T-cell formation relies on interleukin-33 and is linked to asthma exacerbations. Nat. Commun. 2023 14 1 5137 10.1038/s41467‑023‑40820‑x 37612281
    [Google Scholar]
  132. Vasconcelos J.F. Teixeira M.M. Barbosa-Filho J.M. Lúcio A.S.S.C. Almeida J.R.G.S. de Queiroz L.P. Ribeiro-dos-Santos R. Soares M.B.P. The triterpenoid lupeol attenuates allergic airway inflammation in a murine model. Int. Immunopharmacol. 2008 8 9 1216 1221 10.1016/j.intimp.2008.04.011 18602067
    [Google Scholar]
  133. Veiga V.F. Rosas E.C. Carvalho M.V. Henriques M.G.M.O. Pinto A.C. Chemical composition and anti-inflammatory activity of copaiba oils from copaifera cearensis huber ex ducke, copaifera reticulata ducke and copaifera multijuga hayne—a comparative study. J. Ethnopharmacol. 2007 112 2 248 254 10.1016/j.jep.2007.03.005 17446019
    [Google Scholar]
  134. Woltmann G. McNulty C.A. Dewson G. Symon F.A. Wardlaw A.J. Interleukin-13 induces PSGL-1/P–selectin–dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cells under flow. Blood 2000 95 10 3146 3152 10.1182/blood.V95.10.3146 10807781
    [Google Scholar]
  135. Xiong Y. Cui X. Li W. Lv J. Du L. Mi W. Li H. Chen Z. Leng Q. Zhou H. He R. BLT 1 signaling in epithelial cells mediates allergic sensitization via promotion of IL‐33 production. Allergy 2019 74 3 495 506 10.1111/all.13656 30390302
    [Google Scholar]
  136. Xiong Y.Y. Wu F.H. Wang J.S. Li J. Kong L.Y. Attenuation of airway hyperreactivity and T helper cell type 2 responses by coumarins from Peucedanum praeruptorum Dunn in a murine model of allergic airway inflammation. J. Ethnopharmacol. 2012 141 1 314 321 10.1016/j.jep.2012.02.037 22401763
    [Google Scholar]
  137. Yadav U.C.S. Baquer N.Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol. 2014 52 2 243 254 10.3109/13880209.2013.826247 24102093
    [Google Scholar]
  138. Yang X. Xue L. Zhao Q. Cai C. Liu Q.H. Shen J. Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction. BMC Complement. Altern. Med. 2017 17 1 159 10.1186/s12906‑017‑1674‑7 28320373
    [Google Scholar]
  139. Yao J. Jiang M. Zhang Y. Liu X. Du Q. Feng G. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma. Int. Immunopharmacol. 2016 32 24 31 10.1016/j.intimp.2016.01.005 26780233
    [Google Scholar]
  140. Yao J. Zhang Y.S. Feng G.Z. Du Q. Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway. Mol. Med. Rep. 2015 12 5 7693 7698 10.3892/mmr.2015.4401 26502995
    [Google Scholar]
  141. Yaqoob P. Monounsaturated fats and immune function. Proc. Nutr. Soc. 1998 57 4 511 520 10.1079/PNS19980075 10096110
    [Google Scholar]
  142. Yaqoob P. Knapper J.M. Webb D.H. Williams C.M. Newsholme E.A. Calder P.C. The effect of chronic consumption of monounsaturated fat on immune function in middle-aged men. Biochem. Soc. Trans. 1997 25 2 350S 10.1042/bst025350s 9191395
    [Google Scholar]
  143. Ying S. Robinson D.S. Meng Q. Rottman J. Kennedy R. Ringler D.J. Mackay C.R. Daugherty B.L. Springer M.S. Durham S.R. Williams T.J. Kay A.B. Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co‐localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur. J. Immunol. 1997 27 12 3507 3516 10.1002/eji.1830271252 9464841
    [Google Scholar]
  144. Yu B. Cai W. Zhang H.H. Zhong Y.S. Fang J. Zhang W.Y. Mo L. Wang L.C. Yu C.H. Selaginella uncinata flavonoids ameliorated ovalbumin-induced airway inflammation in a rat model of asthma. J. Ethnopharmacol. 2017 195 71 80 10.1016/j.jep.2016.11.049 27916586
    [Google Scholar]
  145. Yuan G. Wahlqvist M.L. He G. Yang M. Li D. Natural products and anti-inflammatory activity. Asia Pac. J. Clin. Nutr. 2006 15 2 143 152 16672197
    [Google Scholar]
  146. Zhang T.Z. Fu Q. Chen T. Ma S.P. Anti-asthmatic effects of oxymatrine in a mouse model of allergic asthma through regulating CD40 signaling. Chin. J. Nat. Med. 2015 13 5 368 374 10.1016/S1875‑5364(15)30028‑5 25986286
    [Google Scholar]
  147. Zhao J. Minami Y. Etling E. Coleman J.M. Lauder S.N. Tyrrell V. Aldrovandi M. O’Donnell V. Claesson H.E. Kagan V. Wenzel S. Preferential generation of 15-HETE-PE induced by IL-13 regulates goblet cell differentiation in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2017 57 6 692 701 10.1165/rcmb.2017‑0031OC 28723225
    [Google Scholar]
  148. Zhao S. Qi Y. Liu X. Jiang Q. Liu S. Jiang Y. Jiang Z. Activation of NF-kappa B in bronchial epithelial cells from children with asthma. Chin. Med. J. (Engl.) 2001 114 9 909 911 11780379
    [Google Scholar]
  149. Zhao Y.L. Cao J. Shang J.H. Liu Y.P. Khan A. Wang H.S. Qian Y. Liu L. Ye M. Luo X.D. Airways antiallergic effect and pharmacokinetics of alkaloids from alstonia scholaris. Phytomedicine 2017 27 63 72 10.1016/j.phymed.2017.02.002 28314480
    [Google Scholar]
  150. Zheng M. Zhang Q. Joe Y. Lee B.H. Ryu D.G. Kwon K.B. Ryter S.W. Chung H.T. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction. Int. Immunopharmacol. 2013 15 3 517 523 10.1016/j.intimp.2013.02.002 23415873
    [Google Scholar]
  151. Zhou D.G. Diao B.Z. Zhou W. Feng J.L. Oroxylin a inhibits allergic airway inflammation in ovalbumin (OVA)-induced asthma murine model. Inflammation 2016 39 2 867 872 10.1007/s10753‑016‑0317‑3 26895180
    [Google Scholar]
  152. Zhou E. Fu Y. Wei Z. Yang Z. Inhibition of allergic airway inflammation through the blockage of NF-κB activation by ellagic acid in an ovalbumin-induced mouse asthma model. Food Funct. 2014 5 9 2106 2112 10.1039/C4FO00384E 24998475
    [Google Scholar]
/content/journals/cnt/10.2174/0126659786311384241018091201
Loading
/content/journals/cnt/10.2174/0126659786311384241018091201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test