Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Breast Cancer (BC) is a significant threat affecting women globally. An accurate and reliable disease classification method is required to get an early diagnosis. However, existing approaches lack accurate and robust classification.

Objective

This study aims to design a model to classify BC Histopathology images accurately by leveraging segmentation techniques.

Methods

This work proposes a combined segmentation and classification approach for classifying BC using histopathology images to address these issues. Chan-Vese algorithm is used for segmentation to accurately delineate regions of interest within the histopathology images, followed by the proposed SegEIR-Net (Segmentation using EfficientNet, InceptionNet, and ResNet) for classification. Bilateral Filtering is also employed for noise reduction. The proposed model uses three significant networks, ResNet, InceptionNet, and EfficientNet, concatenates the outputs from each block followed by Dense and Dropout layers. The model is trained on the breakHis dataset for four different magnifications and tested on BACH (BreAst Cancer Histology) and UCSB (University of California, Santa Barbara) datasets.

Results

SegEIR-Net performs better than the existing State-of-the-Art (SOTA) methods in terms of accuracy on all three datasets, proving the robustness of the proposed model. The accuracy achieved on breakHis dataset are 98.66%, 98.39%, 97.52%, 95.22% on different magnifications, and 93.33% and 96.55% on BACH and UCSB datasets.

Conclusion

These performance results indicate the robustness of the proposed SegEIR-Net framework in accurately classifying BC from histopathology images.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056278974231211102917
2024-01-01
2025-04-02
The full text of this item is not currently available.

References

  1. SaslowD. American Cancer Society Guidelines for Breast Screening with MRI as an Adjunct to Mammography20075727589
    [Google Scholar]
  2. HamidinekooA. DentonE. RampunA. HonnorK. ZwiggelaarR. Deep learning in mammography and breast histology, an overview and future trends.Med. Image Anal.201847456710.1016/j.media.2018.03.00629679847
    [Google Scholar]
  3. BalasV.E. Intelligent Computing and Networking.2021Vol. 14610.1007/978‑981‑15‑7421‑4
    [Google Scholar]
  4. TufailA.B. MaY.K. KaabarM.K.A. MartínezF. JunejoA.R. UllahI. KhanR. Deep learning in cancer diagnosis and prognosis prediction: a minireview on challenges, recent trends, and future directions.Comput. Math. Methods Med.2021202112810.1155/2021/902547034754327
    [Google Scholar]
  5. KrithigaR. GeethaP. Breast cancer detection, segmentation and classification on histopathology images analysis: A systematic review.Arch. Comput. Methods Eng.20212842607261910.1007/s11831‑020‑09470‑w
    [Google Scholar]
  6. Junaid UmerM. SharifM. AlhaisoniM. TariqU. Jin KimY. ChangB. A framework of deep learning and selection-based breast cancer detection from histopathology images.Comput. Syst. Sci. Eng.20234521001101610.32604/csse.2023.030463
    [Google Scholar]
  7. BagchiA. PramanikP. SarkarR. A multi-stage approach to breast cancer classification using histopathology images.Diagnostics202213112610.3390/diagnostics1301012636611418
    [Google Scholar]
  8. JiangY. SuiX. DingY. XiaoW. ZhengY. ZhangY. A semi-supervised learning approach with consistency regularization for tumor histopathological images analysis.Front. Oncol.202312January104402610.3389/fonc.2022.104402636698401
    [Google Scholar]
  9. AswathyM.A. JagannathM. An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features.Med. Biol. Eng. Comput.20215991773178310.1007/s11517‑021‑02403‑034302269
    [Google Scholar]
  10. HuangZ. ShaoW. HanZ. AlkashashA.M. De la SanchaC. ParwaniA.V. NittaH. HouY. WangT. SalamaP. RizkallaM. ZhangJ. HuangK. LiZ. Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images.NPJ Precis. Oncol.2023711410.1038/s41698‑023‑00352‑536707660
    [Google Scholar]
  11. El AgouriH. AziziM. El AttarH. El KhannoussiM. IbrahimiA. KabbajR. KadiriH. BekarSabeinS. EchCharifS. MounjidC. El KhannoussiB. Assessment of deep learning algorithms to predict histopathological diagnosis of breast cancer: First Moroccan prospective study on a private dataset.BMC Res. Notes20221516610.1186/s13104‑022‑05936‑135183227
    [Google Scholar]
  12. SrikantamurthyM.M. RallabandiV.P.S. DudekulaD.B. NatarajanS. ParkJ. Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning.BMC Med. Imaging20232311910.1186/s12880‑023‑00964‑036717788
    [Google Scholar]
  13. TavolaraT.E. GurcanM.N. NiaziM.K.K. Contrastive multiple instance learning: An unsupervised framework for learning slide-level representations of whole slide histopathology images without labels.Cancers20221423577810.3390/cancers1423577836497258
    [Google Scholar]
  14. MercanC. AygunesB. AksoyS. MercanE. ShapiroL.G. WeaverD.L. ElmoreJ.G. Deep feature representations for variable-sized regions of interest in breast histopathology.IEEE J. Biomed. Health Inform.20212562041204910.1109/JBHI.2020.303673433166257
    [Google Scholar]
  15. BelharbiS. RonyJ. DolzJ. AyedI.B. MccaffreyL. GrangerE. Deep interpretable classification and weakly-supervised segmentation of histology images via max-min uncertainty.IEEE Trans. Med. Imaging202241370271410.1109/TMI.2021.312346134705638
    [Google Scholar]
  16. AswathyM.A. JagannathM. Detection of breast cancer on digital histopathology images: Present status and future possibilities.Informatics Med. Unlocked,20178747910.1016/j.imu.2016.11.001
    [Google Scholar]
  17. GuleriaH.V. LuqmaniA.M. KothariH.D. PhukanP. PatilS. PareekP. KotechaK. AbrahamA. GabrallaL.A. Enhancing the breast histopathology image analysis for cancer detection using variational autoencoder.Int. J. Environ. Res. Public Health2023205424410.3390/ijerph2005424436901255
    [Google Scholar]
  18. KadhimR.R. KamilM.Y. Evaluation of machine learning models for breast cancer diagnosis via histogram of oriented gradients method and histopathology images.Int. J. Recent Innov. Trends Comput. Commun.2022104364210.17762/ijritcc.v10i4.5532
    [Google Scholar]
  19. ThiagarajanP. KhairnarP. GhoshS. Explanation and use of uncertainty quantified by bayesian neural network classifiers for breast histopathology images.IEEE Trans. Med. Imaging202241481582510.1109/TMI.2021.312330034699354
    [Google Scholar]
  20. AgbleyB.L.Y. LiJ. HossinM.A. NnejiG.U. JacksonJ. MondayH.N. JamesE.C. Federated learning-based detection of invasive carcinoma of no special type with histopathological images.Diagnostics2022127166910.3390/diagnostics1207166935885573
    [Google Scholar]
  21. AmerikanosP. MaglogiannisI. Image analysis in digital pathology utilizing machine learning and deep neural networks.J. Pers. Med.2022129144410.3390/jpm1209144436143229
    [Google Scholar]
  22. SirinukunwattanaK. RazaS.E.A. TsangY-W. SneadD.R.J. CreeI.A. RajpootN.M. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images.IEEE Trans. Med. Imaging20163551196120610.1109/TMI.2016.252580326863654
    [Google Scholar]
  23. UkwuomaC.C. HossainM.A. JacksonJ.K. NnejiG.U. MondayH.N. QinZ. Multi-classification of breast cancer lesions in histopathological images using deep_pachi: Multiple self-attention head.Diagnostics2022125115210.3390/diagnostics1205115235626307
    [Google Scholar]
  24. AshtaiwiA. Optimal histopathological magnification factors for deep learning-based breast cancer prediction.Applied System Innovation2022558710.3390/asi5050087
    [Google Scholar]
  25. SaedniaK. LagreeA. AleraM.A. FleshnerL. ShinerA. LawE. LawB. DodingtonD.W. LuF.I. TranW.T. Sadeghi-NainiA. Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies.Sci. Rep.2022121969010.1038/s41598‑022‑13917‑435690630
    [Google Scholar]
  26. MahmoodT. ArsalanM. OwaisM. LeeM.B. ParkK.R. Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs.J. Clin. Med.20209374910.3390/jcm903074932164298
    [Google Scholar]
  27. MadaniM. BehzadiM.M. NabaviS. The role of deep learning in advancing breast cancer detection using different imaging modalities: A systematic review.Cancers20221421533410.3390/cancers1421533436358753
    [Google Scholar]
  28. PfobA. Sidey-GibbonsC. BarrR.G. DudaV. AlwafaiZ. BalleyguierC. ClevertD.A. FastnerS. GomezC. GoncaloM. GruberI. HahnM. HennigsA. KapetasP. LuS.C. NeesJ. OhlingerR. RiedelF. RuttenM. SchaefgenB. SchuesslerM. StieberA. TogawaR. TozakiM. WojcinskiS. XuC. RauchG. HeilJ. GolattaM. The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis.Eur. Radiol.20223264101411510.1007/s00330‑021‑08519‑z35175381
    [Google Scholar]
  29. SpanholF.A. OliveiraL.S. PetitjeanC. HeutteL. A dataset for breast cancer histopathological image classification.IEEE Trans. Biomed. Eng.20166371455146210.1109/TBME.2015.249626426540668
    [Google Scholar]
  30. ArestaG. AraújoT. KwokS. ChennamsettyS.S. SafwanM. AlexV. MaramiB. PrastawaM. ChanM. DonovanM. FernandezG. ZeinehJ. KohlM. WalzC. LudwigF. BraunewellS. BaustM. VuQ.D. ToM.N.N. KimE. KwakJ.T. GalalS. Sanchez-FreireV. BrancatiN. FrucciM. RiccioD. WangY. SunL. MaK. FangJ. KoneI. BoulmaneL. CampilhoA. EloyC. PolóniaA. AguiarP. BACH: Grand challenge on breast cancer histology images.Med. Image Anal.20195612213910.1016/j.media.2019.05.01031226662
    [Google Scholar]
  31. GelascaE.D. ByunJ. ObaraB. ManjunathB.S. Evaluation and Benchmark for Biological Image Segmentation2008Available from:http://vision.ece.ucsb.edu/publications/elisa_ICIP08.pdf
    [Google Scholar]
  32. SainiM. SusanS. Vggin-net: Deep transfer network for imbalanced breast cancer dataset.IEEE/ACM Trans. Comput. Biol. Bioinformatics202320175276210.1109/TCBB.2022.316327735349449
    [Google Scholar]
  33. BayramogluN. KannalaJ. HeikkiläJ. Deep learning for magnification independent breast cancer histopathology image classificationin 2016 23rd International conference on pattern recognition (ICPR)20162440244510.1109/ICPR.2016.7900002
    [Google Scholar]
  34. ZhuC. SongF. WangY. DongH. GuoY. LiuJ. Breast cancer histopathology image classification through assembling multiple compact CNNs.BMC Med. Inform. Decis. Mak.201919119810.1186/s12911‑019‑0913‑x31640686
    [Google Scholar]
  35. GuptaV. BhavsarA. Sequential modeling of deep features for breast cancer histopathological image classificationProceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops20182254226110.1109/CVPRW.2018.00302
    [Google Scholar]
  36. ChennamsettyS.S. SafwanM. AlexV. “Classification of breast cancer histology image using ensemble of pre-trained neural networks,” in Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27--29, 2018.Proceedings201815804811
    [Google Scholar]
  37. BrancatiN. FrucciM. RiccioD. “Multi-classification of breast cancer histology images by using a fine-tuning strategy,” in Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27--29, 2018.Proceedings201815771778
    [Google Scholar]
  38. MaramiB. PrastawaM. ChanM. DonovanM. FernandezG. ZeinehJ. “Ensemble network for region identification in breast histopathology slides,” in Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27--29, 2018.Proceedings201815861868
    [Google Scholar]
  39. VizcarraJ. PlaceR. TongL. GutmanD. WangM.D. Fusion in breast cancer histology classificationProceedings of the 10th ACM international conference on bioinformatics, computational biology and health informatics201948549310.1145/3307339.3342166
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056278974231211102917
Loading
/content/journals/cmir/10.2174/0115734056278974231211102917
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test