Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Aim

A series of nickel doped cobalt (NiCoFeO, x=0.0 to 1.0) were successfully synthesized using green synthesized process.

Methods

Tensile strain of all positive slope samples observed from the W-H (Williamson Hall) plot. It was discovered that as Ni-substitution increased, the dielectric constant (є’) increased from 148.07 to 243.62. Conversely, when the amount of Ni-substitution increases, the dielectric loss (tan δ from 0.23 to 0.05), imaginary part (є” from 98.81 to 17.87), and ac conductivity (σ from 1.62 to 0.15) all decreases at 1MHz frequency.

Results

This demonstrates that when Ni-substitution increases, energy losses at high frequencies decrease. Dielectric constant and ac conductivity, of all samples act in accordance with Koop's theory, the Maxwell-Wagner polarization procedure, and electron hopping.

Conclusion

This makes them suitable materials for high-frequency applications.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454279603231113165113
2023-12-04
2025-06-20
Loading full text...

Full text loading...

References

  1. ZhangW. SunA. ZhaoX. Structural and magnetic properties of Ni-Cu-Co ferrites prepared from sol-gel auto combustion method with different complexing agents.J. Alloys Compd.202081615250110.1016/j.jallcom.2019.152501
    [Google Scholar]
  2. SamavatiA. MustafaM.K. IsmailA.F. OthmanM.H.D. RahmanM.A. Copper-substituted cobalt ferrite nanoparticles: Structural, optical and antibacterial properties.Mater. Express20166647348210.1166/mex.2016.1338
    [Google Scholar]
  3. RahmanM.T. VargasM. RamanaC.V. Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite.J. Alloys Compd.201461754756210.1016/j.jallcom.2014.07.182
    [Google Scholar]
  4. KharbandaS. DhandaN. Aidan SunA-C. ThakurA. ThakurP. Multiferroic perovskite bismuth ferrite nanostructures: A review on synthesis and applications.J. Magn. Magn. Mater.202357217056910.1016/j.jmmm.2023.170569
    [Google Scholar]
  5. MalaieK GanjaliMR AlizadehT NorouziP Hydrothermal growth of magnesium ferrite rose nanoflowers on Nickel foam; Application in high-performance asymmetric supercapacitors,J Mater Sci Mater Electron2018291650e657
    [Google Scholar]
  6. IsmailF.M. RamadanM. AbdellahA.M. IsmailI. AllamN.K. Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors.J. Electroanal. Chem.2018817111117
    [Google Scholar]
  7. DhandaN. ThakurP. ThakurA. Green synthesis of cobalt ferrite: A study of structural and optical properties, materials Today.Proceedings20237323724010.1016/j.matpr.2022.07.202
    [Google Scholar]
  8. KwonJ. KimJ.H. KangS.H. ChoiC.J. RajeshJ.A. AhnK.S. Facile hydrothermal synthesis of cubic spinel AB2O4 type MnFe2O4 nanocrystallites and their electrochemical performance.Appl. Surf. Sci.20174138391
    [Google Scholar]
  9. DhandaN. ThakurP. KumarR. Green‐synthesis of Ni‐Co nanoferrites using aloe vera extract: Structural, optical, magnetic, and antimicrobial studies.Appl. Organomet. Chem.2023377e711010.1002/aoc.7110
    [Google Scholar]
  10. DhandaN. ThakurP. An-Cheng.Sun, Structural, optical and magnetic properties along with antifungal activity of Ag-doped Ni-Co nanoferrites synthesized by eco-friendly route.J. Magn. Magn. Mater.202357217059810.1016/j.jmmm.2023.170598
    [Google Scholar]
  11. GabalM.A. Al-LuhaibiR.S. Al AngariY.M. MneZn nano-crystalline ferrites synthesized from spent ZneC batteries using novel gelatin method.J. Hazard. Mater.2013246227233
    [Google Scholar]
  12. ThakurP. GahlawatN. PuniaP. KharbandaS. RaveloB. ThakurA. Cobalt nanoferrites: A review on synthesis, characterization, and applications.J. Supercond. Nov. Magn.202235102639266910.1007/s10948‑022‑06334‑1
    [Google Scholar]
  13. DhandaN. KumariS. KumarR. KumarD. Influence of Ni over magnetically benign Co ferrite system and study of its structural, optical, and magnetic behaviour.Inorganic Chemistry Communications202315111056910.1016/j.inoche.2023.110569
    [Google Scholar]
  14. RanjanR. KumarR. ChoudharyR. Effect of Sm substitution on structural, dielectric, and transport properties of PZT ceramics.Physics Res. Int.2009Vol. 2009
    [Google Scholar]
  15. JoshiS. KumarM. ChhokerS. SrivastavaG. JewariyaM. SinghV.N. Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method.J. Mol. Struct.20141076556210.1016/j.molstruc.2014.07.048
    [Google Scholar]
  16. LuZ. GaoP. MaR. XuJ. WangZ. RebrovE.V. Structural, magnetic and thermal properties of one-dimensional CoFe2O4 microtubes.J. Alloys Compd.201666542843410.1016/j.jallcom.2015.12.262
    [Google Scholar]
  17. ShiM. ZuoR. XuY. Preparation and characterization of CoFe2O4 powders and films via the sol-gel method.J. Alloys Compd.2012512116517010.1016/j.jallcom.2011.09.057
    [Google Scholar]
  18. SharifiI. ShokrollahiH. DoroodmandM.M. SafiR. Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods.J. Magn. Magn. Mater.2012324101854186110.1016/j.jmmm.2012.01.015
    [Google Scholar]
  19. KumarP. SharmaS.K. KnobelM. SinghM. Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique.J. Alloys Compd.2010508111511810.1016/j.jallcom.2010.08.007
    [Google Scholar]
  20. SwatsitangE. PhokhaS. HunpratubS. Characterization and magnetic properties of cobalt ferrite nanoparticles.J. Alloys Compd.201666479279710.1016/j.jallcom.2015.12.230
    [Google Scholar]
  21. LakshmiM. KumarK.V. ThyagarajanK. Study of the dielectric behaviour of Cr-doped zinc nano ferrites synthesized by sol-gel method.Advances in Materials Physics and Chemistry20166614114810.4236/ampc.2016.66015
    [Google Scholar]
  22. SattarA. RahmanS.A. Dielectric properties of rare earth substituted Cu–Zn ferrites.In: physica status solidi.200320041542210.1002/pssa.200306663
    [Google Scholar]
  23. HsiangH-I. ChenT.H. Dielectric and magnetic properties of low-temperature-fired ferrite-dielectric composites.J. Am. Ceram. Soc.20089162043204610.1111/j.1551‑2916.2008.02361.x
    [Google Scholar]
  24. VermaK. KumarA. VarshneyD. Dielectric relaxation behavior of AxCo1−xFe2O4 (A=Zn, Mg) mixed ferrites.J. Alloys Compd.2012526919710.1016/j.jallcom.2012.02.089
    [Google Scholar]
  25. QuY. YangH. YangN. FanY. ZhuH. ZouG. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles.Mater. Lett.20066029-303548355210.1016/j.matlet.2006.03.055
    [Google Scholar]
  26. KolekarY.D. SanchezL.J. RamanaC.V. Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite.J. Appl. Phys.20141151414410610.1063/1.4870232
    [Google Scholar]
  27. KanamadiC.M. PujariL.B. ChouguleB.K. Dielectric behaviour and magnetoelectric effect in (x)Ni0.8Cu0.2 Fe2O4+] (1-x)Ba0.9Pb0.1Ti0.9Zr0.1O3 ME composites.J. Magn. Magn. Mater.2005295213914410.1016/j.jmmm.2005.01.006
    [Google Scholar]
  28. UpadhyayS. KumarD. ParkashO.M. Effect of composition on dielectric and electrical properties of the Sr1 -x La x Ti1 -x Co x O3 system.Bull. Mater. Sci.199619351352510.1007/BF02744823
    [Google Scholar]
/content/journals/cms/10.2174/0126661454279603231113165113
Loading
/content/journals/cms/10.2174/0126661454279603231113165113
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cobalt; dielectric; Koop's theory; nanoferrites; Nickel; raman
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test