Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

The increasing prevalence of hazardous pollutants in water poses a significant global threat to the environment and human health. To address this issue, various methodologies have been developed for the determination and removal of harmful contaminants, with layered double hydroxides (LDHs)-based materials emerging as promising adsorbents. This review focuses on recent advancements in the application of LDHs-based materials for the removal of specific harmful pollutants, such as selenium, fluoride, heavy metals, and organic dyes, from aqueous solutions. Heavy metals and organic dyes, in particular, are major contributors to environmental pollution, necessitating effective and eco-friendly treatment methods.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145417666230914104249
2023-10-09
2025-07-05
Loading full text...

Full text loading...

References

  1. BorettiA RosaL Reassessing the projections of the World Water Development report.npj Clean Water201921510.1038/s41545‑019‑0039‑9
    [Google Scholar]
  2. WanK. HuangL. YanJ. Removal of fluoride from industrial wastewater by using different adsorbents: A review.Sci. Total Environ.202177314553510.1016/j.scitotenv.2021.145535 33588221
    [Google Scholar]
  3. JingG. RenS. PooleyS. SunW. KowalczukP.B. GaoZ. Electrocoagulation for industrial wastewater treatment: An updated review.Environ. Sci. Water Res. Technol.2021771177119610.1039/D1EW00158B
    [Google Scholar]
  4. ZhangX. LiuY. Nanomaterials for radioactive wastewater decontamination.Environ. Sci. Nano2020741008104010.1039/C9EN01341E
    [Google Scholar]
  5. QasemN A A. MohammedR.H. LawalD.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review.Npj Clean Water202143610.1038/s41545‑021‑00127‑0
    [Google Scholar]
  6. LiuT. AniagorC.O. EjimoforM.I. Recent developments in the utilization of modified graphene oxide to adsorb dyes from water: A review.J. Ind. Eng. Chem.2023117213710.1016/j.jiec.2022.10.008
    [Google Scholar]
  7. HuangL. LuoZ. HuangX. Applications of biomass-based materials to remove fluoride from wastewater: A review.Chemosphere202230113467910.1016/j.chemosphere.2022.134679 35469899
    [Google Scholar]
  8. GautamR.K. SinghA.K. TiwariI. Nanoscale layered double hydroxide modified hybrid nanomaterials for wastewater treatment: A review.J. Mol. Liq.202235011850510.1016/j.molliq.2022.118505
    [Google Scholar]
  9. AragawT.A. BogaleF.M. AragawB.A. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms.J. Saudi Chem. Soc.202125810128010.1016/j.jscs.2021.101280
    [Google Scholar]
  10. BakhtaS. SadaouiZ. BouaziziN. Functional activated carbon: From synthesis to groundwater fluoride removal.RSC Advances20221242332234810.1039/D1RA08209D 35425243
    [Google Scholar]
  11. DibM. OuchettoH. AkhramezS. Preparation of Mg/Al-LDH nanomaterials and its application in the condensation of 3-amino-1-phenyl-2-pyrazolin-5-one with aromatic aldehyde.Mater. Today Proc.202022Part 110410710.1016/j.matpr.2019.08.106
    [Google Scholar]
  12. WangL. ZhuZ. WangF. QiY. ZhangW. WangC. State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation.Chemosphere202127813036710.1016/j.chemosphere.2021.130367 33813335
    [Google Scholar]
  13. LuZ.H. Abdelhai SenosyI. ZhouD.D. YangZ.H. GuoH.M. LiuX. Synthesis and adsorption properties investigation of Fe3O4@ZnAl-LDH@MIL-53(Al) for azole fungicides removal from environmental water.Separ. Purif. Tech.202127611928210.1016/j.seppur.2021.119282
    [Google Scholar]
  14. WangZ. TanY. DuanX. Pretreatment of membrane dye wastewater by CoFe-LDH-activated peroxymonosulfate: Performance, degradation pathway, and mechanism.Chemosphere202331313734610.1016/j.chemosphere.2022.137346 36442676
    [Google Scholar]
  15. KostićM. NajdanovićS. VelinovN. Ultrasound-assisted synthesis of a new material based on MgCoAl-LDH: Characterization and optimization of sorption for progressive treatment of water.Environ Technol Innov20222610235810.1016/j.eti.2022.102358
    [Google Scholar]
  16. ShiY. ChangQ. ZhangT. SongG. SunY. DingG. A review on selective dye adsorption by different mechanisms.J. Environ. Chem. Eng.202210610863910.1016/j.jece.2022.108639
    [Google Scholar]
  17. NaserJ.A. AhmedZ.W. AliE.H. Nanomaterials usage as adsorbents for the pollutants removal from wastewater; a review.Mater. Today Proc.2021422590259510.1016/j.matpr.2020.12.584
    [Google Scholar]
  18. ZubairM. DaudM. McKayG. ShehzadF. Al-HarthiM.A. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation.Appl. Clay Sci.201714327929210.1016/j.clay.2017.04.002
    [Google Scholar]
  19. AbdallahI.A. HammadS.F. BedairA. AbdelhameedR.M. LocatelliM. MansourF.R. Applications of layered double hydroxides in sample preparation: A review.Microchem. J.202319210891610.1016/j.microc.2023.108916
    [Google Scholar]
  20. TajuddinN.A. SokeriE.F.B. KamalN.A. DibM. Fluoride removal in drinking water using layered double hydroxide materials: Preparation, characterization and the current perspective on IR4.0 technologies.J. Environ. Chem. Eng.202311311030510.1016/j.jece.2023.110305
    [Google Scholar]
  21. DibM. BennaniM.N. OuchettoH. OuchettoK. HafidA. KhouiliM. Effect of exchanged MgAl-hydrotalcite with carbonate on increases of acid neutralizing capacity: A good candidate as an antacid.Curr. Nanomater.202271495610.2174/2405461506666210526145531
    [Google Scholar]
  22. LiP. LiuX. ArifM. In situ growth of glucose-intercalated LDHs on NiCo2S4 hollow nanospheres to enhance energy storage capacity for hybrid supercapacitors.Colloids Surf. A Physicochem. Eng. Asp.202264412882310.1016/j.colsurfa.2022.128823
    [Google Scholar]
  23. HeJ.Y. ZhangD. WangX.J. Phosphorylation of NiAl-layered double hydroxide nanosheets as a novel cocatalyst for photocatalytic hydrogen evolution.Int. J. Hydrogen Energy20214636189771898710.1016/j.ijhydene.2021.03.064
    [Google Scholar]
  24. DibM. MoutcineA. OuchettoH. Novel synthesis of α-Fe2O3@Mg/Al-CO3-LDH nanocomposite for rapid electrochemical detection of p-nitrophenol.Inorg. Chem. Commun.202113110878810.1016/j.inoche.2021.108788
    [Google Scholar]
  25. DibM. MoutcineA. OuchettoH. ChtainiA. HafidA. KhouiliM. New efficient modified carbon paste electrode by Fe2O3@Ni/Al-LDH magnetic nanocomposite for the electrochemical detection of mercury.Inorg. Chem. Commun.202113110862410.1016/j.inoche.2021.108624
    [Google Scholar]
  26. DibM. OunacerM. KacemM. Synthesis of iron-based nanoparticles assembled with layered double hydroxides: Structural and magnetic properties study.Mater. Res. Innov.2022262768310.1080/14328917.2021.1902090
    [Google Scholar]
  27. LiuW. LiuY. YuanZ. LuC. Recent advances in the detection and removal of heavy metal ions using functionalized layered double hydroxides: A review.Ind Chem Mater20231799210.1039/D2IM00024E
    [Google Scholar]
  28. BrahmaD. SaikiaH. Synthesis of ZrO2/MgAl-LDH composites and evaluation of its isotherm, kinetics and thermodynamic properties in the adsorption of congo red dye.CTTA2022710006710.1016/j.ctta.2022.100067
    [Google Scholar]
  29. KunduS. NaskarM.K. Carbon-layered double hydroxide nanocomposite for efficient removal of inorganic and organic based water contaminants – unravelling the adsorption mechanism.Mat Adv20212113600361210.1039/D1MA00064K
    [Google Scholar]
  30. TangZ. QiuZ. LuS. ShiX. Functionalized layered double hydroxide applied to heavy metal ions absorption: A review.Nanotechnol. Rev.20209180081910.1515/ntrev‑2020‑0065
    [Google Scholar]
  31. AlnasrawiF.A. MohammedA.A. Enhancement of Cd2+ removal on CuMgAl-layered double hydroxide/] montmorillonite nanocomposite: Kinetic, isotherm, and thermodynamic studies.Arab. J. Chem.202316210447110.1016/j.arabjc.2022.104471
    [Google Scholar]
  32. SalemM.A.S. KhanA.M. ManeaY.K. WaniA.A. Nano chromium embedded in f-CNT supported CoBi-LDH nanocomposites for selective adsorption of Pb2+and hazardous organic dyes.Chemosphere202228913307310.1016/j.chemosphere.2021.133073 34861252
    [Google Scholar]
  33. MaX.R. WeiX.Y. DangR. A simple, environmentally friendly synthesis of recyclable magnetic γ-Fe2O3/Cd2+-Ni2+-Fe3+-CO32− layered double hydroxides for the removal of fluoride and cadmium ions. Adsorption capacity and the underlying mechanisms.Appl. Clay Sci.202121110619110.1016/j.clay.2021.106191
    [Google Scholar]
  34. KostićM. RadovićM. VelinovN. Synthesis of mesoporous triple-metal nanosorbent from layered double hydroxide as an efficient new sorbent for removal of dye from water and wastewater.Ecotoxicol. Environ. Saf.201815933234110.1016/j.ecoenv.2018.05.015 29775829
    [Google Scholar]
  35. FerreiraR.L.U. Sena-EvangelistaK.C.M. de AzevedoE.P. PinheiroF.I. CobucciR.N. PedrosaL.F.C. Selenium in human health and gut microflora: Bioavailability of selenocompounds and relationship with diseases.Front. Nutr.2021868531710.3389/fnut.2021.685317 34150830
    [Google Scholar]
  36. HolmesA.B. GuF.X. Emerging nanomaterials for the application of selenium removal for wastewater treatment.Environ. Sci. Nano20163598299610.1039/C6EN00144K
    [Google Scholar]
  37. AsiabiH. YaminiY. ShamsayeiM. Highly selective and efficient removal of arsenic(V), chromium(VI) and selenium(VI) oxyanions by layered double hydroxide intercalated with zwitterionic glycine.J. Hazard. Mater.201733923924710.1016/j.jhazmat.2017.06.042 28654788
    [Google Scholar]
  38. LiM. FarmenL.M. ChanC.K. Selenium removal from sulfate-containing groundwater using granular layered double hydroxide materials.Ind. Eng. Chem. Res.20175692458246510.1021/acs.iecr.6b04461
    [Google Scholar]
  39. LiM. DopilkaA. KraetzA.N. JingH. ChanC.K. Layered double hydroxide/chitosan nanocomposite beads as sorbents for selenium oxoanions.Ind. Eng. Chem. Res.201857144978498710.1021/acs.iecr.8b00466
    [Google Scholar]
  40. MaL. IslamS.M. XiaoC. Rapid simultaneous] removal of toxic anions [HSeO3]-, [SeO3]2-, and [SeO4]2-, and metals Hg2+, Cu2+, and Cd2+ by MoS42- intercalated layered double hydroxide.J. Am. Chem. Soc.201713936127451275710.1021/jacs.7b07123 28782951
    [Google Scholar]
  41. LiD. YanW. GuoX. TianQ. XuZ. ZhuL. Removal of selenium from caustic solution by adsorption with Ca Al layered double hydroxides.Hydrometallurgy202019110523110.1016/j.hydromet.2019.105231
    [Google Scholar]
  42. ZhangT. ZhaoB. ChenQ. PengX. YangD. QiuF. Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption.Appl Biol Chem20196211210.1186/s13765‑019‑0410‑z
    [Google Scholar]
  43. TeixeiraM.A. MagesteA.B. DiasA. VirtuosoL.S. SiqueiraK.P.F. Layered double hydroxides for remediation of industrial wastewater containing manganese and fluoride.J. Clean. Prod.201817127528410.1016/j.jclepro.2017.10.010
    [Google Scholar]
  44. HuangY. LiuC. RadS. HeH. QinL. A comprehensive review of layered double hydroxide-based carbon composites as an environmental multifunctional material for wastewater treatment.Processes202210461710.3390/pr10040617
    [Google Scholar]
  45. AbbasiM. SabzehmeidaniM.M. GhaediM. JannesarR. ShokrollahiA. Adsorption performance of calcined copper-aluminum layered double hydroxides/CNT/PVDF composite films toward removal of carminic acid.J. Mol. Liq.202132911555810.1016/j.molliq.2021.115558
    [Google Scholar]
  46. HuF. WangM. PengX. High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide.Colloids Surf. A Physicochem. Eng. Asp.201855531432310.1016/j.colsurfa.2018.07.010
    [Google Scholar]
  47. MeiQ. LvW. DuM. ZhengQ. Morphological control of poly(vinylidene fluoride)@layered double hydroxide composite fibers using metal salt anions and their enhanced performance for dye removal.RSC Advances2017774465764658810.1039/C7RA08282G
    [Google Scholar]
  48. MunondeT.S. SeptemberN.P. MpupaA. NomngongoP.N. Two agitation routes for the adsorption of Reactive Red 120 dye on NiFe LDH/AC nanosheets from wastewater and river water.Appl. Clay Sci.202221910643810.1016/j.clay.2022.106438
    [Google Scholar]
  49. WangJ. WangP. WangH. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI).ACS Sustain. Chem.& Eng.2017587165717410.1021/acssuschemeng.7b01347
    [Google Scholar]
  50. LinghuW. YangH. SunY. ShengG. HuangY. One-pot synthesis of LDH/GO composites as highly effective adsorbents for decontamination of U(VI).ACS Sustain. Chem.& Eng.2017565608561610.1021/acssuschemeng.7b01303
    [Google Scholar]
  51. ChengX. DengJ. LiX. WeiX. ShaoY. ZhaoY. Layered double hydroxides loaded sludge biochar composite for adsorptive removal of benzotriazole and Pb(II) from aqueous solution.Chemosphere2022287Pt 113196610.1016/j.chemosphere.2021.131966 34478960
    [Google Scholar]
  52. CuiQ. JiaoG. ZhengJ. WangT. WuG. LiG. Synthesis of a novel magnetic Caragana korshinskii biochar/Mg–Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions.RSC Advances2019932186411865110.1039/C9RA02052G 35515233
    [Google Scholar]
  53. TanY. YinX. WangC. Sorption of cadmium onto Mg-Fe layered double hydroxide (LDH)-kiwi branch biochar.ENV Pollut Bioavail201931118919710.1080/26395940.2019.1604165
    [Google Scholar]
  54. RashedS.H. Abd-ElhamidA.I. AbdalkarimS.Y.H. Preparation and characterization of layered-double hydroxides decorated on graphene oxide for dye removal from aqueous solution.J. Mater. Res. Technol.2022172782279510.1016/j.jmrt.2022.02.040
    [Google Scholar]
  55. StarukhG. RozovikO. OranskaO. Organo/Zn-Al LDH nanocomposites for cationic dye removal from aqueous media.Nanoscale Res. Lett.201611122810.1186/s11671‑016‑1402‑0 27119156
    [Google Scholar]
  56. NazirM.A. NajamT. JabeenS. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water.Inorg. Chem. Commun.202214511000810.1016/j.inoche.2022.110008
    [Google Scholar]
  57. DziewiątkaK. MatusikJ. RybkaK. Simultaneous scavenging of As(V) and safranin O dye by Mg/Al LDH-zeolite heterocoagulated materials: The effect of adsorbent synthesis approach on its efficiency in static and dynamic system.Separ. Purif. Tech.202230212207210.1016/j.seppur.2022.122072
    [Google Scholar]
  58. GhanbariN. GhafuriH. Design and preparation the novel polymeric layered double hydroxide nanocomposite (LDH/Polymer) as an efficient and recyclable adsorbent for the removal of methylene blue dye from water.Environ Technol Inno20222610237710.1016/j.eti.2022.102377
    [Google Scholar]
  59. SirajudheenP. MeenakshiS. Encapsulation of Zn–Fe layered double hydroxide on activated carbon and its litheness in tuning anionic and rhoda dyes through adsorption mechanism.Asia-Pac. J. Chem. Eng.2020155e247910.1002/apj.2479
    [Google Scholar]
  60. ShabbirR. GuA. ChenJ. Highly efficient removal of congo red and methyl orange by using petal-like Fe-Mg layered double hydroxide.Int. J. Environ. Anal. Chem.202210251060107710.1080/03067319.2020.1730343
    [Google Scholar]
  61. ShamsayeiM. YaminiY. AsiabiH. A novel diatomite supported layered double hydroxide as reusable adsorbent for efficient removal of acidic dyes.Int. J. Environ. Anal. Chem.202210281849186510.1080/03067319.2020.1743833
    [Google Scholar]
  62. ShabaniS. DinariM. Cu-Ca-Al-layered double hydroxide modified by itaconic acid as an adsorbent for anionic dye removal: Kinetic and isotherm study.Inorg. Chem. Commun.202113310891410.1016/j.inoche.2021.108914
    [Google Scholar]
  63. ChakrabortyA. AcharyaH. Selective removal of anionic dyes by metal–organic framework-anchored CoAl-layered double hydroxide nanosheets.ACS Appl. Nano Mater.2021411125611257510.1021/acsanm.1c03085
    [Google Scholar]
  64. MittalJ. Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review.J. Environ. Manage.202129511301710.1016/j.jenvman.2021.113017 34216900
    [Google Scholar]
  65. MallakpourS AzadiE DinariM Removal of cationic and anionic dyes using Ca-alginate and Zn-Al layered double hydroxide/metal-organic framework.Carbohydr Polym2023301Pt B12036210.1016/j.carbpol.2022.120362 36446499
    [Google Scholar]
  66. MallakpourS. RadfarZ. FeizM. Chitosan/tannic acid/ZnFe layered double hydroxides and mixed metal oxides nanocomposite for the adsorption of reactive dyes.Carbohydr. Polym.202330512052810.1016/j.carbpol.2022.120528 36737213
    [Google Scholar]
  67. ChengqianF. WanbingL. YiminD. Synthesis of a novel hierarchical pillared Sep@Fe3O4/ZnAl-LDH composite for effective anionic dyes removal.Colloids Surf. A Physicochem. Eng. Asp.202366313092110.1016/j.colsurfa.2023.130921
    [Google Scholar]
  68. GroverA MohiuddinI MalikAK Magnesium/ aluminum layered double hydroxides intercalated with starch for effective adsorptive removal of anionic dyes.J Hazard Mater2022424Pt B12745410.1016/j.jhazmat.2021.12745434655876
    [Google Scholar]
  69. El-AbboubiM. TaoufikN. MahjoubiF.Z. OussamaA. KzaiberF. BarkaN. Sorption of methyl orange dye by dodecyl-sulfate intercalated Mg-Al layered double hydroxides.Mater. Today Proc.202137Part 33894389710.1016/j.matpr.2020.08.602
    [Google Scholar]
  70. ChenM. BiR. ZhangR. YangF. ChenF. Tunable surface charge and hydrophilicity of sodium polyacrylate intercalated layered double hydroxide for efficient removal of dyes and heavy metal ions.Colloids Surf. A Physicochem. Eng. Asp.202161712638410.1016/j.colsurfa.2021.126384
    [Google Scholar]
  71. AhmedM.A. MohamedA.A. A systematic review of layered double hydroxide-based materials for environmental remediation of heavy metals and dye pollutants.Inorg. Chem. Commun.202314811032510.1016/j.inoche.2022.110325
    [Google Scholar]
  72. MiaoJ. ZhaoX. ZhangY.X. LeiZ.L. LiuZ.H. Preparation of hollow hierarchical porous CoMgAl-borate LDH ball-flower and its calcinated product with extraordinary adsorption capacity for Congo red and methyl orange.Appl. Clay Sci.202120710609310.1016/j.clay.2021.106093
    [Google Scholar]
  73. WuH. GaoH. YangQ. Removal of typical organic contaminants with a recyclable calcined chitosan-supported layered double hydroxide adsorbent: Kinetics and equilibrium isotherms.J. Chem. Eng. Data201863115916810.1021/acs.jced.7b00752
    [Google Scholar]
  74. RatheeG. SinghN. ChandraR. Simultaneous elimination of dyes and antibiotic with a hydrothermally generated NiAlTi layered double hydroxide adsorbent.ACS Omega2020552368237710.1021/acsomega.9b03785 32064398
    [Google Scholar]
  75. DaiX. YiW. YinC. 2D-3D magnetic NiFe layered double hydroxide decorated diatomite as multi-function material for anionic, cationic dyes, arsenate, and arsenite adsorption.Appl. Clay Sci.202222910666410.1016/j.clay.2022.106664
    [Google Scholar]
  76. Sharifi-BonabM. AberS. SalariD. KhodamF. Synthesis of CoZnAl‐layered double hydroxide/graphene oxide nanocomposite for the removal of methylene blue: Kinetic, thermodynamic, and isotherm studies.Environ. Prog. Sustain. Energy2020392e1331610.1002/ep.13316
    [Google Scholar]
  77. NatarajanS. NareshR. ThiagarajanV. Removal of anionic dyes from water using polyethylene glycol modified Ni‐Al‐layered double hydroxide nanocomposites.ChemistrySelect20205144165417410.1002/slct.202000051
    [Google Scholar]
  78. BrahmaD. NathH. BorahD. DebnathM. SaikiaH. Coconut husk ash fabricated CoAl-layered double hydroxide composite for the enhanced sorption of malachite green dye: Isotherm, kinetics and thermodynamic studies.Inorg. Chem. Commun.202214410987810.1016/j.inoche.2022.109878
    [Google Scholar]
  79. ChenY. ChenS. DengZ. Fabrication of polystyrene/CuO@calcined layered double hydroxide microspheres with high adsorption capacity for Congo red.Colloids Surf. A Physicochem. Eng. Asp.202265212982710.1016/j.colsurfa.2022.129827
    [Google Scholar]
  80. NatarajanS. AnithaV. GajulaG.P. ThiagarajanV. Synthesis and characterization of magnetic superadsorbent Fe 3 O 4 -PEG-Mg-Al-LDH nanocomposites for ultrahigh removal of organic dyes.ACS Omega2020573181319310.1021/acsomega.9b03153 32118134
    [Google Scholar]
  81. ChengqianF. YiminD. LingC. One-step coprecipitation synthesis of Cl− intercalated Fe3O4@SiO2 @MgAl LDH nanocomposites with excellent adsorption performance toward three dyes.Separ. Purif. Tech.202229512122710.1016/j.seppur.2022.121227
    [Google Scholar]
  82. MissauJ. BertuolD.A. TanabeE.H. Highly efficient adsorbent for removal of crystal violet dye from aqueous solution by CaAl/LDH supported on biochar.Appl. Clay Sci.202121410629710.1016/j.clay.2021.106297
    [Google Scholar]
  83. LiJ. YuH. ZhangX. ZhuR. YanL. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study.Front. Environ. Sci. Eng.20201435210.1007/s11783‑020‑1229‑x
    [Google Scholar]
  84. SoltaniR. MarjaniA. ShirazianS. A hierarchical LDH/MOF nanocomposite: Single, simultaneous and consecutive adsorption of a reactive dye and Cr(vi).Dalton Trans.202049165323533510.1039/D0DT00680G 32248208
    [Google Scholar]
  85. SunQ. TangM. HendriksenP.V. ChenB. Biotemplated fabrication of a 3D hierarchical structure of magnetic ZnFe2O4/MgAl-LDH for efficient elimination of dye from water.J. Alloys Compd.202082915455210.1016/j.jallcom.2020.154552
    [Google Scholar]
  86. DongY. KongX. LuoX. WangH. Adsorptive removal of heavy metal anions from water by layered double hydroxide: A review.Chemosphere2022303Pt 113468510.1016/j.chemosphere.2022.134685 35472618
    [Google Scholar]
  87. GuanX. YuanX. ZhaoY. Application of functionalized layered double hydroxides for heavy metal removal: A review.Sci. Total Environ.2022838Pt 115569310.1016/j.scitotenv.2022.155693 35526616
    [Google Scholar]
  88. FengX. LongR. WangL. LiuC. BaiZ. LiuX. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites.Separ. Purif. Tech.202228412009910.1016/j.seppur.2021.120099
    [Google Scholar]
  89. ChenZ. ZhangZ. QiJ. YouJ. MaJ. ChenL. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications.J. Hazard. Mater.202344112988910.1016/j.jhazmat.2022.129889 36087533
    [Google Scholar]
  90. ArokiasamyP. AbdullahM.M.A.B. Abd RahimS.Z. Diverse material based geopolymer towards heavy metals removal: A review.J. Mater. Res. Technol.20232212615610.1016/j.jmrt.2022.11.100
    [Google Scholar]
  91. ChaiW.S. CheunJ.Y. KumarP.S. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application.J. Clean. Prod.202129612658910.1016/j.jclepro.2021.126589
    [Google Scholar]
  92. BiswasA. ChandraB.P. C P. Highly efficient and simultaneous remediation of heavy metal ions (Pb(II), Hg(II), As(V), As(III) and Cr(VI)) from water using Ce intercalated and ceria decorated titanate nanotubes.Appl. Surf. Sci.202361215584110.1016/j.apsusc.2022.155841
    [Google Scholar]
  93. KamaliN. GhasemiJ.B. Mohammadi ZiaraniG. MoradianS. BadieiA. Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As(III) from aqueous solutions.Chin. J. Chem. Eng.20235337438010.1016/j.cjche.2022.01.023
    [Google Scholar]
  94. SahuS. KarP. BishoyiN. MallikL. PatelR.K. Synthesis of polypyrrole-modified layered double hydroxides for efficient removal of Cr(VI).J. Chem. Eng. Data201964104357436810.1021/acs.jced.9b00444
    [Google Scholar]
  95. dos Santos Azevedo LeiteV. de JesusB.G.L. de Oliveira DuarteV.G. Determination of chromium (VI) by dispersive solid-phase extraction using dissolvable Zn-Al layered double hydroxide intercalated with l-Alanine as adsorbent.Microchem. J.201914665065710.1016/j.microc.2019.01.063
    [Google Scholar]
  96. AshaP.K. DeepakK. PrashanthM.K. Ag decorated Zn-Al layered double hydroxide for adsorptive removal of heavy metals and antimicrobial activity: Numerical investigations, statistical analysis and kinetic studies.Environ. Nanotechnol. Monit. Manag.20232010078710.1016/j.enmm.2023.100787
    [Google Scholar]
  97. AbasiC.Y. DiagboyaP.N.E. DikioE.D. Layered double hydroxide of cobalt-zinc-aluminium intercalated with carbonate ion: Preparation and Pb(II) ion removal capacity.Int. J. Environ. Stud.201976225126510.1080/00207233.2018.1517935
    [Google Scholar]
  98. WazeerI. HizaddinH.F. HashimM.A. Hadj-KaliM.K. An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents.J. Environ. Chem. Eng.202210610857410.1016/j.jece.2022.108574
    [Google Scholar]
  99. PuniaP. BhartiM.K. ChaliaS. Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- A review.Ceram. Int.20214721526155010.1016/j.ceramint.2020.09.050
    [Google Scholar]
  100. Castañeda-RamírezA.A. Rojas-GarcíaE. López-MedinaR. García-MartínezD.C. Nicolás- Antúnez J, Maubert-Franco AM. Magnetite nanoparticles into Fe-BTC MOF as adsorbent material for the remediation of metal (Cu(II), Pb(II, As(III) and Hg(II)) ions-contaminated water.Catal. Today2022394-3969410210.1016/j.cattod.2021.11.007
    [Google Scholar]
  101. KothavaleV.P. SharmaA. DhavaleR.P. Carboxyl and thiol-functionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal ions from aqueous solutions: Studies of adsorption, kinetics, and isotherms.J. Phys. Chem. Solids202317211108910.1016/j.jpcs.2022.111089
    [Google Scholar]
  102. HouT. YanL. LiJ. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent.Chem. Eng. J.202038412333110.1016/j.cej.2019.123331
    [Google Scholar]
  103. XiongT. YuanX. WangH. Integrating the (311) facet of MnO2 and the fuctional groups of poly(m-phenylenediamine) in core-shell MnO2@poly(m-phenylenediamine) adsorbent to remove Pb ions from water.J. Hazard. Mater.202038912215410.1016/j.jhazmat.2020.122154 32004848
    [Google Scholar]
  104. DashS.K. NayakS. DasS. ParidaK. Smart 2D-2D nano-composite adsorbents of LDH-carbonaceous materials for the removal of aqueous toxic heavy metal ions: A review.Curr. Environ. Eng.201851203410.2174/2212717805666180111162743
    [Google Scholar]
  105. ZhouY. LiuZ. BoA. Simultaneous removal of cationic and anionic heavy metal contaminants from electroplating effluent by hydrotalcite adsorbent with disulfide (S2-) intercalation.J. Hazard. Mater.202038212111110.1016/j.jhazmat.2019.121111 31563089
    [Google Scholar]
  106. CarolinC.F. KumarP.S. SaravananA. JoshibaG.J. NaushadM. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review.J. Environ. Chem. Eng.2017532782279910.1016/j.jece.2017.05.029
    [Google Scholar]
  107. ChenL. TuQ. YangX. HuX. SunX. LiH. MgAl layered double hydroxides intercalated with EDTA: Cu(II) recovery and mechanism.ChemistrySelect2020536112991130410.1002/slct.202003011
    [Google Scholar]
  108. ZhangH. DaiZ. SuiY. Scavenging of U(VI) from impregnated water at uranium tailings repository by tripolyphosphate intercalated LDH.Ind. Eng. Chem. Res.20185750173181732710.1021/acs.iecr.8b04636
    [Google Scholar]
  109. BoumeriameH. Da SilvaE.S. CherevanA.S. ChafikT. FariaJ.L. EderD. Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting.Journal of Energy Chemistry20226440643110.1016/j.jechem.2021.04.050
    [Google Scholar]
  110. WangW. ZhangN. YeZ. HongZ. ZhiM. Synthesis of 3D hierarchical porous Ni–Co layered double hydroxide/N-doped reduced graphene oxide composites for supercapacitor electrodes.Inorg. Chem. Front.20196240741610.1039/C8QI01132J
    [Google Scholar]
  111. LuoX. HuangZ. LinJ. Hydrothermal carbonization of sewage sludge and in-situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb(II).J. Clean. Prod.202025812099110.1016/j.jclepro.2020.120991
    [Google Scholar]
  112. BehbahaniE.S. DashtianK. GhaediM. Fe3O4-FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous removal of Pb (II), Cd (II), and Cu (II) heavy metal ions.J. Hazard. Mater.202141012456010.1016/j.jhazmat.2020.124560 33243639
    [Google Scholar]
  113. BiR. YinD. LeiB. ChenF. ZhangR. LiW. Mercaptocarboxylic acid intercalated MgAl layered double hydroxide adsorbents for removal of heavy metal ions and recycling of spent adsorbents for photocatalytic degradation of organic dyes.Separ. Purif. Tech.202228912074110.1016/j.seppur.2022.120741
    [Google Scholar]
  114. TaheriS. Sedghi-AslM. GhaediM. Mohammadi-AslZ. RahmanianM. Magnetic layered double hydroxide composite as new adsorbent for efficient Cu (II) and Ni (II) ions removal from aqueous samples: Adsorption mechanism investigation and parameters optimization.J. Environ. Manage.202332911700910.1016/j.jenvman.2022.117009 36535146
    [Google Scholar]
  115. MahmoudR.K. KotpA.A. El-DeenA.G. FarghaliA.A. Abo El-ElaF.I. Novel and effective Zn-Al-GA LDH anchored on nanofibers for high-performance heavy metal removal and organic decontamination: Bioremediation approach.Water Air Soil Pollut.202023136310.1007/s11270‑020‑04629‑4
    [Google Scholar]
  116. CelikA. BakerD.R. ArslanZ. ZhuX. Highly efficient, rapid and simultaneous elimination of toxic heavy metals by the new 2D hybrid LDH-[Sn2S6 New 2D hybrid LDH-.Chem. Eng. J.2021426131696[Sn2S6]10.1016/j.cej.2021.131696
    [Google Scholar]
  117. ZhangL. TangS. JiangC. JiangX. GuanY. Simultaneous and efficient capture of inorganic nitrogen and heavy metals by polyporous layered double hydroxide and biochar composite for agricultural nonpoint pollution control.ACS Appl. Mater. Interfaces20181049430134303010.1021/acsami.8b15049 30431258
    [Google Scholar]
  118. HuangP. YanK. HongX. XiaM. WangF. Construction of the composites of nitrogen and sulfur-doped porous carbon and layered double hydroxides and the synergistic removal of heavy metal pollutants.Adv. Powder Technol.2022331110382410.1016/j.apt.2022.103824
    [Google Scholar]
  119. ChenH. GongZ. ZhuoZ. Tunning the defects in lignin-derived-carbon and trimetallic layered double hydroxides composites (LDH@LDC) for efficient removal of U(VI) and Cr(VI) in aquatic environment.Chem. Eng. J.202242813211310.1016/j.cej.2021.132113
    [Google Scholar]
  120. KobylinskaN. PuzyrnayaL. PshinkoG. Magnetic nanocomposites based on Zn,Al-LDH intercalated with citric and EDTA groups for the removal of U(vi) from environmental and wastewater: Synergistic effect and adsorption mechanism study.RSC Advances20221250321563217210.1039/D2RA05503A 36425713
    [Google Scholar]
  121. YuS LiuY AiY Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions.Environ Pollut.2018242Pt A11110.1016/j.envpol.2018.06.031 29957540
    [Google Scholar]
/content/journals/cms/10.2174/2666145417666230914104249
Loading
/content/journals/cms/10.2174/2666145417666230914104249
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test