Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Thyroid disorders are prevalent worldwide and impact many people. The abnormal growth of cells in the thyroid gland region is very common and even found in healthy people. These abnormal cells can be cancerous or non-cancerous, so early detection of this disease is the only solution for minimizing the death rate or maximizing a patient's survival rate. Traditional techniques to detect cancerous nodules are complex and time-consuming; hence, several imaging algorithms are used to detect the malignant status of thyroid nodules timely.

Aim

This research aims to develop computer-aided diagnosis tools for malignant thyroid nodule detection using ultrasound images. This tool will be helpful for doctors and radiologists in the rapid detection of thyroid cancer at its early stages. The individual machine learning models are inferior to medical datasets because the size of medical image datasets is tiny, and there is a vast class imbalance problem. These problems lead to overfitting; hence, accuracy is very poor on the test dataset.

Objective

This research proposes ensemble learning models that achieve higher accuracy than individual models. The objective is to design different ensemble models and then utilize benchmarking techniques to select the best model among all trained models.

Methods

This research investigates four recently developed image transformer and mixer models for thyroid detection. The weighted average ensemble models are introduced, and model weights are optimized using the hunger games search (HGS) optimization algorithm. The recently developed distance correlation CRITIC (D-CRITIC) based TOPSIS method is utilized to rank the models.

Results

Based on the TOPSIS score, the best model for an 80:20 split is the gMLP + ViT model, which achieved an accuracy of 89.70%, whereas using a 70:30 data split, the gMLP + FNet + Mixer-MLP has achieved the highest accuracy of 82.18% on the publicly available thyroid dataset.

Conclusion

This study shows that the proposed ensemble models have better thyroid detection capabilities than individual base models for the imbalanced thyroid ultrasound dataset.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230405085358
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e050423215446.html?itemId=/content/journals/cmir/10.2174/1573405620666230405085358&mimeType=html&fmt=ahah

References

  1. SharifiY. BakhshaliM.A. DehghaniT. DanaiAshgzariM. SargolzaeiM. EslamiS. Deep learning on ultrasound images of thyroid nodules.Biocybern. Biomed. Eng.202141263665510.1016/j.bbe.2021.02.008
    [Google Scholar]
  2. HaE.J. BaekJ.H. Applications of machine learning and deep learning to thyroid imaging: where do we stand?Ultrasonography2021401232910.14366/usg.2006832660203
    [Google Scholar]
  3. MohammedM. MwambiH. MboyaI.B. ElbashirM.K. OmoloB. A stacking ensemble deep learning approach to cancer type classification based on TCGA data.Sci. Rep.20211111562610.1038/s41598‑021‑95128‑x34341396
    [Google Scholar]
  4. YangQ. GongY. Construction of the classification model using key genes identified between benign and malignant thyroid nodules from comprehensive transcriptomic data.Front. Genet.20221279134910.3389/fgene.2021.79134935096008
    [Google Scholar]
  5. WangY. GuanQ. LaoI. WangL. WuY. LiD. JiQ. WangY. ZhuY. LuH. XiangJ. Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: A large-scale pilot study.Ann. Transl. Med.201971846810.21037/atm.2019.08.5431700904
    [Google Scholar]
  6. BöhlandM. TharunL. ScherrT. MikutR. HagenmeyerV. ThompsonL.D.R. PernerS. ReischlM. Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis.PLoS One2021169e025763510.1371/journal.pone.025763534550999
    [Google Scholar]
  7. YangP. PiY. HeT. SunJ. WeiJ. XiangY. JiangL. LiL. YiZ. ZhaoZ. CaiH. Automatic differentiation of thyroid scintigram by deep convolutional neural network: A dual center study.BMC Med. Imaging202121117910.1186/s12880‑021‑00710‑434823482
    [Google Scholar]
  8. XuP. DuZ. SunL. ZhangY. ZhangJ. QiuQ. Diagnostic value of contrast-enhanced ultrasound image features under deep learning in benign and malignant thyroid lesions.Sci. Program.2022202211010.1155/2022/6786966
    [Google Scholar]
  9. ZhaoX. ShenX. WanW. LuY. HuS. XiaoR. DuX. LiJ. Automatic thyroid ultrasound image classification using feature fusion network.IEEE Access202210279172792410.1109/ACCESS.2022.3156096
    [Google Scholar]
  10. ChiJ. WaliaE. BabynP. WangJ. GrootG. EramianM. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network.J. Digit. Imaging201730447748610.1007/s10278‑017‑9997‑y28695342
    [Google Scholar]
  11. Sai SundarK.V. RajamaniK.T. SivaS.S.S. Exploring image classification of thyroid ultrasound images using deep learning. International Conference on ISMAC in Computational Vision and Bio-Engineering20191635164110.1007/978‑3‑030‑00665‑5_151
    [Google Scholar]
  12. NguyenD.T. PhamT.D. BatchuluunG. YoonH.S. ParkK.R. Artificial intelligence-based thyroid nodule classification using information from spatial and frequency domains.J. Clin. Med.2019811197610.3390/jcm811197631739517
    [Google Scholar]
  13. NguyenD.T. KangJ.K. PhamT.D. BatchuluunG. ParkK.R. Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence.Sensors2020207182210.3390/s2007182232218230
    [Google Scholar]
  14. ZhangS. HeF. DRCDN: Learning deep residual convolutional dehazing networks.Vis. Comput.20203691797180810.1007/s00371‑019‑01774‑8
    [Google Scholar]
  15. DosovitskiyA. BeyerL. KolesnikovA. WeissenbornD. ZhaiX. UnterthinerT. DehghaniM. MindererM. HeigoldG. GellyS. UszkoreitJ. An image is worth 16x16 words: Transformers for image recognition at scale.arXiv preprint arXiv:2010.11929.2020
    [Google Scholar]
  16. WuJ. HuR. XiaoZ. ChenJ. LiuJ. Vision Transformer‐based recognition of diabetic retinopathy grade.Med. Phys.202148127850786310.1002/mp.1531234693536
    [Google Scholar]
  17. TanziL. AudisioA. CirrincioneG. ApratoA. VezzettiE. Vision transformer for femur fracture classification.Injury20225372625263410.1016/j.injury.2022.04.01335469638
    [Google Scholar]
  18. WuY. QiS. SunY. XiaS. YaoY. QianW. A vision transformer for emphysema classification using CT images.Phys. Med. Biol.2021662424501610.1088/1361‑6560/ac3dc834826824
    [Google Scholar]
  19. AladhadhS. AlsaneaM. AlorainiM. KhanT. HabibS. IslamM. An effective skin cancer classification mechanism via medical vision transformer.Sensors20222211400810.3390/s2211400835684627
    [Google Scholar]
  20. JiangZ. WangL. WuQ. ShaoY. ShenM. JiangW. DaiC. Computer-aided diagnosis of retinopathy based on vision transformer.J. Innov. Opt. Health Sci.2022152225000910.1142/S1793545822500092
    [Google Scholar]
  21. TolstikhinI.O. HoulsbyN. KolesnikovA. BeyerL. ZhaiX. UnterthinerT. YungJ. SteinerA. KeysersD. UszkoreitJ. LucicM. Mlp-mixer: An all-mlp architecture for vision.Adv. Neural Inf. Process. Syst.2021342426124272
    [Google Scholar]
  22. LiuH. DaiZ. SoD. LeQ.V. Pay attention to mlps.Adv. Neural Inf. Process. Syst.20213492049215
    [Google Scholar]
  23. Lee-ThorpJ. AinslieJ. EcksteinI. OntanonS. Fnet: Mixing tokens with fourier transforms.arXiv preprint arXiv:2105.038242021
    [Google Scholar]
  24. YanJ. WangX. CaiJ. QinQ. YangH. WangQ. ChengY. GanT. JiangH. DengJ. ChenB. Medical image segmentation model based on triple gate MultiLayer perceptron.Sci. Rep.2022121610310.1038/s41598‑022‑09452‑x35413958
    [Google Scholar]
  25. PintelasP. LivierisI.E. Special issue on ensemble learning and applications.Algorithms202013614010.3390/a13060140
    [Google Scholar]
  26. AlDahoulN. AbdulK.H. JoshuaT.T.M. MomoM.A. LedesmaF.J. Encoding retina image to words using ensemble of vision transformers for diabetic retinopathy grading.F1000 Res.20211094894810.12688/f1000research.73082.1
    [Google Scholar]
  27. RajaramanS. ZamzmiG. FolioL.R. AntaniS. Detecting tuberculosis-consistent findings in lateral chest x-rays using an ensemble of CNNs and vision transformers.Front. Genet.20221386472410.3389/fgene.2022.86472435281798
    [Google Scholar]
  28. LuoJ HeF GaoX An enhanced grey wolf optimizer with fusion strategies for identifying the parameters of photovoltaic models.Integr Comput Aided Eng20223018910410.3233/ICA‑220693
    [Google Scholar]
  29. ChenY. HeF. LiH. ZhangD. WuY. A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration.Appl. Soft Comput.20209310633510.1016/j.asoc.2020.106335
    [Google Scholar]
  30. MaB.J. LiuS. HeidariA.A. Multi-strategy ensemble binary hunger games search for feature selection.Knowl. Base. Syst.202224810878710.1016/j.knosys.2022.108787
    [Google Scholar]
  31. MehtaP. YildizB.S. SaitS.M. YildizA.R. Hunger games search algorithm for global optimization of engineering design problems.Materialprüfung202264452453210.1515/mt‑2022‑0013
    [Google Scholar]
  32. WangX. ChangD. ShiT. FanG. ZhangB. Diagnosis from CT scan images in complex biological media using deep learning and wave application: A Hunger Games search-based approach.Waves Random Complex Media202112510.1080/17455030.2021.1998729
    [Google Scholar]
  33. ChowdhuryN.K. KabirM.A. RahmanM.M. IslamS.M.S. Machine learning for detecting COVID-19 from cough sounds: An ensemble-based MCDM method.Comput. Biol. Med.202214510540510.1016/j.compbiomed.2022.10540535318171
    [Google Scholar]
  34. MohammedM.A. AbdulkareemK.H. Al-WaisyA.S. MostafaS.A. Al-FahdawiS. DinarA.M. AlhakamiW. BazA. Al-MhiqaniM.N. AlhakamiH. ArbaiyN. MaashiM.S. MutlagA.A. Garcia-ZapirainB. De La TorreD.I. Benchmarking methodology for selection of optimal COVID-19 diagnostic model based on entropy and TOPSIS methods.IEEE Access20208991159913110.1109/ACCESS.2020.2995597
    [Google Scholar]
  35. TripathyJ. DashR. PattanayakB.K. MishraS.K. MishraT.K. PuthalD. Combination of reduction detection using TOPSIS for gene expression data analysis.Big Data Cogn. Comput.2022612410.3390/bdcc6010024
    [Google Scholar]
  36. KrishnanA.R. KasimM.M. HamidR. GhazaliM.F. A modified CRITIC method to estimate the objective weights of decision criteria.Symmetry202113697310.3390/sym13060973
    [Google Scholar]
  37. Nam-GoongI.S. KimH.Y. GongG. LeeH.K. HongS.J. KimW.B. ShongY.K. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: Correlation with pathological findings.Clin. Endocrinol.2004601212810.1046/j.1365‑2265.2003.01912.x14678283
    [Google Scholar]
  38. HaugenB.R. AlexanderE.K. BibleK.C. DohertyG.M. MandelS.J. NikiforovY.E. PaciniF. RandolphG.W. SawkaA.M. SchlumbergerM. SchuffK.G. ShermanS.I. SosaJ.A. StewardD.L. TuttleR.M. WartofskyL. 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer.Thyroid2016261113310.1089/thy.2015.002026462967
    [Google Scholar]
  39. PedrazaL. VargasC. NarváezF. DuránO. MuñozE. RomeroE. An open access thyroid ultrasound image database.10th International Symposium on Medical Information Processing and Analysis201510.1117/12.2073532
    [Google Scholar]
  40. ZhuY. FuZ. FeiJ. An image augmentation method using convolutional network for thyroid nodule classification by transfer learning.2017 3rd IEEE International Conference on Computer and Communications (ICCC)201710.1109/CompComm.2017.8322853
    [Google Scholar]
  41. LeeS.H. LeeS. SongB.C. Vision transformer for small-size datasets.arXiv preprint arXiv:2112.134922021
    [Google Scholar]
  42. TouvronH. CordM. DouzeM. MassaF. SablayrollesA. JégouH. Training data-efficient image transformers & distillation through attention.Computer Vision and Pattern Recognition (cs.CV)Arxic:201220211287710.48550/arXiv.2012.12877
    [Google Scholar]
  43. YangY. ChenH. HeidariA.A. GandomiA.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts.Expert Syst. Appl.202117711486410.1016/j.eswa.2021.114864
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230405085358
Loading
/content/journals/cmir/10.2174/1573405620666230405085358
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test