Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Contamination from heavy metal ions is a rising problem. It has direct and indirect impacts on human health, the environment, and aquatic life. Thus, detecting trace amounts of these elements presents significant challenges. It is important to develop effective, affordable, accurate, fast sensing monitoring systems. A new field of sensing techniques has emerged with the discovery of bio-compatible fluorescent carbon nanodots. Although the study of heavy metal ion detection using carbon nanodots and fluorometric sensing techniques is relatively new and developing, it holds great potential for aiding scientists in the development of environmentally friendly sensing systems. This article focuses on the utilization of carbon nanodots in fluorescence-based detection of metal ions in various media. The ability to emit fluorescence across the entire visible spectrum under UV and visible light excitation offers fluorescent quenching or fluorescent enhancement phenomena in the presence of trace amount of metal ions. The present work discusses different fluorometric sensing phenomena, its mechanism and applications of carbon dots on it. It covers the recent progress in carbon-nano dots for bio-based synthesis, physical properties, and application in heavy metal sensing.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454270676231127043124
2023-12-07
2025-06-20
Loading full text...

Full text loading...

References

  1. de MedeirosT.V. ManioudakisJ. NounF. MacairanJ.R. VictoriaF. NaccacheR. Microwave-assisted synthesis of carbon dots and their applications.J. Mater. Chem. C Mater. Opt. Electron. Devices20197247175719510.1039/C9TC01640F
    [Google Scholar]
  2. LiuY. DengY. DongH. LiuK. HeN. Progress on sensors based on nanomaterials for rapid detection of heavy metal ions.Sci. China Chem.201760332933710.1007/s11426‑016‑0253‑2
    [Google Scholar]
  3. Vázquez-GonzálezM. Carrillo-CarrionC. Analytical strategies based on quantum dots for heavy metal ions detection.J. Biomed. Opt.2014191010150310.1117/1.JBO.19.10.101503 24853041
    [Google Scholar]
  4. MaJ. WuS. ShekharN.V.R. BiswasS. SahuA.K. Determination of physicochemical parameters and levels of heavy metals in food waste water with environmental effects.Bioinorg. Chem. Appl.20202020888609310.1155/2020/8886093 32884567
    [Google Scholar]
  5. LiP. LiS.F.Y. Recent advances in fluorescence probes based on carbon dots for sensing and speciation of heavy metals.Nanophotonics202010287790810.1515/nanoph‑2020‑0507
    [Google Scholar]
  6. ZouL. GuZ. SunM. Review of the application of quantum dots in the heavy-metal detection.Toxicol. Environ. Chem.2015973-447749010.1080/02772248.2015.1050201
    [Google Scholar]
  7. ZhangZ. SunW. WuP. Highly photoluminescent carbon dots derived from egg white: Facile and green synthesis, photoluminescence properties, and multiple applications.ACS Sustain. Chem.& Eng.2015371412141810.1021/acssuschemeng.5b00156
    [Google Scholar]
  8. ZhuS. SongY. ZhaoX. ShaoJ. ZhangJ. YangB. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective.Nano Res.20158235538110.1007/s12274‑014‑0644‑3
    [Google Scholar]
  9. MintzK.J. ZhouY. LeblancR.M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure.Nanoscale201911114634465210.1039/C8NR10059D 30834912
    [Google Scholar]
  10. ChaudharyS. KumariM. ChauhanP. Ram ChaudharyG. Upcycling of plastic waste into fluorescent carbon dots: An environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications.Waste Manag.202112067568610.1016/j.wasman.2020.10.038 33223249
    [Google Scholar]
  11. VijeataA ChaudharyS ChaudharyGR Fluorescent carbon dots from Indian Bael patra as effective sensing tool to detect perilous food colorant.Food Chem2022373Pt B13149210.1016/j.foodchem.2021.131492 34743055
    [Google Scholar]
  12. LongR. TangC. LiT. Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging.Mikrochim. Acta2020187530710.1007/s00604‑020‑04287‑7 32356117
    [Google Scholar]
  13. GhoshA. DasG. Environmentally benign synthesis of fluorescent carbon nanodots using waste PET bottles: Highly selective and sensitive detection of Pb 2+ ions in aqueous medium.New J. Chem.202145198747875410.1039/D1NJ00961C
    [Google Scholar]
  14. RamananV. SiddaiahB. RajiK. RamamurthyP. Greeni synthesis of multifunctionalized, nitrogen-doped, highly fluorescent carbon dots from waste expanded polystyrene and its applcation in the fluorimetric detection of Au 3+ ions in aqueous media.ACS Sustain. Chem.& Eng.2018621627163810.1021/acssuschemeng.7b02852
    [Google Scholar]
  15. TejwanN. SahaS.K. DasJ. Multifaceted applications of green carbon dots synthesized from renewable sources.Adv. Colloid Interface Sci.202027510204610.1016/j.cis.2019.102046 31757388
    [Google Scholar]
  16. SharmaA. DasJ. Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine.J. Nanobiotechnology20191719210.1186/s12951‑019‑0525‑8 31451110
    [Google Scholar]
  17. ZuoP. LuX. SunZ. GuoY. HeH. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots.Mikrochim. Acta2016183251954210.1007/s00604‑015‑1705‑3
    [Google Scholar]
  18. WangY. HuA. Carbon quantum dots: Synthesis, properties and applications.J. Mater. Chem. C Mater. Opt. Electron. Devices20142346921693910.1039/C4TC00988F
    [Google Scholar]
  19. ChaeA. ChoiY. JoS. Microwave-assisted synthesis of fluorescent carbon quantum dots from an A2/B3 monomer set.RSC Advances2017721126631266910.1039/C6RA28176A
    [Google Scholar]
  20. LiH. KangZ. LiuY. LeeS.T. Carbon nanodots: Synthesis, properties and applications.J. Mater. Chem.20122246242302425310.1039/c2jm34690g
    [Google Scholar]
  21. LiuY. HuangH. CaoW. MaoB. LiuY. KangZ. Advances in carbon dots: From the perspective of traditional quantum dots.Mater. Chem. Front.2020461586161310.1039/D0QM00090F
    [Google Scholar]
  22. GhoshD. SarkarK. DeviP. KimK.H. KumarP. Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices.Renew. Sustain. Energy Rev.202113511039110.1016/j.rser.2020.110391
    [Google Scholar]
  23. LiuM. Optical properties of carbon dots: A review.Nanoarchitectonics20201111210.37256/nat.112020124.1‑12
    [Google Scholar]
  24. NazriN.A.A. AzemanN.H. LuoY.A. BakarA.A. Carbon quantum dots for optical sensor applications: A review.Opt. Laser Technol.202113910692810.1016/j.optlastec.2021.106928
    [Google Scholar]
  25. KandasamyG. Recent advancements in doped/co-doped carbon quantum dots for multi-potential applications.C2019522410.3390/c5020024
    [Google Scholar]
  26. SunY.P. ZhouB. LinY. Quantum-sized carbon dots for bright and colorful photoluminescence.J. Am. Chem. Soc.2006128247756775710.1021/ja062677d 16771487
    [Google Scholar]
  27. DingH. LiX.H. ChenX.B. WeiJ.S. LiX.B. XiongH.M. Surface states of carbon dots and their influences on luminescence.J. Appl. Phys.20201272323110110.1063/1.5143819
    [Google Scholar]
  28. ZhuS. SongY. WangJ. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state.Nano Today201713101410.1016/j.nantod.2016.12.006
    [Google Scholar]
  29. XiaC. ZhuS. FengT. YangM. YangB. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots.Adv. Sci.2019623190131610.1002/advs.201901316 31832313
    [Google Scholar]
  30. SharmaA. GadlyT. NeogyS. GhoshS.K. KumbhakarM. Molecular origin and self-assembly of fluorescent carbon nanodots in polar solvents.J. Phys. Chem. Lett.2017851044105210.1021/acs.jpclett.7b00170 28198626
    [Google Scholar]
  31. ShiL. YangJ.H. ZengH.B. Carbon dots with high fluorescence quantum yield: The fluorescence originates from organic fluorophores.Nanoscale2016830143741437810.1039/C6NR00451B 27426926
    [Google Scholar]
  32. StraussV. MargrafJ.T. DolleC. Carbon nanodots: Toward a comprehensive understanding of their photoluminescence.J. Am. Chem. Soc.201413649173081731610.1021/ja510183c 25372278
    [Google Scholar]
  33. XiaoL. WangY. HuangY. WongT. SunH. Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation.Nanoscale2017934126371264610.1039/C7NR03913A 28825435
    [Google Scholar]
  34. ChenW. LiF. WuC. GuoT. Optical properties of fluorescent zigzag graphene quantum dots derived from multi-walled carbon nanotubes.Appl. Phys. Lett.2014104606310910.1063/1.4863963
    [Google Scholar]
  35. DhenadhayalanN. LinK.C. SureshR. RamamurthyP. Unravelling the multiple emissive states in citric-acid-derived carbon dots.J. Phys. Chem. C201612021252126110.1021/acs.jpcc.5b08516
    [Google Scholar]
  36. RitterK.A. LydingJ.W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.Nat. Mater.20098323524210.1038/nmat2378
    [Google Scholar]
  37. JiangL. Application of carbon quantum dots in the field of nanosensors.ECS Meet Abstr20207699
    [Google Scholar]
  38. HongY. Aggregation-induced emission - Fluorophores and applications.Methods Appl. Fluoresc.0220032200310.1088/n/a/4/2/022003
    [Google Scholar]
  39. HongY. LamJ.W.Y. TangB.Z. Aggregation-induced emission.Chem. Soc. Rev.201140115361538810.1039/c1cs15113d 21799992
    [Google Scholar]
  40. OmerK.M. HassanA.Q. Chelation-enhanced fluorescence of phosphorus doped carbon nanodots for multi-ion detection.Mikrochim. Acta201718472063207110.1007/s00604‑017‑2196‑1
    [Google Scholar]
  41. LeeH. HancockR.D. LeeH.S. Role of fluorophore-metal interaction in photoinduced electron transfer (PET) sensors: Time-dependent density functional theory (TDDFT) study.J. Phys. Chem. A201311750133451335510.1021/jp406624p 24099321
    [Google Scholar]
  42. XuH. YangX. LiG. ZhaoC. LiaoX. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples.J. Agric. Food Chem.201563306707671410.1021/acs.jafc.5b02319 26154603
    [Google Scholar]
  43. YinB. DengJ. PengX. Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay.Analyst2013138216551655710.1039/c3an01003a 23982153
    [Google Scholar]
  44. GuD. ShangS. YuQ. ShenJ. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging.Appl. Surf. Sci.2016390384210.1016/j.apsusc.2016.08.012
    [Google Scholar]
  45. YangF. HeX. WangC. Controllable and eco-friendly synthesis of P-riched carbon quantum dots and its application for copper (II) ion sensing.Appl. Surf. Sci.201844858959810.1016/j.apsusc.2018.03.246
    [Google Scholar]
  46. LuW. QinX. LiuS. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions.Anal. Chem.201284125351535710.1021/ac3007939 22681704
    [Google Scholar]
  47. NagarajM RamalingamS MuruganC Detection of Fe3+ ions in aqueous environment using fluorescent carbon quantum dots synthesized from endosperm of Borassus flabellifer.Environ Res2022212Pt B11327310.1016/j.envres.2022.113273 35439456
    [Google Scholar]
  48. BhattS. BhattM. KumarA. VyasG. GajariaT. PaulP. Green route for synthesis of multifunctional fluorescent carbon dots from Tulsi leaves and its application as Cr(VI) sensors, bio-imaging and patterning agents.Colloids Surf. B Biointerfaces201816712613310.1016/j.colsurfb.2018.04.008 29635135
    [Google Scholar]
  49. QiangR. YangS. HouK. WangJ. Synthesis of carbon quantum dots with green luminescence from potato starch.New J. Chem.20194327108261083310.1039/C9NJ02291K
    [Google Scholar]
  50. ArumugamN. KimJ. Synthesis of carbon quantum dots from broccoli and their ability to detect silver ions.Mater. Lett.2018219374010.1016/j.matlet.2018.02.043
    [Google Scholar]
  51. HuangH. LvJ.J. ZhouD.L. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions.RSC Adv.2013344216912169610.1039/c3ra43452d
    [Google Scholar]
  52. DasP. GangulyS. BoseM. A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor ‘turn-off’ probe for selective sensing of copper ions.Mater. Sci. Eng. C2017751456146410.1016/j.msec.2017.03.045 28415437
    [Google Scholar]
  53. JayaweeraS. YinK. HuX. NgW.J. Facile preparation of fluorescent carbon dots for label-free detection of Fe3+.J. Photochem. Photobiol. Chem.201937015616310.1016/j.jphotochem.2018.10.052
    [Google Scholar]
  54. LiZ. ZhangY. NiuQ. A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg 2+ in water.J. Lumin.201718727428010.1016/j.jlumin.2017.03.023
    [Google Scholar]
  55. MaX. DongY. SunH. ChenN. Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process.Mater. Today Chem.2017511010.1016/j.mtchem.2017.04.004
    [Google Scholar]
  56. PourrezaN. GhomiM. Green synthesized carbon quantum dots from Prosopis juliflora leaves as a dual off-on fluorescence probe for sensing mercury (II) and chemet drug.Mater. Sci. Eng. C20199888789610.1016/j.msec.2018.12.141 30813094
    [Google Scholar]
  57. JiaoX.Y. LiL. QinS. ZhangY. HuangK. XuL. The synthesis of fluorescent carbon dots from mango peel and their multiple applications.Colloids Surf. A Physicochem. Eng. Asp.201957730631410.1016/j.colsurfa.2019.05.073
    [Google Scholar]
  58. ShaR. JonesS.S. VishnuN. SoundirarajuB. BadhulikaS. A novel biomass derived carbon quantum dots for highly sensitive and selective detection of hydrazine.Electroanalysis201830102228223210.1002/elan.201800255
    [Google Scholar]
  59. ZhaoX. LiaoS. WangL. LiuQ. ChenX. Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion.Talanta20192011810.1016/j.talanta.2019.03.095 31122398
    [Google Scholar]
  60. BhamoreJ.R. JhaS. ParkT.J. KailasaS.K. Fluorescence sensing of Cu2+ ion and imaging of fungal cell by ultra-small fluorescent carbon dots derived from Acacia concinna seeds.Sens. Actuators B Chem.2018277475410.1016/j.snb.2018.08.149
    [Google Scholar]
  61. SunC. ZhangY. WangP. Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe(3.).Nanoscale Res. Lett.201611111010.1186/s11671‑016‑1326‑8 26924814
    [Google Scholar]
  62. AtchudanR. EdisonT.N.J.I. AseerK.R. PerumalS. LeeY.R. Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink.Colloids Surf. B Biointerfaces201816932132810.1016/j.colsurfb.2018.05.032 29800907
    [Google Scholar]
  63. RanY. WangS. YinQ. Green synthesis of fluorescent carbon dots using chloroplast dispersions as precursors and application for Fe3+ ion sensing.Luminescence202035687087610.1002/bio.3794 32142218
    [Google Scholar]
  64. YangG. WanX. SuY. ZengX. TangJ. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment.J. Mater. Chem. A Mater. Energy Sustain.2016433128411284910.1039/C6TA05943K
    [Google Scholar]
  65. ZhangL. LiuW. ZhuangH. Environmentally friendly synthesis of photoluminescent biochar dots from waste soy residues for rapid monitoring of potentially toxic elements.RSC Advances2019938216532165910.1039/C9RA03001H 35518901
    [Google Scholar]
  66. LuM. DuanY. SongY. TanJ. ZhouL. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry.J. Mol. Liq.201826976677410.1016/j.molliq.2018.08.101
    [Google Scholar]
  67. LiX. ZhaoL. WuY. Nitrogen and boron co-doped carbon dots as a novel fluorescent probe for fluorogenic sensing of Ce4+ and ratiometric detection of Al3.Spectrochim. Acta A Mol. Biomol. Spectrosc.202228212163810.1016/j.saa.2022.121638 35908499
    [Google Scholar]
  68. PeiL. ZhangW. YangS. Nitrogen and sulfur co-doped carbon dots as a turn-off fluorescence probe for the detection of cerium and iron.J. Fluoresc.20233331147115610.1007/s10895‑022‑03126‑7 36598660
    [Google Scholar]
  69. LeiS. ChangN. ZhangJ. WangH. Dopamine functionalized S,N Co-doped carbon dots as a fluorescent sensor for the selective detection of Fe3+ and Fe2+ in water.Anal. Sci.202137685185710.2116/analsci.20P294 33071264
    [Google Scholar]
  70. ShenY. RongM. QuX. Graphene oxide-assisted synthesis of N, S Co-doped carbon quantum dots for fluorescence detection of multiple heavy metal ions.Talanta202224112322410.1016/j.talanta.2022.123224 35066284
    [Google Scholar]
  71. LiuF. ZhuS. LiD. ChenG. HoS.H. Detecting ferric iron by microalgal residue-derived fluorescent nanosensor with an advanced kinetic model.iScience202023610117410.1016/j.isci.2020.101174 32498017
    [Google Scholar]
  72. XuZ. ChenJ. LiuY. WangX. ShiQ. Multi-emission fluorescent sensor array based on carbon dots and lanthanide for detection of heavy metal ions under stepwise prediction strategy.Chem. Eng. J.202244113569010.1016/j.cej.2022.135690
    [Google Scholar]
  73. HeY. WangY. MaoG. LiangC. FanM. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions.Anal. Chim. Acta2022119133925110.1016/j.aca.2021.339251 35033275
    [Google Scholar]
  74. Gokul EswaranS. ThiruppathiD. VasimalaiN. Synthesis of highly fluorescent carbon dots from bread waste and their nanomolar lead ions sensor application.Environ. Nanotechnol. Monit. Manag.20221810074810.1016/j.enmm.2022.100748
    [Google Scholar]
  75. ZulfajriM. GeddaG. ChangC.J. ChangY.P. HuangG.G. Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution.ACS Omega2019413153821539210.1021/acsomega.9b01333 31572837
    [Google Scholar]
  76. SinghJ. KaurS. LeeJ. Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions.Sci. Total Environ.202072013760410.1016/j.scitotenv.2020.137604 32143054
    [Google Scholar]
  77. AtchudanR. EdisonT.N.J.I. PerumalS. MuthuchamyN. LeeY.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications.Fuel202027511782110.1016/j.fuel.2020.117821
    [Google Scholar]
  78. AtchudanR. EdisonT.N.J.I. PerumalS. Leftover kiwi fruit peel-derived carbon dots as a highly selective fluorescent sensor for detection of ferric ion.Chemosens20219716610.3390/chemosensors9070166
    [Google Scholar]
  79. RajaS. BuhlE.M. DreschersS. Curauá-derived carbon dots: Fluorescent probes for effective Fe(III) ion detection, cellular labeling and bioimaging.Mater. Sci. Eng. C202112911240910.1016/j.msec.2021.112409 34579918
    [Google Scholar]
  80. DasM. ThakkarH. PatelD. ThakoreS. Repurposing the domestic organic waste into green emissive carbon dots and carbonized adsorbent: A sustainable zero waste process for metal sensing and dye sequestration.J. Environ. Chem. Eng.20219510631210.1016/j.jece.2021.106312
    [Google Scholar]
  81. WangC. ShiH. YangM. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions.Mater. Res. Bull.202012411073010.1016/j.materresbull.2019.110730
    [Google Scholar]
  82. ZhangW. LiN. ChangQ. ChenZ. HuS. Making a cup of carbon dots for ratiometric and colorimetric fluorescent detection of Cu2+ ions.Colloids Surf. A Physicochem. Eng. Asp.202058612423310.1016/j.colsurfa.2019.124233
    [Google Scholar]
  83. JingS. ZhaoY. SunR.C. ZhongL. PengX. Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition.ACS Sustain. Chem.& Eng.2019787833784310.1021/acssuschemeng.9b00027
    [Google Scholar]
  84. RamezaniZ. QorbanpourM. RahbarN. Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: Application in cell imaging and As3+ determination.Colloids Surf. A Physicochem. Eng. Asp.2018549586610.1016/j.colsurfa.2018.04.006
    [Google Scholar]
  85. KrishnaiahP. AtchudanR. PerumalS. SalamaE.S. LeeY.R. JeonB.H. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3.Chemosphere2022286Pt 213176410.1016/j.chemosphere.2021.131764 34364229
    [Google Scholar]
  86. XiangZ. JiangY. CuiC. LuoY. PengZ. Sensitive, selective and reliable detection of Fe3+ in lake water via carbon dots-based fluorescence assay.Molecules20222719674910.3390/molecules27196749 36235283
    [Google Scholar]
  87. TallA. Antônio CunhaF. KaboréB. Green emitting N, P-doped carbon dots as efficient fluorescent nanoprobes for determination of Cr (VI) in water and soil samples.Microchem. J.202116610.1016/j.microc.2021.106219
    [Google Scholar]
  88. ShenJ. ShangS. ChenX. WangD. CaiY. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging.Mater. Sci. Eng. C20177685686410.1016/j.msec.2017.03.178 28482600
    [Google Scholar]
  89. WangC. SunD. ZhuoK. ZhangH. WangJ. Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application.RSC Advances2014496540605406510.1039/C4RA10885J
    [Google Scholar]
  90. LiuJ.J. ChenZ.T. TangD.S. WangY.B. KangL.T. YaoJ.N. Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid.Sens. Actuators B Chem.201521221421910.1016/j.snb.2015.02.019
    [Google Scholar]
/content/journals/cms/10.2174/0126661454270676231127043124
Loading
/content/journals/cms/10.2174/0126661454270676231127043124
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test