Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

SLM technology has the advantages of high material utilization, a short processing cycle and a high degree of personalization. 316L stainless steel is widely used in many industrial fields for its excellent various properties. Formed parts made of 316L stainless steel by SLM technology have expanded the application prospects of 316L stainless steel. The article reviews the research progress of the forming process of SLM-formed 316L stainless steel. This paper mainly collates and classifies the research progress and main methods of powder making, processing and forming and post-treatment of 316L stainless steel in the SLM manufacturing process; it summarizes the influence of SLM process parameters on the forming quality and performance of 316L stainless steel. The 316L stainless steel parts formed by SLM have excellent various properties and are widely used in many industrial fields, playing an extremely important role in the development and construction of the country. Although the current SLM forming technology of 316L stainless steel cannot completely replace the traditional machining method, its advantages of “personalized manufacturing” are still the focus of future research in the field of mechanical engineering. With the future progress of science and technology, SLM technology in the field of 316L stainless steel parts forming and manufacturing will be further improved and developed, which will promote SLM technology to better meet the needs of the petrochemical, transportation, aerospace, nuclear industry and food and medical industry applications.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454265297231101081549
2023-11-28
2025-07-09
Loading full text...

Full text loading...

References

  1. VafadarA. GuzzomiF. RassauA. HaywardK. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges.Appl. Sci.2021113121310.3390/app11031213
    [Google Scholar]
  2. Van HoorewederB. ApersY. LietaertK. KruthJ.P. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.Acta Biomater.20174719320210.1016/j.actbio.2016.10.00527717912
    [Google Scholar]
  3. KhorasaniA. GibsonI. GoldbergM. LittlefairG. Production of Ti-6Al-4V acetabular shell using selective laser melting: Possible limitations in fabrication.Rapid Prototyping J.201723111012110.1108/RPJ‑11‑2015‑0159
    [Google Scholar]
  4. ChenC. MaJ. LiuY. LianG. ChenX. HuangX. Compressive behavior and property prediction of gradient cellular structures fabricated by selective laser melting.Mater. Today Commun.20233510585310.1016/j.mtcomm.2023.105853
    [Google Scholar]
  5. YapC.Y. ChuaC.K. DongZ.L. LiuZ.H. ZhangD.Q. LohL.E. SingS.L. Review of selective laser melting: Materials and applications.Appl. Phys. Rev.20152404110110.1063/1.4935926
    [Google Scholar]
  6. BedmarJ. RiquelmeA. RodrigoP. TorresB. RamsJ. Comparison of different additive manufacturing methods for 316L stainless steel.Materials20211421650410.3390/ma1421650434772039
    [Google Scholar]
  7. DuS. AyiguliK. ZhangY.T. WurikaixiA. Mechanical properties of 316L stainless steel lattice structure prepared by selective laser melting.J. Laser Optoelectron Progress.20225919255263
    [Google Scholar]
  8. LiG. XuW. JinX. LiuL. DingS. LiC. The machinability of stainless steel 316 L fabricated by selective laser melting: Typical cutting responses, white layer and evolution of chip morphology.J. Mater. Process. Technol.202331511792610.1016/j.jmatprotec.2023.117926
    [Google Scholar]
  9. ChenH. LiW. HuangY. XieZ. ZhuX. LiuB. WangB. Molten pool effect on mechanical properties in a selective laser melting 316 L stainless steel at high-velocity deformation.Mater. Charact.202219411240910.1016/j.matchar.2022.112409
    [Google Scholar]
  10. ChenL.Y. LiangS.X. LiuY. ZhangL.C. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges.Mater. Sci. Eng. Rep.202114610064810.1016/j.mser.2021.100648
    [Google Scholar]
  11. AvanziniA. Fatigue behavior of additively manufactured stainless steel 316L.Materials20221616510.3390/ma1601006536614414
    [Google Scholar]
  12. ZhangM. SunC.N. ZhangX. GohP.C. WeiJ. HardacreD. LiH. Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters.Mater. Sci. Eng. A201770325126110.1016/j.msea.2017.07.071
    [Google Scholar]
  13. ZhangL.C. WangL. Selective laser melting of titanium alloys: Processing, microstructure and properties.J. Develop App Biomed Titanium Alloys.201821739310.2174/9781681086194118010006
    [Google Scholar]
  14. ZhangW. WangL. FengZ. ChenY. Research progress on selective laser melting (SLM) of magnesium alloys: A review.J. Opt.2020207163842
    [Google Scholar]
  15. RiabovD. HryhaE. RashidiM. BengtssonS. NyborgL. Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturing.Surf. Interface Anal.2020521169470610.1002/sia.6846
    [Google Scholar]
  16. LiL. DaiY. Analysis of the characteristics of laser- selective melting powder for additive manufacturing.J. Adv. Mater. Ind.201829015660
    [Google Scholar]
  17. WangC. LiangJ. LiuZ. LiuY. YangZ. SunY. LiuC. A high-strength stainless steel powder for SLM, preparation method and its printing process.C.N. Patent 114393206B2022
  18. FanminS. SuiyuanC. MingweiW. JingL. ChangshengL. The structure and properties of Inconel 718 superalloy powder prepared by vacuum induction melting gas atomization for laser direct metal deposition.Mater. Res. Express20186202656610.1088/2053‑1591/aaf1d6
    [Google Scholar]
  19. ChenY.Y. XiaoZ.Y. LiS.K. ZouH.P. LiB. Research progress on the preparation methods of metal powder for 3D printing.J. Powder Metall. Ind.20182845661
    [Google Scholar]
  20. HoegesS. ZwirenA. SchadeC. Additive manufacturing using water atomized steel powders.Met. Powder Rep.201772211111710.1016/j.mprp.2017.01.004
    [Google Scholar]
  21. RenZ. ZhuS. WangX. ZhaoY. HanG. ZhouK. WangW. TianG. Preparation and microstructure of multi-component high entropy alloy powders fabricated by gas atomization method.Metals202313243210.3390/met13020432
    [Google Scholar]
  22. ShangQ. L. ZhangW. BaoC.J. WangY.W. Preparation technology of spherical metal powder for 3D printing.J. Yunnan Metall.201847066467
    [Google Scholar]
  23. SupriadiS. SusimahT.I. AkbarM.H.S. SuharnoB. BaskoroA.S. DharmantoD. Effect of pressure on the gas atomizer to fabricate stainless steel metal powder.Key Eng. Mater.2020833545810.4028/www.scientific.net/KEM.833.54
    [Google Scholar]
  24. WuW. WuK. XiaoY. Effect of atomization pressure on the properties of 316L stainless steel powders used in 3D printing.J. Powder Metall Technol.20173528388
    [Google Scholar]
  25. HongM.H. KwonT.Y. Characteristics analysis of Ni-Cr metal powder for selective laser melting process produced by high pressure water atomized technology.Korean J. Dental Mater.201643328929810.14815/kjdm.2016.43.3.289
    [Google Scholar]
  26. BeckersD. EllendtN. FritschingU. UhlenwinkelV. Impact of process flow conditions on particle morphology in metal powder production via gas atomization.Adv. Powder Technol.202031130031110.1016/j.apt.2019.10.022
    [Google Scholar]
  27. ZhangK. YangB. QinL. LiK. ZuoZ. ZhaoX. LaiY. LiangS. Research progress of powder preparation technology for metal additive manufacturing.J. MW Metal Forming.202385832431
    [Google Scholar]
  28. ChenW.D. WangB.F. ZhuX.B. ChenH.Y. ZhangD.K. Controlling microstructure of 316L stainless steel by selective laser melting process.J. Mining Metallur. Eng.20224203153157
    [Google Scholar]
  29. MostafaeiA. TomanJ. StevensE.L. HughesE.T. KrimerY.L. ChmielusM. Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders.Acta Mater.201712428028910.1016/j.actamat.2016.11.021
    [Google Scholar]
  30. Arumugham AkilanA. NathS.D. EnnetiR.K. GuptaG. AtreS.V. Mechanical and corrosion properties of gas and water atomized laser-powder bed fusion fabricated 25Cr7Ni stainless steel.Manuf. Lett.202231606310.1016/j.mfglet.2021.07.006
    [Google Scholar]
  31. IrrinkiH. JangamJ.S.D. PasebaniS. BadweS. StitzelJ. KateK. GulsoyO. AtreS.V. Effects of particle characteristics on the microstructure and mechanical properties of 17-4 PH stainless steel fabricated by laser-powder bed fusion.Powder Technol.201833119220310.1016/j.powtec.2018.03.025
    [Google Scholar]
  32. LiW.S. XingJ. ZhangJ. SongQ. SunY.J. ChengB. HeD.Q. Microstructure and anti-corrosion behavior in 3.5% NaCl of warm compacted and sintered 316L.J. Rare Metal Mater. Eng.2022511247144725
    [Google Scholar]
  33. KaplanskiiY.Y. ZaitsevA.A. SentyurinaZ.A. LevashovE.A. PogozhevY.S. LoginovP.A. LogachevI.A. The structure and properties of pre-alloyed NiAl-Cr(Co,Hf) spherical powders produced by plasma rotating electrode processing for additive manufacturing.J. Mater. Res. Technol.20187446146810.1016/j.jmrt.2018.01.003
    [Google Scholar]
  34. DaiY. YangJ. TanX. DengJ. A high-speed rotating brushless plasma electrode device.C.N. Patent 203700554U2014
  35. LiangS. ChenX. ZengG. HanZ. ZhangP. ZhangP. The transmission device of plasma rotary electrode powder making equipment.C.N. Patent 203649405U2014
  36. RuanG. LiuC. QuH. GuoC. LiG. LiX. ZhuQ. A comparative study on laser powder bed fusion of IN718 powders produced by gas atomization and plasma rotating electrode process.Mater. Sci. Eng. A202285014358910.1016/j.msea.2022.143589
    [Google Scholar]
  37. ZhaoY. CuiY. NumataH. BianH. WakoK. YamanakaK. AoyagiK. ChibaA. Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process.Sci. Rep.20201011844610.1038/s41598‑020‑75503‑w33116207
    [Google Scholar]
  38. CuiY. ZhaoY. NumataH. YamanakaK. BianH. AoyagiK. ChibaA. Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process.Powder Technol.202139330131110.1016/j.powtec.2021.07.062
    [Google Scholar]
  39. ZhangQ. YuD. ZhangP. ShenY. LiuJ. XiaoY. Modeling and analysis of the plasma primary atomization for controllable preparation of high-quality spherical metal powders.J. Mater. Process. Technol.202230911775310.1016/j.jmatprotec.2022.117753
    [Google Scholar]
  40. ZhuH. TongH. YangF. ChengC. Plasma-assisted preparation and characterization of spherical stainless steel powders.J. Mater. Process. Technol.201825255956610.1016/j.jmatprotec.2017.10.010
    [Google Scholar]
  41. ChenL.J. ChenW.B. LiuC.D. ChengC.M. TongH.H. Preparation of spherical wc metal ceramic powders using an induction coupled thermal plasma.J. High Voltage Eng.2018440930433048
    [Google Scholar]
  42. SlotwinskiJ.A. GarbocziE.J. StutzmanP.E. FerrarisC.F. WatsonS.S. PeltzM.A. “Characterization of metal powders used for additive manufacturing”, J.J. Res. Natl. Inst. Stand. Technol.201411946049310.6028/jres.119.01826601040
    [Google Scholar]
  43. AbdelwahedM. BengtssonS. CasatiR. LarssonA. PetrellaS. VedaniM. Effect of water atomization on properties of type 4130 steel processed by L-PBF.Mater. Des.202121011008510.1016/j.matdes.2021.110085
    [Google Scholar]
  44. MatsagopaneG. OlakanmiE.O. BotesA. KutuaS. Conceptual design framework for setting up aluminum alloy powder production system for selective laser melting (SLM) process.J. Miner. Met. Mater. Soc.20197151840185710.1007/s11837‑019‑03431‑w
    [Google Scholar]
  45. DuY. ZhaoZ. BaiP. LiX. ZhangW. LiJ. Research on 17–4PH stainless steels by selective laser melting.J. Powder Metallur Technol.2022403267276
    [Google Scholar]
  46. MartinichJ. An installation for additive manufacturing by SLM or SLS.U.S. Patent 20224020342022
  47. WanQ. HuX. ZhongW. HeX. CaiX. A powder metallurgy-based SLM metal 3D printer.C.N. Patent 115533128A2022
  48. WangH. MaZ. A metal 3d printer based on SLM technology.C.N. Patent 112846236B2022
  49. LiC. YaoZ. ChenG. Selective laser melting device and printing method.C. N. Patent 108788141A2018
  50. NikolaevichG.S. PetrovichN.A. VasilevnaT.T. AleksandrovichE.S. AleksandrovichG.E. Device for production of products by selective laser melting.R.U. Patent 2778389C12022
  51. FasanoA.C.A. Selective laser melting system and method of using same.U.S. Patent 114070342022
  52. DaiJ. ZhangZ. WeiD. MaG. WangH. YuanS. XuR. Selective laser melting equipment.C.N. Patent 306297888S2021
  53. HaoD. KongL. HanY. ZengG. Double-powder rapid switching type selective laser melting device.E.P. Patent 41406212023
  54. WangL. ChenW. A powder feeding device for SLM printers.C. N. Patent 115519122A2022
  55. TengZ. ZengM. LiuX. ZhouG. ChenY. GaoY. A bi-directional powder spreading device, SLM equipment and bi-directional powder spreading method.C.N. Patent 115502422A2022
  56. ZhaoQ. FanY. A squeegee structure for 3D printers for SLM.C.N. Patent 115464160A2022
  57. ZhouH. LiangY. ZhangY. A scraping device for SLM metal 3D printing.C.N. Patent 217749350U2022
  58. ZhuY. MaoD. ZhengX. ShenT. Research on overlapping melting scanning method of selective laser melting.Hot Work. Technol.20235215133138
    [Google Scholar]
  59. LiuY. LuoJ. ZhangJ. YanM. LaiY. SLM-based 3D printing method for metal components.C.N. Patent 113770379A2021
  60. XiuY. HeS. GuoS. Preparation of high strength and high plasticity Inconel 718 alloy based on SLM.C.N. Patent 113477942A2021
  61. YaoP. LiuK. WangW. WangX. LiG. ZhangS. LiP. WuX. A SLM-type 3D printing CuFe alloy preparation method.C.N. Patent 111822710B2020
  62. LiD. ZhaoN. YeY. LiuF. DingY. XieF. JiangS. A SLM molding method for high-temperature alloy materials.C.N. Patent 115488353A2022
  63. NaukaK. JangamD.S.J. ChangS. Selective laser melting (SLM) additive manufacturing.U.S. Patent 114005442022
  64. TizianoA. MarcM.E. AndreasB. Method for performing selective laser melting of metal powder.E.P. Patent 39008582021
  65. LiH. YangH. BaiJ. WangL. PengD. WangY. Method for forming a multi-material part by selective laser melting.U.S. Patent 116077302023
  66. VeronF. VendierO. TailhadesP. Baco-carlesV. KiryukhinaK. Method for manufacturing a multi-material part by additive manufacturing, using the technique of powder bed selective laser melting or selective laser sintering.U.S. Patent 20230585952023
  67. WangH. PengY. ZhaoL. TianZ. Research progress and prospecton selective melting 3D printing of TiAl-based alloys.J. Sur. Technol2021501173186
    [Google Scholar]
  68. SongH. ZhangQ. ZhouX. ZhangB. LiH. Design method for process conditions to improve the quality performance of laser-selective melting parts.C.N. Patent 115659830A2023
  69. ZhouJ. HuangY. TongX. YangJ. WangX. Process and mechanical properties of cucrzr alloy fabricated by selective laser melting.J. Applied Laser.20224234352
    [Google Scholar]
  70. ZhangY. LvX. YangK. MaoY. Relationship between defects and mechanical properties of titanium alloy parts formed byselective laser melting.J. MW Metal Forming.20238583111
    [Google Scholar]
  71. ZhouX. LiuX. ZhangD. ShenZ. LiuW. Balling phenomena in selective laser melted tungsten.J. Mater. Process. Technol.2015222334210.1016/j.jmatprotec.2015.02.032
    [Google Scholar]
  72. LvJ. JiaC. YangJ. Effect of laser energy density on forming quality of selective laser melting.J. Hot Working Technol.20184720156159
    [Google Scholar]
  73. WangD. LiuY. YangY. XiaoD. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting.Rapid Prototyping J.201622470671610.1108/RPJ‑06‑2015‑0078
    [Google Scholar]
  74. YanC. YangL. DaiW. ShiL. LiN. Effect of process parameters on surface quality of laser selective melting 316l stainless steel.J. Hot Working Technol.20174620170174
    [Google Scholar]
  75. YangL.J. YanK. DengY.H. ShiD.Y. WenP. LiY.H. Effect of process parameters on surface quality of TC4 alloy by laser selective melting.J. Applied Laser.202242054350
    [Google Scholar]
  76. HuangW.D. ZhangW.J. LianG.F. Effect of SLM forming process parameters on surface roughness of 316l stainless steel parts.J. Applied Laser.20204013541
    [Google Scholar]
  77. LiH.Y. LiZ.H. YangR. TengB.R. ShenJ.B. Research progress in forming quality control of selective laser melting metal surface.J. Surface Technol.20204909118125
    [Google Scholar]
  78. MaamounA. XueY. ElbestawiM. VeldhuisS. Effect of selective laser melting process parameters on the quality of Al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy.Materials20181112234310.3390/ma1112234330469468
    [Google Scholar]
  79. XuK.C. WangK. XuR.X. ShenZ. Study on process parameters of selective laser melting 316L stainless steel.J. Aeroengine.2022481110115
    [Google Scholar]
  80. JiW. XuL. DaiS. ZhangZ. Effect of process parameters on hardness and microstructure of 316L stainless steelmanufactured by selective laser melting.J. Mater. Reports.202135222212522131
    [Google Scholar]
  81. LiuS.M. WangT. WangC.F. TongY.X. LiaoX.L. RSM-based laser additive manufacturing of 316L stainless steel for dimensional accuracy study.J. Manufact. Upgrading Today.20231560246
    [Google Scholar]
  82. LeiL. LiY. HeY. ChenX. FuJ. Method for prefabricating air hole defect by means of controlled SLM process.E.P. Patent 41406202023
  83. ZhaoC. ZhangJ. LiuJ. Selective laser melting of 316L stainless steel powder molding process optimization.J. Heilongjiang Ins. Sci. Technol.20132314750
    [Google Scholar]
  84. CherryJ.A. DaviesH.M. MehmoodS. LaveryN.P. BrownS.G.R. SienzJ. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting.Int. J. Adv. Manuf. Technol.2015765-886987910.1007/s00170‑014‑6297‑2
    [Google Scholar]
  85. LiR. LiuJ. ShiY. DuM. XieZ. 316L stainless steel with gradient porosity fabricated by selective laser melting.J. Mater. Eng. Perform.201019566667110.1007/s11665‑009‑9535‑2
    [Google Scholar]
  86. YangJ. HanJ. YuH. YinJ. GaoM. WangZ. ZengX. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy.Mater. Des.201611055857010.1016/j.matdes.2016.08.036
    [Google Scholar]
  87. YadroitsevI. SmurovI. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape.Phys. Procedia2010555156010.1016/j.phpro.2010.08.083
    [Google Scholar]
  88. KamathC. El-dasherB. GallegosG.F. KingW.E. SistoA. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W.Int. J. Adv. Manuf. Technol.2014741-4657810.1007/s00170‑014‑5954‑9
    [Google Scholar]
  89. LaohaprapanonA. JeamwatthanachaiP. WongcumchangM. ChantarapanichN. ChantaweroadS. SitthiseripratipK. WisutmethangoonS. Optimal scanning condition of selective laser melting processing with stainless steel 316L powder.Adv. Mat. Res.2012341816820
    [Google Scholar]
  90. HuZ. NagarajanB. SongX. HuangR. ZhaiW. WeiJ. Formation of SS316L single tracks in micro selective laser melting:Surface,geometry,and defects.J. Adv Mater Sci Eng.2019201919
    [Google Scholar]
  91. HanJ.F. HuY.Q. ZhangH. Effect of scanning speed on SLM forming density.J. China Metalforming Equip. Manufactur. Technol.202257059497
    [Google Scholar]
  92. LiveraniE. ToschiS. CeschiniL. FortunatoA. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel.J. Mater. Process. Technol.201724925526310.1016/j.jmatprotec.2017.05.042
    [Google Scholar]
  93. ZhuY. PengT. JiaG. ZhangH. XuS. YangH. Electrical energy consumption and mechanical properties of selective-laser-melting-produced 316L stainless steel samples using various processing parameters.J. Clean. Prod.2019208778510.1016/j.jclepro.2018.10.109
    [Google Scholar]
  94. KrakhmalevP. FredrikssonG. SvenssonK. YadroitsevI. YadroitsavaI. ThuvanderM. PengR. Microstructure, solidification texture, and thermal stability of 316 L stainless steel manufactured by laser powder bed fusion.Metals20188864310.3390/met8080643
    [Google Scholar]
  95. TuchoW.M. LysneV.H. AustbøH. Sjolyst-KvernelandA. HansenV. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L.J. Alloys Compd.201874091092510.1016/j.jallcom.2018.01.098
    [Google Scholar]
  96. MaM. WangZ. ZengX. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition.Mater. Sci. Eng. A201768526527310.1016/j.msea.2016.12.112
    [Google Scholar]
  97. SaeidiK. GaoX. LofajF. KvetkováL. ShenZ.J. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting.J. Alloys Compd.201563346346910.1016/j.jallcom.2015.01.249
    [Google Scholar]
  98. SunZ. TanX. TorS.B. YeongW.Y. Selective laser melting of stainless steel 316L with low porosity and high build rates.Mater. Des.201610419720410.1016/j.matdes.2016.05.035
    [Google Scholar]
  99. JiangH.Z. FangJ.H.Y. ChenQ.S. YaoS.K. SunH.L. HouJ.Y. HuQ.Y. AndZ.Y. State of the art of selective laser melted 316l stainless steel: Process, microstructure, and mechanical properties.J. Chinese J. Lasers.20224914309329
    [Google Scholar]
  100. YuJ. DingH. GengY. XuJ. ZaiC. Research progress on post-processing of metal parts by selective laser melting.J. Mater. Reports.202236S1392400
    [Google Scholar]
  101. ZhuX. LiuX. LuC. YangH. A heat treatment method for SLM formed stainless steel products.C.N. Patent 110157862A2019
  102. WangN. HeK. WangT. WangC. A heat treatment method for SLM formed gun steel products.C.N. Patent 111020123A2020
  103. MaZ. ZhaoY. LiuY. Heat treatment method for forming GH4099 alloy components by laser-selective melting.C.N.Patent 113751724A2021
  104. SohrabpoorH. SalarvandV. LupoiR. ChuQ. LiW. AldwellB. StanleyW. O’HalloranS. RaghavendraR. ChoiC.H. BrabazonD. Microstructural and mechanical evaluation of post-processed SS 316L manufactured by laser-based powder bed fusion.J. Mater. Res. Technol.20211221022010.1016/j.jmrt.2021.02.090
    [Google Scholar]
  105. BianP. Effect of heat treatment on residual stress and microstructure of 316L stainless steel powderformed by selective laser melting.J. Transac. Mater. Heat Treat.201940049097
    [Google Scholar]
  106. LiJ. LiuY. ShiW. WangP. ZhangY. Effects of process parameters of both selective laser melting forming and heat treating onmechanical properties and surface quality of 316L steel test block.J. Shanghai Metals.20194121823
    [Google Scholar]
  107. YadollahiA. ShamsaeiN. ThompsonS.M. SeelyD.W. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel.Mater. Sci. Eng. A201564417118310.1016/j.msea.2015.07.056
    [Google Scholar]
  108. HouD. SongR. XiangJ. ChenS. RenP. Effect of solution treatment on microstructure and properties of 316L stainless steel.J. Transac. Mater. Heat Treat.201031126165
    [Google Scholar]
  109. LiuC. RenG. XuS. PanY. Effect of solution and double aging treatment on microstructure and properties of 316lstainless steel prepared by selective laser melting.J. Transac. Mater. Heat Treat.20224328086
    [Google Scholar]
  110. SunX. LiuX. WangL. QianY. Influence of solution annealing on lntergranular corrosion resistance of 316L stainless steel.J. Corrosion Sci. Protec. Technol.2014263228232
    [Google Scholar]
  111. ZhaoZ. QuH. LiJ. BaiP. LiX. WangY. LiZ. WuL. LiL. A method of SLM forming 316L components to eliminate support structures.C.N. Patent 108723368B2020
  112. ZhaoX. LiX. WangJ. XueL. HuQ. A numerical simulation method for additive manufacturing post-processing wire cutting process.C.N. Patent 107992649A2018
  113. GuoJ. GohM. ZhuZ. LeeX. NaiM.L.S. WeiJ. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy.Mater. Des.201815321122010.1016/j.matdes.2018.05.012
    [Google Scholar]
  114. HouZ. XiuS. SunC. YaoY. Effect of machining-induced surface topography on corrosion behaviors of 304 austenitic stainless steel in pre-stress grinding.Int. J. Adv. Manuf. Technol.20221227-82971298510.1007/s00170‑022‑10083‑9
    [Google Scholar]
  115. RotellaG. ImbrognoS. CandamanoS. UmbrelloD. Surface integrity of machined additively manufactured Ti alloys.J. Mater. Process. Technol.201825918018510.1016/j.jmatprotec.2018.04.030
    [Google Scholar]
  116. LiC. LiuD. LiuG. LiuS. JinX. BaiY. Surface characteristics enhancement and morphology evolution of selective-laser-melting (SLM) fabricated stainless steel 316L by laser polishing.Opt. Laser Technol.202316210924610.1016/j.optlastec.2023.109246
    [Google Scholar]
  117. BagherifardS. BerettaN. MontiS. RiccioM. BandiniM. GuaglianoM. On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing.Mater. Des.20181455284110.1016/j.matdes.2018.02.055
    [Google Scholar]
  118. HackelL. RankinJ.R. RubenchikA. KingW.E. MatthewsM. Laser peening: A tool for additive manufacturing post-processing.Addit. Manuf.201824677510.1016/j.addma.2018.09.013
    [Google Scholar]
  119. JinoopA.N. SubbuS.K. PaulC.P. PalaniI.A. Post-processing of laser additive manufactured inconel 718 using laser shock peening.Int. J. Precis. Eng. Manuf.20192091621162810.1007/s12541‑019‑00147‑4
    [Google Scholar]
  120. ShiY. JianY. LiuJ. NiC. A pulse type abrasive grain flow polishing device and method.C.N. Patent 109352536B2019
  121. LiuW. LyuQ. LeiL. HouY. ShiL. Study on high quality surface finishing technology of pre-spinning nozzle in additive manufacturing.Xibei Gongye Daxue Xuebao/J. Northwestern Polytech. Uni.202139233434010.1051/jnwpu/20213920334
    [Google Scholar]
  122. WuJ. ZhaoJ. QiaoH. LuY. SunB. HuT. ZhangQ. The application status and development of laser shock processing.J. Opto-Electron. Eng.2018452170690
    [Google Scholar]
  123. YangQ. FuX. ZhouW. Research status and application progress of laser shot peening surface strengthening technology.J. Aeronaut. Manufact. Technol.202063121422
    [Google Scholar]
/content/journals/cms/10.2174/0126661454265297231101081549
Loading
/content/journals/cms/10.2174/0126661454265297231101081549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test