Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Spectral-Domain Optical Coherence Tomography (SD-OCT) provides non-invasive, high-speed, high-resolution, three-dimensional cross-section imaging of the macula.

Objectives

This study aimed to investigate the diagnostic value of the multimodal imaging technique of three-dimension (3D) optical coherence tomography (OCT) (3D-OCT) for the diagnosis and characterization of acute central serous chorioretinopathy (CSC).

Methods

In this prospective clinical study 3D-OCT examinations of 82 cases with acute CSC were performed on the macular area, and the image characteristics were analyzed. Our study included a total of 87 eyes from 82 cases of CSC patients, 67 males and 15 females (mean age ± standard deviation (SD): 42.89 ±7.80 years old; age range: 27 to 56 years old. The 3D-OCT images were evaluated for the presence of subretinal fluid, subretinal space, fluctuation of the internal limiting membrane (ILM), folds of retinal pigment epithelial (RPE), retinal pigment epithelium detachment (PED), and flat irregular PED. The foveal thickness was measured using the manual caliper of OCT software.

Results

The OCT B-scan images showed 87 (100%) eyes had exudative retinal detachment (ERD), 38 (44%) had flat irregular PED, 36 (41%) had PED, 8 (9%) had subretinal turbidity structure, 2 (2%) had subretinal dot-like precipitates, 1 (1%) had focal choroidal excavation (FCE), and 1 (1%) eye had fluctuation of internal limiting membrane (FI). In the ILM-RPE thickness map, all eyes had a round or round like regular uniform domes. Fifty-seven (66%) domes were limited in the examination area and 30 (44%) domes were beyond the scope of this examination and only a partial section of the dome could be observed. In the en-face image, all eyes had a round or round-like black figure that corresponded with domes in the ILM-RPE thickness map. In RPE surface, 76 (87%) eyes had a shallow plate depression, 71(82%) had small focal uplift, and 1 (1%) eye had a focal concave feature.

Conclusion

In the OCT ILM-RPE thickness, en-face image, and RPE surface maps, acute CSC exhibited specific imaging characteristics that can be helpful for reliable diagnosis and differential diagnosis of CSC.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230804093929
2024-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e040823219418.html?itemId=/content/journals/cmir/10.2174/1573405620666230804093929&mimeType=html&fmt=ahah

References

  1. MargolisR. MukkamalaS.K. JampolL.M. SpaideR.F. OberM.D. SorensonJ.A. GentileR.C. MillerJ.A. ShermanJ. FreundK.B. The expanded spectrum of focal choroidal excavation.Arch. Ophthalmol.2011129101320132510.1001/archophthalmol.2011.14821670327
    [Google Scholar]
  2. LiuG.H. LinB. SunX.Q. HeZ.F. LiJ.R. ZhouR. LiuX.L. Focal choroidal excavation: A preliminary interpretation based on clinic and review.Int. J. Ophthalmol.20158351352126086000
    [Google Scholar]
  3. UyamaM. MatsunagaH. MatsubaraT. FukushimaI. TakahashiK. NishimuraT. Indocyanine green angiography and pathophysiology of multifocal posterior pigment epitheliopathy.Retina1999191122110.1097/00006982‑199901000‑0000310048368
    [Google Scholar]
  4. YannuzziL.A. Central serous chorioretinopathy: A personal perspective.Am. J. Ophthalmol.20101493361363.e110.1016/j.ajo.2009.11.01720172062
    [Google Scholar]
  5. SpitznasM. HukeJ. Number, shape, and topography of leakage points in acute type I central serous retinopathy.Graefes Arch. Clin. Exp. Ophthalmol.1987225643744010.1007/BF023341723678855
    [Google Scholar]
  6. ShahinM.M. Angiographic characteristics of central serous chorioretinopathy in an Egyptian population.Int. J. Ophthalmol.20136334234523826530
    [Google Scholar]
  7. KitayaN. NagaokaT. HikichiT. SugawaraR. FukuiK. IshikoS. YoshidaA. Features of abnormal choroidal circulation in central serous chorioretinopathy.Br. J. Ophthalmol.200387670971210.1136/bjo.87.6.70912770966
    [Google Scholar]
  8. ImamuraY. FujiwaraT. MargolisR. SpaideR.F. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy.Retina200929101469147310.1097/IAE.0b013e3181be0a8319898183
    [Google Scholar]
  9. MarukoI. IidaT. SuganoY. OjimaA. SekiryuT. Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy.Retina20113181603160810.1097/IAE.0b013e31820f4b3921487334
    [Google Scholar]
  10. MarukoI. IidaT. SuganoY. OjimaA. OgasawaraM. SpaideR.F. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy.Ophthalmology201011791792179910.1016/j.ophtha.2010.01.02320472289
    [Google Scholar]
  11. General Assembly of the World Medical AssociationWorld Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects.J. Am. Coll. Dent.2014813141825951678
    [Google Scholar]
  12. ShinY.U. LeeB.R. Retro-mode Imaging for retinal pigment epithelium alterations in central serous chorioretinopathy.Am. J. Ophthalmol.20121541155163.e410.1016/j.ajo.2012.01.02322503695
    [Google Scholar]
  13. LehmannM. WolffB. VasseurV. MartinetV. ManassehN. SahelJ.A. Mauget-FaÿsseM. Retinal and choroidal changes observed with ‘En face’ enhanced-depth imaging OCT in central serous chorioretinopathy.Br. J. Ophthalmol.20139791181118610.1136/bjophthalmol‑2012‑30297423823080
    [Google Scholar]
  14. AqilA. MehmoodA. MoinM. AbidK. Characteristics of acute central serous chorioretinopathy on optical coherence tomography-a retrospective study.J. Pak. Med. Assoc.2020700110.5455/JPMA.2303933159763
    [Google Scholar]
  15. AhnS.E. OhJ. OhJ.H. OhI.K. KimS.W. HuhK. Three-dimensional configuration of subretinal fluid in central serous chorioretinopathy.Invest. Ophthalmol. Vis. Sci.20135495944595210.1167/iovs.13‑1227923920371
    [Google Scholar]
  16. YuJ. JiangC. XuG. Study of subretinal exudation and consequent changes in acute central serous chorioretinopathy by optical coherence tomography.Am. J. Ophthalmol.20141584752756.e210.1016/j.ajo.2014.06.01524973608
    [Google Scholar]
  17. GassJ.D.M. Central serous chorioretinopathy and white subretinal exudation during pregnancy.Arch. Ophthalmol.1991109567768110.1001/archopht.1991.010800500910362025170
    [Google Scholar]
  18. SaitoM. IidaT. KishiS. Ring-shaped subretinal fibrinous exudate in central serous chorioretinopathy.Jpn. J. Ophthalmol.200549651651910.1007/s10384‑005‑0244‑616365799
    [Google Scholar]
  19. FujimotoH GomiF WakabayashiT SawaM TsujikawaM TanoY. Morphologic changes in acute central serous chorioretinopathy evaluated by fourier-domain optical coherence tomography.Ophthalmology200811591500.e1210.1016/j.ophtha.2008.01.02118394706
    [Google Scholar]
  20. KonY. IidaT. MarukoI. SaitoM. The optical coherence tomography-ophthalmoscope for examination of central serous chorioretinopathy with precipitates.Retina200828686486910.1097/IAE.0b013e318166979518536604
    [Google Scholar]
  21. MatsumotoH. KishiS. SatoT. MukaiR. Fundus autofluorescence of elongated photoreceptor outer segments in central serous chorioretinopathy.Am. J. Ophthalmol.20111514617623.e110.1016/j.ajo.2010.09.03121257153
    [Google Scholar]
  22. MarukoI. IidaT. OjimaA. SekiryuT. Subretinal dot-like precipitates and yellow material in central serous chorioretinopathy.Retina201131475976510.1097/IAE.0b013e3181fbce8e21052035
    [Google Scholar]
  23. SpaideR. KlancnikJ.Jr Fundus autofluorescence and central serous chorioretinopathy.Ophthalmology2005112582583310.1016/j.ophtha.2005.01.00315878062
    [Google Scholar]
  24. BloomS.M. SingalI.P. The outer Bruch membrane layer: A previously undescribed spectral-domain optical coherence tomography finding.Retina201131231632310.1097/IAE.0b013e3181ed8c9a20890240
    [Google Scholar]
  25. XingL.I. YunlanL.I.M.L. Optical coherence tomography in central serous choroidoretinopathy.Chinese J. Ocul. Fundus Dis.19993
    [Google Scholar]
  26. LinD. ChenW. ZhangG. HuangH. ZhouZ. CenL. ChenH. Comparison of the optical coherence tomographic characters between acute Vogt-Koyanagi-Harada disease and acute central serous chorioretinopathy.BMC Ophthalmol.20141418710.1186/1471‑2415‑14‑8724974016
    [Google Scholar]
  27. MonteroJ.A. Ruiz-MorenoJ.M. Optical coherence tomography characterisation of idiopathic central serous chorioretinopathy.Br. J. Ophthalmol.200589556256410.1136/bjo.2004.04940315834085
    [Google Scholar]
  28. KimH.C. ChoW.B. ChungH. Morphologic changes in acute central serous chorioretinopathy using spectral domain optical coherence tomography.Korean J. Ophthalmol.201226534735410.3341/kjo.2012.26.5.34723060721
    [Google Scholar]
  29. JampolL.M. ShankleJ. SchroederR. TornambeP. SpaideR.F. HeeM.R. Diagnostic and therapeutic challenges.Retina20062691072107610.1097/01.iae.0000248819.86737.a517151497
    [Google Scholar]
  30. AbeS. YamamotoT. KiriiE. YamashitaH. Cup-shaped choroidal excavation detected by optical coherence tomography: A case report.Retin. Cases Brief Rep.20104437337610.1097/ICB.0b013e3181babe7e25390922
    [Google Scholar]
  31. WakabayashiY. NishimuraA. HigashideT. IjiriS. SugiyamaK. Unilateral choroidal excavation in the macula detected by spectral-domain optical coherence tomography.Acta Ophthalmol.2010883e87e9110.1111/j.1755‑3768.2010.01895.x20546234
    [Google Scholar]
  32. KatomeT. MitamuraY. HottaF. NikiM. NaitoT. Two cases of focal choroidal excavation detected by spectral-domain optical coherence tomography.Case Rep. Ophthalmol.2012319610310.1159/00033788023008695
    [Google Scholar]
  33. KobayashiW. AbeT. TamaiH. NakazawaT. Choroidal excavation with polypoidal choroidal vasculopathy: A case report.Clin. Ophthalmol.201261373137610.2147/OPTH.S3387922969281
    [Google Scholar]
  34. SayE.A.T. JaniP.D. AppenzellerM.F. HoughtonO.M. Focal choroidal excavation associated with polypoidal choroidal vasculopathy.Ophthalmic Surg. Lasers Imaging Retina201344440941110.3928/23258160‑20130715‑1223883536
    [Google Scholar]
  35. WangY ChenZ-Q WangW FangX-Y Multimodal imaging evaluations of focal choroidal excavations in eyes with central serous chorioretinopathy.J. Ophthalmol20162016707308310.1155/2016/707308327437148
    [Google Scholar]
  36. LiB. YeJ.J. ZhangM.F. LiD.H. [The fundus manifestations and SD-OCT findings of patients with acute Vogt-Koyanagi-Harada disease].Zhonghua Yan Ke Za Zhi201753643643928606265
    [Google Scholar]
  37. ZhaoG. LiR. PangY. WangX. PengH. WeiJ. ZhouZ. Diagnostic function of 3D optical coherence tomography images in diagnosis of Vogt-Koyanagi-Harada disease at acute uveitis stage.Med. Sci. Monit.20182468769710.12659/MSM.90593129396390
    [Google Scholar]
  38. Xi-Jia ZX-M HB-A Characteristics of near infrared imaging in central serous chorioretinopathy.Rec. Adv. Ophthalmol.201131976979
    [Google Scholar]
  39. ManjunathV. TahaM. FujimotoJ.G. DukerJ.S. Choroidal thickness in normal eyes measured using cirrus HD optical coherence tomography.Am. J. Ophthalmol.20101503325329.e110.1016/j.ajo.2010.04.01820591395
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230804093929
Loading
/content/journals/cmir/10.2174/1573405620666230804093929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test