Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Digital well-being records are multimodal and high-dimensional (HD). Better theradiagnostics stem from new computationally thorough and edgy technologies, ., hyperspectral (HSI) imaging, super-resolution, and nanoimaging, but advance mess data portrayal and retrieval. A patient's state involves multiple signals, medical imaging (MI) modalities, clinical variables, dialogs between clinicians and patients, metadata, genome sequencing, and signals from wearables. Patients' high volume, personalized data amassed over time have advanced artificial intelligence (AI) models for higher-precision inferences, prognosis, and tracking. AI promises are undeniable, but with slow spreading and adoption, given partly unstable AI model performance after real-world use. The HD data is a rate-limiting factor for AI algorithms generalizing real-world scenarios. This paper studies many health data challenges to robust AI models' growth, aka the dimensionality curse (DC). This paper overviews DC in the MIs' context, tackles the negative out-of-sample influence and stresses important worries for algorithm designers. It is tricky to choose an AI platform and analyze hardships. Automating complex tasks requires more examination. Not all MI problems need automation DL. AI developers spend most time refining algorithms, and quality data are crucial. Noisy and incomplete data limits AI, requiring time to handle control, integration, and analyses. AI demands data mixing skills absent in regular systems, requiring hardware/software speed and flexible storage. A partner or service can fulfill anomaly detection, predictive analysis, and ensemble modeling.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405619666221228094228
2024-01-01
2025-01-27
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E281222212228.html?itemId=/content/journals/cmir/10.2174/1573405619666221228094228&mimeType=html&fmt=ahah

References

  1. NguyenT. NguyenN. LeT. Manufacturing PACS, online medical consultation system and designing security DICOM web viewer software.Proc Intl Symp El and Electr Eng (ISEE)20193742
    [Google Scholar]
  2. EstrelaV. SaotomeO. LoschiH. Emergency response cyber-physical framework for landslide avoidance with sustainable electronics, MDPI.Technologies (Basel)2018624210.3390/technologies6020042
    [Google Scholar]
  3. NeharkarM. SudhansuS.K. SudhansuP. Multiresolution mosaic images by using Laplacian of Gaussian method: A review.Int. J. Eng. Res. Appl.2012222025
    [Google Scholar]
  4. SuM.S. HwangW.L. ChengK.Y. Analysis on multiresolution mosaic images.IEEE Trans. Image Process.200413795295910.1109/TIP.2004.828416
    [Google Scholar]
  5. RiveraL.A. EstrelaV.V. CarvalhoP.C.P. VelhoL. Oriented bounding boxes based on multiresolution contours.J. WSCG (Plzen)200420042192
    [Google Scholar]
  6. KrishnamurthiR. GopinathanD. Wavelet transformation and machine learning techniques for digital signal analysis in IoT systems.Machine Learning in Signal Processing.Chapman and Hall: CRC Press2021339359
    [Google Scholar]
  7. AfsharP. MohammadiA. PlataniotisK.N. OikonomouA. BenaliH. From handcrafted to deep-learning-based cancer radiomics: Challenges and opportunities.IEEE Signal Process. Mag.201936413216010.1109/MSP.2019.2900993
    [Google Scholar]
  8. HemanthJD WangL TavaresJM FuqianS
  9. ShirlyS. RameshK. Review on 2D and 3D MRI Image Segmentation Techniques.Curr. Med. Imaging Rev.201915215016010.2174/1573405613666171123160609
    [Google Scholar]
  10. HashemiSMR HassanpourH KozegarE TanT Cystoscopic image classification by unsupervised feature learning and fusion of classifiers.
    [Google Scholar]
  11. TemelD. Al-RegibG. Boosting in image quality assessment.2016
    [Google Scholar]
  12. EstrelaV.V. GalatsanosN.P. Spatially-adaptive regularized pel-recursive motion estimation based on cross-validation.Proc ICIP 19981998
    [Google Scholar]
  13. BerishaV. KrantsevichC. HahnP.R. Digital medicine and the curse of dimensionality.NPJ Digit. Med.20214115310.1038/s41746‑021‑00521‑5
    [Google Scholar]
  14. TopolE.J. High-performance medicine: the convergence of human and artificial intelligence.Nat. Med.2019251445610.1038/s41591‑018‑0300‑7
    [Google Scholar]
  15. VermaM. HontecillasR. Tubau-JuniN. AbediV. Bassaganya-RieraJ. Challenges in personalized nutrition and health.Front. Nutr.2018511710.3389/fnut.2018.00117
    [Google Scholar]
  16. GarzonM. Dimensionality Reduction in Data Science.SwitzerlandSpringer Cham2022
    [Google Scholar]
  17. LespinatsS. ColangeB. DutykhD. Nonlinear Dimensionality Reduction Techniques: A Data Structure Preservation Approach.SwitzerlandSpringer Cham2022
    [Google Scholar]
  18. LiS. YangB. HuJ. Performance comparison of different multi-resolution transforms for image fusion.Inf. Fusion2011122748410.1016/j.inffus.2010.03.002
    [Google Scholar]
  19. FaugerasO. Three dimensional computer vision: A geometric viewpoint.Massachusetts, USAMIT Press1993
    [Google Scholar]
  20. ParmarK. KherR. A comparative analysis of multimodality medical image fusion methods.Proc Sixth Asia Mod Symp 20122012937
    [Google Scholar]
  21. MoriyaT. RothH.R. NakamuraS. Unsupervised segmentation of 3D medical images based on clustering and deep representation learning.Proc SIPE 2018201810578
    [Google Scholar]
  22. MitchellH.B. Image Fusion: Theories, Techniques and Applications.Springer-Verlag2010
    [Google Scholar]
  23. VoraS. LangA.H. HelouB. BeijbomO. PointPainting: Sequential fusion for 3D object detection.Proc IEEE CVPR 20202020460311
    [Google Scholar]
  24. YiR. LiuY. LaiY.K. Content-sensitive supervoxels via uniform tessellations on video manifolds.Proc IEEE CVPR201864655
    [Google Scholar]
  25. BergerM. TagliasacchiA. SeverskyL.M. A Survey of surface reconstruction from point clouds.2017
    [Google Scholar]
  26. MannA. FarrellM.B. WilliamsJ. BassoD. Nuclear medicine technologists’ perception and current assessment of quality: A society of nuclear medicine and molecular imaging technologist section survey.J. Nucl. Med. Technol.2017452677410.2967/jnmt.117.194704
    [Google Scholar]
  27. KaushalA. AltmanR. LanglotzC. Geographic distribution of US cohorts used to train deep learning algorithms.JAMA2020324121212121310.1001/jama.2020.12067
    [Google Scholar]
  28. FigueroaR.L. Zeng-TreitlerQ. KandulaS. NgoL.H. Predicting sample size required for classification performance.BMC Med. Inform. Decis. Mak.2012121810.1186/1472‑6947‑12‑8
    [Google Scholar]
  29. CharpignonM.L. CeliL.A. SamuelM.C. Who does the model learn from?Lancet Digit. Health202135e275e27610.1016/S2589‑7500(21)00057‑1
    [Google Scholar]
  30. MaleyJ.H. WanisK.N. YoungJ.G. CeliL.A. Mortality prediction models, causal effects, and end-of-life decision making in the intensive care unit.BMJ Health Care Inform.2020273e10022010.1136/bmjhci‑2020‑100220
    [Google Scholar]
  31. LouisD.N. FeldmanM. CarterA.B. Computational pathology: A path ahead.Arch. Pathol. Lab. Med.20161401415010.5858/arpa.2015‑0093‑SA
    [Google Scholar]
  32. TuchinV.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis.SPIE20152015304010.1117/3.1003040
    [Google Scholar]
  33. HalicekM. FabeloH. OrtegaS. CallicoG.M. FeiB. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer.Cancers (Basel)201911675610.3390/cancers11060756
    [Google Scholar]
  34. LevensonR.M. FornariA. LodaM. Multispectral imaging and pathology: seeing and doing more.Expert Opin. Med. Diagn.2008291067108110.1517/17530059.2.9.1067
    [Google Scholar]
  35. AkbariH. UtoK. KosugiY. KojimaK. TanakaN. Cancer detection using infrared hyperspectral imaging.Cancer Sci.2011102485285710.1111/j.1349‑7006.2011.01849.x
    [Google Scholar]
  36. TsaiC.L. MukundanA. ChungC.S. Hyperspectral imaging combined with artificial intelligence in the early detection of esophageal cancer.Cancers (Basel)20211318459310.3390/cancers13184593
    [Google Scholar]
  37. YaoH.Y. TsengK.W. NguyenH.T. KuoC.T. WangH.C. Hyperspectral ophthalmoscope images for the diagnosis of diabetic retinopathy stage.J. Clin. Med.202096161310.3390/jcm9061613
    [Google Scholar]
  38. AltunaI.A. Infrared Nanospectroscopy and Hyperspectral Nanoimaging of Organic Matter.2017
    [Google Scholar]
  39. KawataS. InouyeY. VermaP. Plasmonics for near-field nano-imaging and superlensing.Nat. Photonics20093738839410.1038/nphoton.2009.111
    [Google Scholar]
  40. KarimS. HeH. LaghariA.A. MagsiA.H. LaghariR.A. Quality of service (QoS): measurements of image formats in social cloud computing.Multimedia Tools Appl.20218034507453210.1007/s11042‑020‑09959‑3
    [Google Scholar]
  41. LaghariAA CarmoFP AndreopoulosN 2020
  42. LebieckaZ. SkonecznyT. TyburskiE. SamochowiecJ. Kucharska-MazurJ. Is virtual reality cue exposure a promising adjunctive treatment for alcohol use disorder? J. Clin. Med.J. Clin. Med.20211013297210.3390/jcm10132972
    [Google Scholar]
  43. LongoU.G. De SalvatoreS. CandelaV. Augmented reality, virtual reality and artificial intelligence in orthopedic surgery: A systematic review.Appl. Sci. (Basel)2021117325310.3390/app11073253
    [Google Scholar]
  44. LunguA.J. SwinkelsW. ClaesenL. TuP. EggerJ. ChenX. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery.Expert Rev. Med. Devices2021181476210.1080/17434440.2021.1860750
    [Google Scholar]
  45. KaplanA.D. CruitJ. EndsleyM. BeersS.M. SawyerB.D. HancockP.A. The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: A meta-analysis. Human Factors: The J. Human Factors and Ergon.Hum. Factors202163470672610.1177/0018720820904229
    [Google Scholar]
  46. UruthiralingamU. ReaP.M. Augmented and virtual reality in anatomical education - A systematic review.Adv. Exp. Med. Biol.202012358910110.1007/978‑3‑030‑37639‑0_5
    [Google Scholar]
  47. IzardS.G. PlazaÓ.A. TorresR.S. MéndezJ.A. García-PeñalvoF.J. NextMed, augmented and virtual reality platform for 3D medical imaging visualization: Explanation of the software platform developed for 3D models visualization related with medical images using augmented and virtual reality technology.Proc Intl Conf Techn Ecosys Enhanc Multicult 2019201945967
    [Google Scholar]
  48. CoveneyP.V. DoughertyE.R. HighfieldR.R. Big data need big theory too.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201637420802016015310.1098/rsta.2016.0153
    [Google Scholar]
  49. RaghuM. ZhangC. KleinbergJ. BengioS. Transfusion: understanding transfer learning for medical imaging.NeurIPS Proc2019201932
    [Google Scholar]
  50. BengioY. DelalleauO. SimardC. Decision trees do not generalize to new variations.Comput. Intell.201026444946710.1111/j.1467‑8640.2010.00366.x
    [Google Scholar]
  51. BühlmannP. Van de GeerS. Statistics for High-Dimensional Data.Springer2011
    [Google Scholar]
  52. LiW. DasarathyG. BerishaV. Regularization via structural label smoothing.PMLR202018014531463
    [Google Scholar]
  53. DeshpandeA. EstrelaV.V. RazmjooyN. Computational Intelligence Methods for Super-Resolution in Image Processing Applications.Zurich, SwitzerlandSpringer Nature2021
    [Google Scholar]
  54. CaoL.J. ChuaK.S. ChongW.K. LeeH.P. GuQ.M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine.Neurocomputing2003551-232133610.1016/S0925‑2312(03)00433‑8
    [Google Scholar]
  55. JolliffeI.T. A note on the use of principal components in regression.J. R. Stat. Soc. Ser. C Appl. Stat.198231300303
    [Google Scholar]
  56. CoelhoA.M. de AssisJ.T. EstrelaV.V. Error concealment by means of clustered blockwise PCA.Cod Symp (PCS 2009)2009
    [Google Scholar]
/content/journals/cmir/10.2174/1573405619666221228094228
Loading
/content/journals/cmir/10.2174/1573405619666221228094228
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test