Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Patients with cancer can develop bone metastasis when a solid tumor invades the bone, which is the third most commonly affected site by metastatic cancer, after the lung and liver. The early detection of bone metastases is crucial for making appropriate treatment decisions and increasing survival rates. Deep learning, a mainstream branch of machine learning, has rapidly become an effective approach to analyzing medical images.

Objective

To automatically diagnose bone metastasis with bone scintigraphy, in this work, we proposed to cast the bone metastasis diagnosis problem into automated image classification by developing a deep learning-based automated classification model.

Methods

A self-defined convolutional neural network consisting of a feature extraction sub-network and feature classification sub-network was proposed to automatically detect lung cancer bone metastasis, with a feature extraction sub-network extracting hierarchal features from SPECT bone scintigrams and feature classification sub-network classifying high-level features into two categories (., images with metastasis and without metastasis).

Results

Using clinical data of SPECT bone scintigrams, the proposed model was evaluated to examine its detection accuracy. The best performance was achieved if the two images (., anterior and posterior scans) acquired from each patient were fused using pixel-wise addition operation on the bladder-excluded images, obtaining the best scores of 0.8038, 0.8051, 0.8039, 0.8039, 0.8036, and 0.8489 for accuracy, precision, recall, specificity, F-1 score, and AUC value, respectively.

Conclusion

The proposed two-class classification network can predict whether an image contains lung cancer bone metastasis with the best performance as compared to existing classical deep learning models. The high accumulation of 99mTc MDP in the urinary bladder has a negative impact on automated diagnosis of bone metastasis. It is recommended to remove the urinary bladder before automated analysis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056281578231212104108
2024-01-01
2025-07-13
The full text of this item is not currently available.

References

  1. ValkenburgK.C. SteensmaM.R. WilliamsB.O. ZhongZ. Skeletal metastasis: Treatments, mouse models, and the Wnt signaling.Chin. J. Cancer201332738039610.5732/cjc.012.1021823327798
    [Google Scholar]
  2. HessK.R. VaradhacharyG.R. TaylorS.H. WeiW. RaberM.N. LenziR. AbbruzzeseJ.L. Metastatic patterns in adenocarcinoma.Cancer200610671624163310.1002/cncr.2177816518827
    [Google Scholar]
  3. MehlenP. PuisieuxA. Metastasis: A question of life or death.Nat. Rev. Cancer20066644945810.1038/nrc188616723991
    [Google Scholar]
  4. SöderlundV. Radiological diagnosis of skeletal metastases.Eur. Radiol.19966558759510.1007/BF001876548934120
    [Google Scholar]
  5. ClemonsM. GelmonK.A. PritchardK.I. PatersonA.H.G. Bone-targeted agents and skeletal-related events in breast cancer patients with bone metastases: The state of the art.Curr. Oncol.201219525926810.3747/co.19.101123144574
    [Google Scholar]
  6. HamaokaT. MadewellJ.E. PodoloffD.A. HortobagyiG.N. UenoN.T. Bone imaging in metastatic breast cancer.J. Clin. Oncol.200422142942295310.1200/JCO.2004.08.18115254062
    [Google Scholar]
  7. CostelloeC.M. RohrenE.M. MadewellJ.E. HamaokaT. TheriaultR.L. YuT.K. LewisV.O. MaJ. StaffordR.J. TariA.M. HortobagyiG.N. UenoN.T. Imaging bone metastases in breast cancer: Techniques and recommendations for diagnosis.Lancet Oncol.200910660661410.1016/S1470‑2045(09)70088‑919482249
    [Google Scholar]
  8. LinQ. ManZ. CaoY. DengT. HanC. CaoC. ZhangL. ZengS. GaoR. WangW. JiJ. HuangX. Classifying functional nuclear images with convolutional neural networks: A survey.IET Image Process.202014143300331310.1049/iet‑ipr.2019.1690
    [Google Scholar]
  9. NathanM. GnanasegaranG. AdamsonK. Bone Scintigraphy: Patterns, Variants, Limitations and Artefacts.Springer Berlin Heidelberg2013
    [Google Scholar]
  10. SadikM. HamadehI. NordblomP. SuurkulaM. HöglundP. OhlssonM. EdenbrandtL. Computer-assisted interpretation of planar whole-body bone scans.J. Nucl. Med.200849121958196510.2967/jnumed.108.05506118997038
    [Google Scholar]
  11. SadikM. JakobssonD. OlofssonF. OhlssonM. SuurkulaM. EdenbrandtL. A new computer-based decision-support system for the interpretation of bone scans.Nucl. Med. Commun.200627541742310.1097/00006231‑200605000‑0000216609352
    [Google Scholar]
  12. AslantasA. DandilE. SaǧlamS. ÇakiroǧluM. CADBOSS: A computer-aided diagnosis system for whole-body bone scintigraphy scans.J. Cancer Res. Ther.201612278779210.4103/0973‑1482.15042227461652
    [Google Scholar]
  13. CalinM.A. ElfarraF.G. ParascaS.V. Object-oriented classification approach for bone metastasis mapping from whole-body bone scintigraphy.Phys. Med.20218414114810.1016/j.ejmp.2021.03.04033894584
    [Google Scholar]
  14. ElfarraF.G. CalinM.A. ParascaS.V. Computer-aided detection of bone metastasis in bone scintigraphy images using parallelepiped classification method.Ann. Nucl. Med.2019331186687410.1007/s12149‑019‑01399‑w31493203
    [Google Scholar]
  15. ShanH. JiaX. YanP. Synergizing medical imaging and radiotherapy with deep learning.Machine Learning: Science and Technology202012021001
    [Google Scholar]
  16. AlganG. UlusoyI. Image classification with deep learning in the presence of noisy labels: A survey.Knowl. Base. Syst.2021215310677110.1016/j.knosys.2021.106771
    [Google Scholar]
  17. LitjensG. KooiT. BejnordiB.E. SetioA.A.A. CiompiF. GhafoorianM. van der LaakJ.A.W.M. van GinnekenB. SánchezC.I. A survey on deep learning in medical image analysis.Med. Image Anal.2017429608810.1016/j.media.2017.07.00528778026
    [Google Scholar]
  18. AbadaR. AbubakarA.M. BilalM.T. An overview on deep leaning application of big data, mesopotamian.J. Big Data2022•••3135
    [Google Scholar]
  19. PapandrianosN. PapageorgiouE. AnagnostisA. PapageorgiouK. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application.PLoS One2020158e023721310.1371/journal.pone.023721332797099
    [Google Scholar]
  20. PapandrianosN. PapageorgiouE.I. AnagnostisA. Development of convolutional neural networks to identify bone metastasis for prostate cancer patients in bone scintigraphy.Ann. Nucl. Med.2020341182483210.1007/s12149‑020‑01510‑632839920
    [Google Scholar]
  21. ChengD.C. HsiehT.C. YenK.Y. KaoC.H. Lesion-based bone metastasis detection in chest bone scintigraphy images of prostate cancer patients using pre-train, negative mining, and deep learning.Diagnostics202111351810.3390/diagnostics1103051833803921
    [Google Scholar]
  22. ChengD.C. LiuC.C. HsiehT.C. YenK-Y. KaoC-H. Bone metastasis detection in the chest and pelvis from a whole-body bone scan using deep learning and a small dataset.Electronics20211010120110.3390/electronics10101201
    [Google Scholar]
  23. PapandrianosN. PapageorgiouE. AnagnostisA. FelekiA. A deep-learning approach for diagnosis of metastatic breast cancer in bones from whole-body scans.Appl. Sci.202010399710.3390/app10030997
    [Google Scholar]
  24. PiY. ZhaoZ. XiangY. LiY. CaiH. YiZ. Automated diagnosis of bone metastasis based on multi-view bone scans using attention-augmented deep neural networks.Med. Image Anal.20206510178410.1016/j.media.2020.10178432763793
    [Google Scholar]
  25. ZhaoZ. PiY. JiangL. XiangY. WeiJ. YangP. ZhangW. ZhongX. ZhouK. LiY. LiL. YiZ. CaiH. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis.Sci. Rep.20201011704610.1038/s41598‑020‑74135‑433046779
    [Google Scholar]
  26. LinQ. CaoC. LiT. CaoY. ManZ. WangH. Multiclass classification of whole‐body scintigraphic images using a self‐defined convolutional neural network with attention modules.Med. Phys.202148105782579310.1002/mp.1519634455613
    [Google Scholar]
  27. LinQ. CaoC. LiT. ManZ. CaoY. WangH. dSPIC: A deep SPECT image classification network for automated multi-disease, multi-lesion diagnosis.BMC Med. Imaging202121112210.1186/s12880‑021‑00653‑w34380441
    [Google Scholar]
  28. LiT. LinQ. GuoY. ZhaoS. ZengX. ManZ. CaoY. HuY. Automated detection of skeletal metastasis of lung cancer with bone scans using convolutional nuclear network.Phys. Med. Biol.202267101500410.1088/1361‑6560/ac4565
    [Google Scholar]
  29. GuoY. LinQ. ZhaoS. LiT. CaoY. ManZ. ZengX. Automated detection of lung cancer-caused metastasis by classifying scintigraphic images using convolutional neural network with residual connection and hybrid attention mechanism.Insights Imaging20221312410.1186/s13244‑022‑01162‑235138479
    [Google Scholar]
  30. GuoY. LinQ. WangY. CaoX. CaoY. ManZ. ZengX. HuangX. Integrating transfer learning and feature aggregation into self-defined convolutional neural network for automated detection of lung cancer bone metastasis.J. Med. Biol. Eng.2023431536210.1007/s40846‑022‑00770‑z
    [Google Scholar]
  31. LinQ. ManZ. CaoY. WangH. Automated classification of whole-body SPECT bone scan images with VGG-based deep networks.Int. Arab J. Inf. Technol.20232011810.34028/iajit/20/1/1
    [Google Scholar]
  32. YanS. Analysis of clinical characteristics of 356 cases of malignant tumor bone metastasis.Modern Chinese Medicine Application201593637[in Chinese].
    [Google Scholar]
  33. DangJ. Classification in none scintigraphy images using convolutional neural networks.Master’s Theses in Mathematical Sciences.Lund University2016
    [Google Scholar]
  34. HanS. OhJ.S. LeeJ.J. Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer.Eur. J. Nucl. Med. Mol. Imaging202249258559510.1007/s00259‑021‑05481‑234363089
    [Google Scholar]
  35. HsiehT.C. LiaoC.W. LaiY.C. LawK.M. ChanP.K. KaoC.H. Detection of bone metastases on bone scans through image classification with contrastive learning.J. Pers. Med.20211112124810.3390/jpm1112124834945720
    [Google Scholar]
  36. LiuS. FengM. QiaoT. CaiH. XuK. YuX. JiangW. LvZ. WangY. LiD. Deep learning for the automatic diagnosis and analysis of bone metastasis on bone scintigrams.Cancer Manag. Res.202214516510.2147/CMAR.S34011435018121
    [Google Scholar]
  37. AokiY. NakayamaM. NomuraK. TomitaY. NakajimaK. YamashinaM. OkizakiA. The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer.Ann. Nucl. Med.2020341292693110.1007/s12149‑020‑01524‑032955663
    [Google Scholar]
  38. LinQ. LiT. CaoC. CaoY. ManZ. WangH. Deep learning based automated diagnosis of bone metastases with SPECT thoracic bone images.Sci. Rep.2021111422310.1038/s41598‑021‑83083‑633608560
    [Google Scholar]
  39. PapandrianosN. PapageorgiouE. AnagnostisA. PapageorgiouK. Efficient bone metastasis diagnosis in bone scintigraphy using a fast convolutional neural network architecture.Diagnostics202010853210.3390/diagnostics1008053232751433
    [Google Scholar]
  40. FortuneS. A sweepline algorithm for Voronoi diagrams.Algorithmica198721-415317410.1007/BF01840357
    [Google Scholar]
  41. HeK. ZhangX. RenS. Deep residual learning for image recognition.Proc. CVPR 2016Washington D.C., USAJune 26th–July 1st, 2016
    [Google Scholar]
  42. SimonyanK. ZissermanA. Very deep convolutional networks for large-scale image recognition.Proc. ICLR 2015San Diego, USAMay 7th–9th, 2015
    [Google Scholar]
  43. HuangG. LiuZ. LaurensV. Densely connected convolutional networks.Proc. CVPR 2017Honolulu, USAJuly 21st–July 26th, 2017
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056281578231212104108
Loading
/content/journals/cmir/10.2174/0115734056281578231212104108
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test