Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

Sustainable synthesis of γ-valerolactone (GVL) from levulinic acid (LA) offers a sustainable approach to converting biomass-derived feedstocks into valuable chemicals and fuel additves. Cu-Hydroxyapatite (Cu-HAp) catalysts are potential candidates for vapor-phase hydrogenation of LA to GVL due to their enhanced catalytic activity and selectivity through Cu nanoparticle support.

Objective

This study aimed to investigate the catalytic performance of Cu-HAp catalysts in the hydrogenation of levulinic acid to γ-valerolactone. The primary goal was to optimize reaction conditions and assess the enhanced catalytic activity and selectivity.

Methods

The influence of copper loading, reaction temperature, and catalyst stability was evaluated. Moreover, the effect of time on stream (TOS) on LA conversion and GVL selectivity was examined by the best optimised Cu/HAp catalyst.

Results

Cu-HAp catalysts exhibited favorable catalytic performance, with optimal conditions at approximately 5 wt% copper loading. At this loading, maximum LA conversion (60%) and GVL selectivity (90%) were achieved after 8 hours on the stream at 265°C and 0.1 MPa conditions.

Conclusion

The study demonstrates the efficacy of Cu-HAp catalysts for the hydrogenation of levulinic acid to γ-valerolactone. The findings indicate that as the copper loading increases from 2 to 20 wt%, the conversion of LA and the selectivity to GVL both decline. The analysis further implies that the dispersion of Cu species corresponds directly to the activity observed during the LA hydrogenation. The conversion of LA rises with a higher reaction temperature ranging from 250-320°C, although the selectivity of GVL decreases above 265°C. The catalyst's stability is crucial for maintaining efficient catalytic activity over time, with observed deactivation attributed to Cu metal particle aggregation and coke formation on active sites. The findings contribute to the development of robust catalyst systems for biomass-derived chemical transformations.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454278665231219112020
2024-01-11
2025-04-09
Loading full text...

Full text loading...

References

  1. PanditC. PanditS. PantM. A concise review on the synthesis, and characterization of the pyrolytic lignocellulosic biomass for oil, char and gas production: Recent advances and its environmental application.Chem Africa202210.1007/s42250‑022‑00512‑3
    [Google Scholar]
  2. SapariyaD.D. PatdiwalaU.J. PanchalH. RamanaP.V. MakwanaJ. SadasivuniK.K. A review on thermochemical biomass gasification techniques for bioenergy production.Energy Sources A Recovery Util. Environ. Effects202113410.1080/15567036.2021.2000521
    [Google Scholar]
  3. MuchharlaB. DikshitM. PokharelU. Reduced metal nanocatalysts for selective electrochemical hydrogenation of biomass-derived 5-(hydroxymethyl)furfural to 2,5-bis(hydroxymethyl)furan in ambient conditions.Front Chem.202311120046910.3389/fchem.2023.1200469 37408562
    [Google Scholar]
  4. BonthulaS. BonthulaS.R. PothuR. Recent advances in copper-based materials for sustainable environmental applications.Sustain. Chem.20234324627110.3390/suschem4030019
    [Google Scholar]
  5. PothuR. MittaH. BanerjeeP. Insights into the influence of Pd loading on CeO2 catalysts for CO2 hydrogenation to methanol.Mater. Sci. Energy Technol.2023648449210.1016/j.mset.2023.04.006
    [Google Scholar]
  6. XuW.P. ChenX.F. GuoH.J. Conversion of levulinic acid to valuable chemicals: A review.J. Chem. Technol. Biotechnol.202196113009302410.1002/jctb.6810
    [Google Scholar]
  7. PothuR. GundeboyinaR. BoddulaR. PerugopuV. MaJ. Recent advances in biomass-derived platform chemicals to valeric acid synthesis.New J. Chem.202246135907592110.1039/D1NJ05777D
    [Google Scholar]
  8. PothuR. MamedaN. MittaH. High dispersion of platinum nanoparticles over functionalized zirconia for effective transformation of levulinic acid to alkyl levulinate biofuel additives in the vapor phase.J. Composi. Sci.202261030010.3390/jcs6100300
    [Google Scholar]
  9. PothuR. MittaH. BoddulaR. Direct cascade hydrogenation of biorenewable levulinic acid to valeric acid biofuel additives over metal (M = Nb, Ti, and Zr) supported SBA-15 catalysts.Mater. Sci. Energy Technol.2022539139810.1016/j.mset.2022.09.006
    [Google Scholar]
  10. YangY. SunY. LuoX. The relationship between structure and catalytic activity-stability of non-precious metal-based catalysts towards levulinic acid hydrogenation to γ-valerolactone: A review.Energies20221521809310.3390/en15218093
    [Google Scholar]
  11. DuttaS. YuI.K.M. TsangD.C.W. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review.Chem. Eng. J.2019372992100610.1016/j.cej.2019.04.199
    [Google Scholar]
  12. PothuR. ChallaP. RajeshR. Vapour-phase selective hydrogenation of γ-valerolactone to 2-methyltetrahydrofuran biofuel over silica-supported copper catalysts.Nanomaterials20221219341410.3390/nano12193414 36234542
    [Google Scholar]
  13. Pena-PereiraF. KloskowskiA. NamieśnikJ. Perspectives on the replacement of harmful organic solvents in analytical methodologies: A framework toward the implementation of a generation of eco-friendly alternatives.Green Chem.20151773687370510.1039/C5GC00611B
    [Google Scholar]
  14. YanK. YangY. ChaiJ. LuY. Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals.Appl. Catal. B201517929230410.1016/j.apcatb.2015.04.030
    [Google Scholar]
  15. KhatriP.K. KumarP. NagendrammaP. JainS.L. Sulfonated graphene oxide as an efficient solid acid carbocatalyst for esterification of fatty acids with polyols.Lett. Org. Chem.201815650851410.2174/1570178614666171130152836
    [Google Scholar]
  16. ParateR.D. RodeC.V. DharneM.S. 2,3-butanediol production from biodiesel derived glycerol.Curr. Environ. Eng.20185141210.2174/2212717805666180112162517
    [Google Scholar]
  17. SongW. Lozano-MartinM.C. Gallegos-SuarezE. New insights in the development of carbon supported ruthenium catalysts for hydrogenation of levulinic acid.Curr. Catal.20187212913710.2174/2211544707666180328162825
    [Google Scholar]
  18. InamuddinR.B.M. Carbon dioxide utilization to sustainable energy and fuels.Springer2021
    [Google Scholar]
  19. InamuddinR.B.A.M.A. Sustainable ammonia production.ChamSpringer2021
    [Google Scholar]
  20. MittaH. BallaP. NekkalaN. Recent progress of carbon dioxide conversion into renewable fuels and chemicals using nanomaterials. In: Nanostructured Materials for Energy Related Applications.Springer201910.1007/978‑3‑030‑04500‑5_11
    [Google Scholar]
  21. JiangF. WangS. LiuB. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts.ACS Catal.20201019114931150910.1021/acscatal.0c03324
    [Google Scholar]
  22. SharifiM. PothuR. BoddulaR. BardajeeG.R. Trends of biofuel cells for smart biomedical devices.Int. J. Hydrogen Energy20214643220322910.1016/j.ijhydene.2020.05.111
    [Google Scholar]
  23. ChallaP. PaletiG. MadduluriV.R. Trends in emission and utilization of CO2: Sustainable feedstock in the synthesis of value-added fine chemicals.Catal. Surv. Asia2022262809110.1007/s10563‑021‑09352‑6
    [Google Scholar]
  24. YuZ. LuX. XiongJ. JiN. Transformation of levulinic acid to valeric biofuels: A review on heterogeneous bifunctional catalytic systems.ChemSusChem201912173915393010.1002/cssc.201901522 31270936
    [Google Scholar]
  25. TabassumN. PothuR. PattnaikA. Heterogeneous catalysts for conversion of biodiesel-waste glycerol into high-added-value chemicals.Catalysts202212776710.3390/catal12070767
    [Google Scholar]
  26. YadavG.D. YadavA.R. Synthesis of ethyl levulinate as fuel additives using heterogeneous solid superacidic catalysts: Efficacy and kinetic modeling.Chem. Eng. J.201424355656310.1016/j.cej.2014.01.013
    [Google Scholar]
  27. LiuX. ZhangQ. WangR. LiH. Sustainable conversion of biomass-derived carbohydrates into lactic acid using heterogeneous catalysts.Curr. Green Chem.20207328228910.2174/2213346106666191127123730
    [Google Scholar]
  28. NandaS. KozinskiA. Lignocellulosic biomass: A review of conversion technologies and fuel products.Curr. Biochem. Eng.20153243610.2174/2213385203666150219232000
    [Google Scholar]
  29. MuhE. TabetF. AmaraS. Biomass conversion to fuels and value-added chemicals: A comprehensive review of the thermochemical processes.Curr. Altern. Energy20214132510.2174/2405463103666191022121648
    [Google Scholar]
  30. WuY. XuY. QinC. DingM. Metal-organic frameworks and their derived structures for biomass upgrading. In: Advanced Catalysts Based on Metal-organic Frameworks.Bentham Science Publishers202310.2174/9789815079487123010006
    [Google Scholar]
  31. AmarasekaraA.S. WireduB. AnimashaunM. The Co-catalyst effects of Mn(II), Zn(II), and Cr(III) chlorides on acidic ionic liquid catalyzed synthesis of value-added products from cellulose in aqueous ethanol.Curr. Catal.2023121263310.2174/2211544712666230322092202
    [Google Scholar]
  32. SakthivelA. SahuP. NarendaranthS.B. Cerium containing siliceous MCM-22: Preparation, characterization and its potential application towards oxidation of isoeugenol to vanillin.Curr Mater Sci202316441643010.2174/2666145416666230124143154
    [Google Scholar]
  33. AslamA.A. ShamimM. Shahid NazirM. Microbial degradation of agricultural and food wastes into value-added products. In: Bioremediation for Environmental Pollutants.Bentham Science Publishers202315719810.2174/9789815123524123020008
    [Google Scholar]
  34. TomarR. JainS. YadavP. BajajT. MohajerF. ZiaraniG.M. Conversion of limonene over heterogeneous catalysis: An overview.Curr. Org. Synth.202219341442510.2174/1570179418666210824101837 34429049
    [Google Scholar]
  35. CaiC. WangH. XinH. Recent progress in 5-hydroxy] methylfurfural catalytic oxidation to 2,5-furandicarboxylic acid.Curr. Org. Chem.202125340441610.2174/1385272824999201210192104
    [Google Scholar]
  36. SaravanamuruganS. On the rise: Heterogeneous catalysis for biomass valorisation.Curr. Catal.202110210110210.2174/2211544710666210924093425
    [Google Scholar]
  37. ParakhP.D. NandaS. KozinskiJ.A. Eco-friendly transformation of waste biomass to biofuels.Curr. Biochem. Eng.20206212013410.2174/2212711906999200425235946
    [Google Scholar]
  38. PattanayakS. PriyadarsiniP. SinghY.D. Cellulose and nanocellulose productions from lignocellulosic biomass for biofuel production.Curr. Altern. Energy2020410.2174/2405463104999201231195628
    [Google Scholar]
  39. LiX.L. ZhouQ. PanS.X. HeY. ChangF. A review of catalytic upgrading of biodiesel waste glycerol to valuable products.Curr. Green Chem.20207325926610.2174/2213346107666200108114217
    [Google Scholar]
  40. SharifiM. PothuR. Boddula RInamuddin. Lignin to value-added chemical synthesis.Curr. Anal. Chem.202117793694610.2174/1573411016666200108152127
    [Google Scholar]
  41. KovácsH. OroszK. PappG. JoóF. HorváthH. Immobilization of an iridium(I)-NHC-phosphine catalyst for hydrogenation reactions under batch and flow conditions.Catalysts202111665610.3390/catal11060656
    [Google Scholar]
  42. CaoW. LinL. QiH. In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to γ-valerolactone.J. Catal.201937316117210.1016/j.jcat.2019.03.035
    [Google Scholar]
  43. WangS. HuangH. DorcetV. RoisnelT. BruneauC. FischmeisterC. Efficient iridium catalysts for base-free hydrogenation of levulinic acid.Organometallics201736163152316210.1021/acs.organomet.7b00503
    [Google Scholar]
  44. FengJ. LiM. ZhongY. Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability.Microporous Mesoporous Mater.202029410985810.1016/j.micromeso.2019.109858
    [Google Scholar]
  45. SiddiquiN. PendemC. GoyalR. Study of γ-valerolactone production from hydrogenation of levulinic acid over nanostructured Pt-hydrotalcite catalysts at low temperature.Fuel202232312427210.1016/j.fuel.2022.124272
    [Google Scholar]
  46. EspositoS. SilvestriB. RossanoC. The role of metallic and acid sites of Ru-Nb-Si catalysts in the transformation of levulinic acid to γ-valerolactone.Appl. Catal. B202231012134010.1016/j.apcatb.2022.121340
    [Google Scholar]
  47. SorokinaS.A. MikhailovS.P. KuchkinaN.V. Ru@hyperbranched polymer for hydrogenation of levulinic acid to gamma-valerolactone: The role of the catalyst support.Int. J. Mol. Sci.202223279910.3390/ijms23020799 35054984
    [Google Scholar]
  48. BounouktaC.E. Megías-SayagoC. NavarroJ.C. Functionalized biochars as supports for Ru/C catalysts: Tunable and efficient materials for γ-valerolactone production.Nanomaterials2023136112910.3390/nano13061129 36986022
    [Google Scholar]
  49. BallaP. PerupoguV. VanamaP.K. KomandurV.R.C. Hydrogenation of biomass‐derived levulinic acid to γ‐valerolactone over copper catalysts supported on ZrO2.J. Chem. Technol. Biotechnol.201691376977610.1002/jctb.4643
    [Google Scholar]
  50. PutrakumarB. SeelamP.K. SrinivasaraoG. A comparison of structure–activity of Cu-modified over different mesoporous silica supports for catalytic conversion of levulinic acid.Waste Biomass Valoriz.2022131677910.1007/s12649‑021‑01485‑z
    [Google Scholar]
  51. PutrakumarB. NagarajuN. KumarV.P. CharyK.V.R. Hydrogenation of levulinic acid to γ-valerolactone over copper catalysts supported on γ-Al2O3.Catal. Today201525020921710.1016/j.cattod.2014.07.014
    [Google Scholar]
  52. XueZ. LiuQ. WangJ. MuT. Valorization of levulinic acid over non-noble metal catalysts: challenges and opportunities.Green Chem.201820194391440810.1039/C8GC02001A
    [Google Scholar]
  53. WangJ. LiuJ. YuX. Non-noble metal catalysts for transfer hydrogenation of levulinic acid: The role of surface morphology and acid-base pairs.Mater. Today Energy20201810050110.1016/j.mtener.2020.100501
    [Google Scholar]
  54. SudhakarM. KumarV.V. NareshG. KantamM.L. BhargavaS.K. VenugopalA. Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M = Pd, Pt, Ru, Cu, Ni) catalysts.Appl. Catal. B201618011312010.1016/j.apcatb.2015.05.050
    [Google Scholar]
  55. PutrakumarB. SeelamP.K. SrinivasaraoG. High performance and sustainable copper-modified hydroxyapatite catalysts for catalytic transfer hydrogenation of furfural.Catalysts2020109104510.3390/catal10091045
    [Google Scholar]
  56. KunaR. BallaP. RajanN.P. PonnalaB. HussainS. KomandurV.R.C. Highly dispersed and ultra-small Ni nanoparticles over hydroxyapatite for hydrogenation of levulinic acid.React. Kinet. Mech. Catal.2022135118319910.1007/s11144‑021‑02113‑6
    [Google Scholar]
  57. BallaP. SeelamP.K. RajeshR. Selective hydrogenation of levulinic acid over a highly dispersed and stable copper particles embedded into the ordered mesoporous carbon supported catalyst.Catal. Commun.202317810667310.1016/j.catcom.2023.106673
    [Google Scholar]
  58. BoddulaR. ShanmugamP. SrivatsavaR.K. Catalytic valorisation of biomass-derived levulinic acid to biofuel additive γ-valerolactone: Influence of copper loading on silica support.Reactions20234346547710.3390/reactions4030028
    [Google Scholar]
  59. TukacsJ.M. NovákM. DibóG. MikaL.T. An improved catalytic system for the reduction of levulinic acid to γ-valerolactone.Catal. Sci. Technol.2014492908291210.1039/C4CY00719K
    [Google Scholar]
  60. LiW. XieJ.H. LinH. ZhouQ.L. Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes.Green Chem.20121492388239010.1039/c2gc35650c
    [Google Scholar]
  61. DelhommeC. SchaperL.A. Zhang-PreßeM. Raudaschl-SieberG. Weuster-BotzD. KühnF.E. Catalytic hydrogenation of levulinic acid in aqueous phase.J. Organomet. Chem.201372429729910.1016/j.jorganchem.2012.10.030
    [Google Scholar]
  62. Al-NajiM. PopovaM. ChenZ. WildeN. GläserR. Aqueous-phase hydrogenation of levulinic acid using formic acid as a sustainable reducing agent over pt catalysts supported on mesoporous zirconia.ACS Sustain. Chem. Eng.20208139340210.1021/acssuschemeng.9b05546
    [Google Scholar]
  63. RuppertA.M. JędrzejczykM. Sneka-PłatekO. Ru catalysts for levulinic acid hydrogenation with formic acid as a hydrogen source.Green Chem.20161872014202810.1039/C5GC02200B
    [Google Scholar]
  64. SonP.A. NishimuraS. EbitaniK. Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent.RSC Advances20144211052510.1039/c3ra47580h
    [Google Scholar]
  65. GaoY. ZhangH. HanA. Ru/ZrO2 catalysts for transfer hydrogenation of levulinic acid with formic acid/] formate mixtures: Importance of support stability.ChemistrySelect2018351343135110.1002/slct.201702152
    [Google Scholar]
  66. LiuZ. GaoX. SongG. Synergy of ultra-low-loaded ruthenium with alumina stimulating the catalytic hydrogenation of levulinic acid into γ-valerolactone.Chem. Eng. J.202347014386910.1016/j.cej.2023.143869
    [Google Scholar]
  67. TangY. FuJ. WangY. GuoH. QiX. Bimetallic Ni-Zn@OMC catalyst for selective hydrogenation of levulinic acid to γ-valerolactone in water.Fuel Process. Technol.202324010755910.1016/j.fuproc.2022.107559
    [Google Scholar]
  68. RongZ. SunZ. WangL. LvJ. WangY. WangY. Efficient conversion of levulinic acid into γ-valerolactone over raney ni catalyst prepared from melt-quenching alloy.Catal. Lett.2014144101766177110.1007/s10562‑014‑1310‑9
    [Google Scholar]
  69. MurugesanK. AlshammariA.S. SohailM. JagadeeshR.V. Levulinic acid derived reusable cobalt-nanoparticles-catalyzed sustainable synthesis of γ-valerolactone.ACS Sustain. Chem. Eng.2019717147561476410.1021/acssuschemeng.9b02692
    [Google Scholar]
  70. LongX. SunP. LiZ. LangR. XiaC. LiF. Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone.Chin. J. Catal.20153691512151810.1016/S1872‑2067(15)60934‑2
    [Google Scholar]
  71. KumaravelS. ThiripuranthaganS. DuraiM. ErusappanE. VembuliT. Catalytic transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over Sn/Al-SBA-15 catalysts.New J. Chem.202044208209822210.1039/D0NJ01288B
    [Google Scholar]
  72. GuptaS.S.R. KantamM.L. Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst.Catal. Today201830918919410.1016/j.cattod.2017.08.007
    [Google Scholar]
  73. ShaoY. SunK. LiQ. Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to γ-valerolactone or 1,4-pentanediol.Green Chem.201921164499451110.1039/C9GC01706B
    [Google Scholar]
  74. OrlowskiI. DouthwaiteM. IqbalS. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology.J. Energy Chem.201936152410.1016/j.jechem.2019.01.015
    [Google Scholar]
  75. MittaH. SeelamP.K. CharyK.V.R. Efficient vapor‐phase selective hydrogenolysis of bio‐levulinic acid to γ‐valerolactone using Cu supported on hydrotalcite catalysts.Glob. Chall.2018212180002810.1002/gch2.201800028 30774979
    [Google Scholar]
  76. LiJ. LiM. ZhangC. LiuC.L. YangR.Z. DongW.S. Construction of mesoporous Cu/ZrO2-Al2O3 as a ternary catalyst for efficient synthesis of γ-valerolactone from levulinic acid at low temperature.J. Catal.202038116317410.1016/j.jcat.2019.10.031
    [Google Scholar]
  77. HeD. HeQ. JiangP. ZhouG. HuR. FuW. Novel Cu/AlO-ZrO composite for selective hydrogenation of levulinic acid to -valerolactone.Catal. Commun.2019125828610.1016/j.catcom.2019.03.029
    [Google Scholar]
  78. YanaseD. YoshidaR. KanazawaS. YamadaY. SatoS. Efficient formation of γ-valerolactone in the vapor-phase hydrogenation of levulinic acid over Cu-Co/alumina catalyst.Catal. Commun.202013910596710.1016/j.catcom.2020.105967
    [Google Scholar]
  79. SudhakarM. Lakshmi KantamM. Swarna JayaV. KishoreR. RamanujacharyK.V. VenugopalA. Hydroxyapatite as a novel support for Ru in the hydrogenation of levulinic acid to γ-valerolactone.Catal. Commun.20145010110410.1016/j.catcom.2014.03.005
    [Google Scholar]
/content/journals/cms/10.2174/0126661454278665231219112020
Loading
/content/journals/cms/10.2174/0126661454278665231219112020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test