Skip to content
2000
Volume 3, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Micro Computed Tomography (micro-CT) was suggested in biomedical research to investigate tissues and small animals. Its use to characterize bone structures, vessels (e.g. tumor vascularization), tumors and soft tissues such as lung parenchyma has been shown. When co-registered, micro-CT can add structural information to other small animal imaging modalities. However, due to fundamental CT principles, high-resolution imaging with micro-CT demands for high x-ray doses and long scan times to generate a sufficiently high signal-to-noise ratio. Long scan times in turn make the use of extravascular contrast agents difficult. Recently introduced flat-panel based mini-CT systems offer a valuable tradeoff between resolution (∼200 μm), scan time (0.5 s), applied x-ray dose and scan field-of-view. This allows for angiography scans and follow-up examinations using iodinated contrast agents having a similar performance compared to patient scans. Furthermore, dynamic examinations such as perfusion studies as well as retrospective motion gating are currently implemented using flat-panel CT. This review summarizes applications of experimental CT in basic research and provides an overview of current hardware developments making CT a powerful tool to study tissue morphology and function in small laboratory animals such as rodents.

Loading

Article metrics loading...

/content/journals/cmir/10.2174/157340507779940327
2007-02-01
2025-01-18
Loading full text...

Full text loading...

/content/journals/cmir/10.2174/157340507779940327
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test