Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Hepatocellular carcinoma (HCC) is the leading type of liver cancer in adults, often resulting in fatal outcomes for those with cirrhosis. Dysplastic nodule (DN) is a liver nodule that is substantial in size, ranging from 1-2 cm. However, accurately distinguishing between DN and HCC on imaging has posed a challenge.

Objective

The aim of this study is to assess the usefulness of Gd-EOB-DTPA-enhanced MRI T1 mapping in distinguishing between DN and HCC.

Methods

This study analyzed 66 patients with confirmed HCC or DN who underwent Gd-EOB-DTPA-enhanced MRI T1 mapping before surgery or puncture at the Army Medical Center in China. The T1 values of each lesion were measured before and after Gd-EOB-DTPA administration, and various calculations were made, including absolute and percentage reduction in T1 value and coefficient of variation. The t-test was used to compare these values between the two groups, and the efficacy of T1 mapping values for differential diagnosis of HCC and DN was evaluated using the receiver operating characteristic curve (ROC).

Results

The study found that T1, T1, ΔT1, ΔT1%, and CV in the HCC group were significantly higher than in the DN group (p < 0.01). The accuracy of T1, ΔT1, and CV in identifying HCC from DN was high, with AUCs of 0.955, 0.910, and 0.932, respectively. ΔT1% also had some accuracy, with an AUC of 0.818.

Conclusion

Our results provide preliminary evidence that Gd-EOB-DTPA-enhanced MRI T1 mapping, can be a valuable tool in diagnosing and differentiating between HCC and DN.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230808153145
2024-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e080823219533.html?itemId=/content/journals/cmir/10.2174/1573405620666230808153145&mimeType=html&fmt=ahah

References

  1. VillanuevaA. Hepatocellular Carcinoma.N. Engl. J. Med.2019380151450146210.1056/NEJMra171326330970190
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. HenleyS.J. WardE.M. ScottS. MaJ. AndersonR.N. FirthA.U. ThomasC.C. IslamiF. WeirH.K. LewisD.R. ShermanR.L. WuM. BenardV.B. RichardsonL.C. JemalA. CroninK. KohlerB.A. Annual report to the nation on the status of cancer, part I: National cancer statistics.Cancer2020126102225224910.1002/cncr.3280232162336
    [Google Scholar]
  4. TrevisaniF. CantariniM.C. WandsJ.R. BernardiM. Recent advances in the natural history of hepatocellular carcinoma.Carcinogenesis20082971299130510.1093/carcin/bgn11318515282
    [Google Scholar]
  5. BruixJ. ShermanM. Practice Guidelines Committee, American Association for the Study of Liver DiseasesManagement of hepatocellular carcinoma.Hepatology20054251208123610.1002/hep.2093316250051
    [Google Scholar]
  6. PengZ JiangM CaiH Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma.BMC Cancer20161662510.1186/s12885‑016‑2607‑4
    [Google Scholar]
  7. RaoC WangX LiM ZhouG GuH. Value of T1 mapping on gadoxetic acid-enhanced MRI for microvascular invasion of hepatocellular carcinoma: a retrospective study.BMC Med Imaging20202014310.1186/s12880‑020‑00433‑y
    [Google Scholar]
  8. Di MartinoM AnzideiM ZaccagnaF Qualitative analysis of small (≤2 cm) regenerative nodules, dysplastic nodules and well-differentiated HCCs with gadoxetic acid MRIBMC Med Imaging20161616210.1186/s12880‑016‑0165‑5
    [Google Scholar]
  9. KogitaS. ImaiY. OkadaM. KimT. OnishiH. TakamuraM. FukudaK. IguraT. SawaiY. MorimotoO. HoriM. NaganoH. WakasaK. HayashiN. MurakamiT. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: Correlation with histological grading and portal blood flow.Eur. Radiol.201020102405241310.1007/s00330‑010‑1812‑920490505
    [Google Scholar]
  10. LeeM.H. KimS.H. ParkM.J. ParkC.K. RhimH. Gadoxetic acid-enhanced hepatobiliary phase MRI and high-b-value diffusion-weighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease.AJR Am. J. Roentgenol.20111975W868W87510.2214/AJR.10.623722021534
    [Google Scholar]
  11. HorsthuisK. NederveenA.J. de FeiterM.W. LaviniC. StokkersP.C.F. StokerJ. Mapping of T1-values and Gadolinium-concentrations in MRI as indicator of disease activity in luminal Crohn’s disease: A feasibility study.J. Magn. Reson. Imaging200929248849310.1002/jmri.2153519161209
    [Google Scholar]
  12. HeidenreichJF WengAM DonhauserJ T1- and ECV-mapping in clinical routine at 3 T: Differences between MOLLI, ShMOLLI and SASHA.BMC Med Imaging20191915910.1186/s12880‑019‑0362‑0
    [Google Scholar]
  13. ZhouZ.P. LongL.L. QiuW.J. ChengG. HuangL.J. YangT.F. HuangZ.K. Comparison of 10- and 20-min hepatobiliary phase images on Gd-EOB-DTPA-enhanced MRI T1 mapping for liver function assessment in clinic.Abdom. Radiol.20174292272227810.1007/s00261‑017‑1143‑228396918
    [Google Scholar]
  14. KellmanP HansenMS T1-mapping in the heart: Accuracy and precision.J Cardiovasc Magn Reson.2014161210.1186/1532‑429X‑16‑2
    [Google Scholar]
  15. ChowK. FlewittJ.A. GreenJ.D. PaganoJ.J. FriedrichM.G. ThompsonR.B. Saturation recovery single-shot acquisition (SASHA) for myocardial T 1 mapping.Magn. Reson. Med.20147162082209510.1002/mrm.2487823881866
    [Google Scholar]
  16. WeingärtnerS. AkçakayaM. BashaT. KissingerK.V. GodduB. BergS. ManningW.J. NezafatR. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability.Magn. Reson. Med.20147131024103410.1002/mrm.2476123650078
    [Google Scholar]
  17. FernandesJ.L. RochitteC.E. T1 Mapping.Magn. Reson. Imaging Clin. N. Am.2015231253410.1016/j.mric.2014.08.00725476671
    [Google Scholar]
  18. OkadaM. MurakamiT. YadaN. NumataK. OnodaM. HyodoT. InoueT. IshiiK. KudoM. Comparison between T1 relaxation time of Gd-EOB-DTPA-enhanced MRI and liver stiffness measurement of ultrasound elastography in the evaluation of cirrhotic liver.J. Magn. Reson. Imaging201541232933810.1002/jmri.2452924343840
    [Google Scholar]
  19. YoonJ.H. LeeJ.M. PaekM. HanJ.K. ChoiB.I. Quantitative assessment of hepatic function: modified look-locker inversion recovery (MOLLI) sequence for T1 mapping on Gd-EOB-DTPA-enhanced liver MR imaging.Eur. Radiol.20162661775178210.1007/s00330‑015‑3994‑726373756
    [Google Scholar]
  20. YoonJ.H. LeeJ.M. KimE. OkuakiT. HanJ.K. Quantitative liver function analysis: Volumetric T1 mapping with fast multisection B 1 inhomogeneity correction in hepatocyte-specific contrast-enhanced liver MR imaging.Radiology2017282240841710.1148/radiol.201615280027697007
    [Google Scholar]
  21. DingY. RaoS.X. MengT. ChenC. LiR. ZengM.S. Usefulness of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging in assessment of non-alcoholic fatty liver disease.Eur. Radiol.201424495996610.1007/s00330‑014‑3096‑y24463697
    [Google Scholar]
  22. BaeK.E. KimS.Y. LeeS.S. KimK.W. WonH.J. ShinY.M. KimP.N. LeeM.G. Assessment of hepatic function with Gd-EOB-DTPA-enhanced hepatic MRI.Dig. Dis.201230661762210.1159/00034309223258104
    [Google Scholar]
  23. QinX.L. HuangZ.K. LongL.L. The value of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid enhanced T1 mapping in dysplastic nodule and hepatocellular carcinoma with different degrees of differentiation.Zhonghua Fang She Xue Za Zhi20185285
    [Google Scholar]
  24. KitaoA. MatsuiO. YonedaN. KozakaK. ShinmuraR. KodaW. KobayashiS. GabataT. ZenY. YamashitaT. KanekoS. NakanumaY. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: Correlation with gadoxetic acid enhanced MR imaging.Eur. Radiol.201121102056206610.1007/s00330‑011‑2165‑821626360
    [Google Scholar]
  25. BatallerR. BrennerD.A. Liver fibrosis.J. Clin. Invest.2005115220921810.1172/JCI2428215690074
    [Google Scholar]
  26. HaimerlM VerlohN ZemanF Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd-EOB-DTPA-enhanced 3T MRI.PLoS One20138128565810.1371/journal.pone.0085658
    [Google Scholar]
  27. FujitaN. NishieA. AsayamaY. IshigamiK. UshijimaY. KakiharaD. NakayamaT. MoritaK. IshimatsuK. HondaH. Hyperintense liver masses at hepatobiliary phase gadoxetic acid–enhanced mrI: Imaging appearances and clinical importance.Radiographics2020401729410.1148/rg.202019003731834849
    [Google Scholar]
  28. LiZ. BilginA. JohnsonK. GalonsJ.P. VedanthamS. MartinD.R. AltbachM.I. Rapid high-resolution T 1 mapping using a highly accelerated radial steady-state free-precession technique.J. Magn. Reson. Imaging201949123925210.1002/jmri.2617030142230
    [Google Scholar]
  29. LiZ. FuZ. KeerthivasanM. BilginA. JohnsonK. GalonsJ.P. VedanthamS. MartinD.R. AltbachM.I. Rapid high-resolution volumetric T1 mapping using a highly accelerated stack-of-stars Look Locker technique.Magn. Reson. Imaging202179283710.1016/j.mri.2021.03.00333722634
    [Google Scholar]
  30. FengL. LiuF. SoultanidisG. LiuC. BenkertT. BlockK.T. FayadZ.A. YangY. Magnetization‐prepared GRASP MRI for rapid 3D T1 mapping and fat/water‐separated T1 mapping.Magn. Reson. Med.20218619711410.1002/mrm.2867933580909
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230808153145
Loading
/content/journals/cmir/10.2174/1573405620666230808153145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test