Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Ionic liquids (ILs) are presently one of the most interesting research fields gaining vast attention from researchers from multidisciplinary research areas worldwide. Without any ambiguity, ionic liquids or molten salts, neoteric materials have become a significant and crucial area under study for the exploration of the science of molecules. The data in the literature emphasises that a plethora of papers have been published on ionic liquids each year. These neoteric materials have been the subject of several major reviews and books, dealing with different explorations and aspects of their behaviours. The supramolecular material called cyclodextrin (CDs), and their ability to form inclusion complexes with ILs due to their hydrophobic and hydrophilic properties, is well known to date. This review offers a vision of the chemical behaviours of ionic liquids complexes using cyclodextrins. The review takes care of different sections related to i) introduction of cyclodextrin, ii) history of ionic liquids, iii) history of inclusion compounds, iv) general methods for the formation of inclusion complexes, and v) the inclusion complex formation of ionic liquids with cyclodextrins.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X01666230821142719
2023-01-01
2024-12-28
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E210823220106.html?itemId=/content/journals/cis/10.2174/2210299X01666230821142719&mimeType=html&fmt=ahah

References

  1. a SophieF. GregorioC. EricL. Cyclodextrin Fundamentals, Reactivity and Analysis.SwitzerlandSpringer2018
    [Google Scholar]
  2. b Teixeira-Dias; FritzE.K. Synthesis and characterization of the inclusion compound of a ethyltrioxorehinium (VII) adduct of 4-ferrocenylpyridine with β-cyclodextrin.J. Organomet. Chem.200265628128710.1016/S0022‑328X(02)01635‑2
    [Google Scholar]
  3. c GuptaG.R. ShaikhV.R. PatilK.J. Essential oil complexes studied by thermal gravimetry analysis - differential scanning calorimetry.Curr. Phys. Chem.2023
    [Google Scholar]
  4. a de SousaF.B. OliveiraM.F. LulaI.S. SansivieroM.T.C. CortésM.E. SinisterraR.D. Study of inclusion compound in solution involving tetracycline and β-cyclodextrin by FTIR-ATR.Vib. Spectrosc.2008461576210.1016/j.vibspec.2007.10.002
    [Google Scholar]
  5. b GuptaG.R. PatilP.D. ShaikhV.R. KolhapurkarR.R. DagadeD.H. PatilK.J. Analytical estimation of water, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin.Curr. Sci.2018114122525252910.18520/cs/v114/i12/2525‑2529
    [Google Scholar]
  6. GheorgheB. IrinaK. SorinI.F. IoanB. Inclusion compound of vitamin B6 in β-CD. Physicochemical and structural investigations.J. Phy. ConferenceSeries2009182012003
    [Google Scholar]
  7. Lahiani-SkibaM. BounoureF. Shawky-TousS. ArnaudP. SkibaM. Optimization of entrapment of metronidazole in amphiphilic β-cyclodextrin nanospheres.J. Pharm. Biomed. Anal.20064131017102110.1016/j.jpba.2006.01.02116497467
    [Google Scholar]
  8. SusanaS.B. IsabelS.G. HerdtweckE. JoseJ.C. Teixeira-Dias, Solid state inclusion compound of S-ibuprofen in β-cyclodextrin: Structure and characterization.New J. Chem.200327597601
    [Google Scholar]
  9. HuiB.Y. Mohamad ZainN.N. MohamadS. OsmanH. RaoovM. Magneticpoly(β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis.Food Chem.201825322332
    [Google Scholar]
  10. CaoS. ChenJ. LaiG. XiC. LiX. ZhangL. WangG. ChenZ. A high efficient adsorbent for plant growth regulators based on ionic liquid and β-cyclodextrin functionalized magnetic graphene oxide.Talanta2019194142510.1016/j.talanta.2018.10.01330609513
    [Google Scholar]
  11. GrenoM. SalgadoA. Castro-PuyanaM. MarinaM.L. Nuclear magnetic resonance to study the interactions acting in the enantiomeric separation of homocysteine by capillary electrophoresis with a dual system of γ- cyclodextrin and the chiral ionic liquid etcholntf2.Electrophoresis2018
    [Google Scholar]
  12. SadjadiS. KoohestaniF. Functionalized chitosan polymerized with cyclodextrin decorated ionic liquid: Metal free and biocompatible catalyst for chemical transformations.Int. J. Biol. Macromol.202014739940710.1016/j.ijbiomac.2020.01.08931926926
    [Google Scholar]
  13. ZhuX. ChenC. ChenJ. XuG. DuY. MaX. SunX. FengZ. HuangZ. Synthesis and application of tetramethylammonium-carboxymethyllated-β-cyclodextrin:A novel ionic liquid in capillary electrophoresis enantioseparation.J. Pharm. Biomed. Anal.201918011303010.1016/j.jpba.2019.11303031851909
    [Google Scholar]
  14. RasdiF.L.M. RahimN.Y. HasimF.W. PrabuS. JumbriK. MananN.S.A. MohamadS. Influence of degree of substitution on the host-guest inclusion complex between ionic liquid substituted β-cyclodextrins with 2,4-dichlorophenol: An electrochemical, NMR and molecular docking studies.J. Mol. Liq.201929211133410.1016/j.molliq.2019.111334
    [Google Scholar]
  15. ZhangY. LiQ. GaoQ. LiJ. ShenY. ZhuX. An aspirated in-syringe device fixed with ionic liquid and β-cyclodextrin-functionalized CNTs/TiO 2 for rapid adsorption and visible-light-induced photocatalytic activity.New J. Chem.201943249345935310.1039/C9NJ01602C
    [Google Scholar]
  16. SilvaM.C.E. GalhanoC.I.C. Moreira Da SilvaA.M.G. A New sprout of potato tuber based on carvone/β-cyclodextrin inclusion compound.J. Incl. Phenom. Macrocycl. Chem.200757127124
    [Google Scholar]
  17. TopalaC. IonitaG. MeltzerV. PincuE. DraghiciC. Inclusion complexes of steroidal heterocyclic compounds with cyclodextrins in aqueous solution and in the solid state.ARKIVOC200220022879610.3998/ark.5550190.0003.210
    [Google Scholar]
  18. ZhangL. Response surface Optimization of the preparation of Baicalin-β-cyclodextrin Inclusion compound.Lat. Am. J. Pharm.201332811461151
    [Google Scholar]
  19. DavyH. Chemical and philosophical, chiefly concerning nitrous oxide, or dephlogisticated nitrous air, and its respiration.Biggs and Cottle1800
    [Google Scholar]
  20. ReichardtC. Solvents and solvent effect: An introduction.Org. Process Res. Dev.200711110511310.1021/op0680082
    [Google Scholar]
  21. a SundermeyerW. Fused salts and their use as reaction media.Angew. Chem. Int. Ed. Engl.19654322223810.1002/anie.196502221
    [Google Scholar]
  22. b ChandrakantS. SachinY. GaneshC. GovindaW. GauravG. Development of the Room Temperature Protocol based on Room Temperature Ionic Liquids and Surfactant Ionic Liquids for the Synthesis of Derivatives of 2-amino-thiazoles and Thermo-physical Analysis of the Synthesized Derivatives using TGA-DSC.Curr. Phys. Chem.20211112734
    [Google Scholar]
  23. c SarodeC.H. GuptaG.R. ChaudhariG.R. WaghuldeG.P. WaghuldeG.P. Investigations related to the suitability of imidazolium based room temperature ionic liquids and pyridinium based sponge ionic liquids towards the synthesis of 2-aminothiazole compounds as reaction medium and catalyst.Curr. Green Chem.20185319119710.2174/2213346105666181001111019
    [Google Scholar]
  24. WangY.L. LiB. SarmanS. MocciF. LuZ.Y. YuanJ. LaaksonenA. FayerM.D. Microstructural and dynamical heterogeneities in ionic liquids.Chem. Rev.2020120135798587710.1021/acs.chemrev.9b0069332292036
    [Google Scholar]
  25. TorimotoT. TsudaT. OkazakiK. KuwabataS. New frontiers in materials science opened by ionic liquids.Adv. Mater.201022111196122110.1002/adma.20090218420437507
    [Google Scholar]
  26. ArmandM. EndresF. MacFarlaneD.R. OhnoH. ScrosatiB. Ionic-liquid materials for the electrochemical challenges of the future.Nat. Mater.20098862162910.1038/nmat244819629083
    [Google Scholar]
  27. a PedroL. Sustainable Catalysis in Ionic Liquids.Boca RatonTaylor & Francis Group, LLC2019
    [Google Scholar]
  28. b Liang-NianH. PietroT. Conrad ZhangZ. Commercial Applications of Ionic Liquids.Switzerland AGSpringer2020
    [Google Scholar]
  29. c MartinH.G.P. Nanocatalysis in Ionic Liquids.GermanyWiley-VCH Verlag GmbH & Co.2017
    [Google Scholar]
  30. d RasmusF. AndersR. MarcoH. Supported Ionic Liquids, Fundamentals and Applications.GermanyWiley-VCH Verlag GmbH & Co2014
    [Google Scholar]
  31. a WernerS. HaumannM. WasserscheidP. Ionic liquids in chemical engineering.Annu. Rev. Chem. Biomol. Eng.20101120323010.1146/annurev‑chembioeng‑073009‑10091522432579
    [Google Scholar]
  32. b ShirsathN.B. GuptaG.R. GiteV.V. MeshramJ.S. Studies of thermally assisted interactions of polysulphide polymer with ionic liquids.Bull. Mater. Sci.2018412636910.1007/s12034‑018‑1562‑x
    [Google Scholar]
  33. Olivier-BourbigouH. MagnaL. MorvanD. Ionic liquids and catalysis: Recent progress from knowledge to applications.Appl. Catal. A Gen.20103731-215610.1016/j.apcata.2009.10.008
    [Google Scholar]
  34. WeltonT. Room-Temperature ionic liquids. Solvent for synthesis and catalysis.Chem. Rev.19999982071208410.1021/cr980032t11849019
    [Google Scholar]
  35. HallettJ.P. WeltonT. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2.Chem. Rev.201111153508357610.1021/cr100324821469639
    [Google Scholar]
  36. EarleM.J. SeddonK.R. Ionic liquids. Green solvents for the future.Pure Appl. Chem.20007271391139810.1351/pac200072071391
    [Google Scholar]
  37. WeltonT. WasserscheidP. Ionic Liquids in Synthesis.Wiley-VCH2007
    [Google Scholar]
  38. BuzzeoM.C. EvansR.G. ComptonR.G. Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review.ChemPhysChem2004581106112010.1002/cphc.20030101715446732
    [Google Scholar]
  39. GalińskiM. LewandowskiA. StępniakI. Ionic liquids as electrolytes.Electrochim. Acta200651265567558010.1016/j.electacta.2006.03.016
    [Google Scholar]
  40. SmarslyB. KaperH. Liquid inorganic-organic nanocomposites: Novel electrolytes and ferrofluids.Angew. Chem. Int. Ed.200544253809381110.1002/anie.20050069015887210
    [Google Scholar]
  41. BhattA.I. BondA.M. MacFarlaneD.R. ZhangJ. ScottJ.L. StraussC.R. IotovP.I. KalchevaS.V. A critical assessment of electrochemistry in a distillable room temperature ionic liquid, DIMCARB.Green Chem.20068216117110.1039/B512263E
    [Google Scholar]
  42. DupontJ. de SouzaR.F. SuarezP.A.Z. Ionic liquid (molten salt) phase organometallic catalysis.Chem. Rev.2002102103667369210.1021/cr010338r12371898
    [Google Scholar]
  43. PârvulescuV.I. HardacreC. Catalysis in ionic liquids.Chem. Rev.200710762615266510.1021/cr050948h17518502
    [Google Scholar]
  44. WeltonT. Ionic liquids in catalysis.Coord. Chem. Rev.200424821-242459247710.1016/j.ccr.2004.04.015
    [Google Scholar]
  45. WasserscheidP. KeimW. Ionic Liquids-New “Solutions” for Transition Metal Catalysis.Angew. Chem. Int. Ed.200039213772378910.1002/1521‑3773(20001103)39:21<3772::AID‑ANIE3772>3.0.CO;2‑511091453
    [Google Scholar]
  46. PandeyS. Analytical applications of room-temperature ionic liquids: A review of recent efforts.Anal. Chim. Acta20065561384510.1016/j.aca.2005.06.03817723329
    [Google Scholar]
  47. WeiD. IvaskaA. Applications of ionic liquids in electrochemical sensors.Anal. Chim. Acta2008607212613510.1016/j.aca.2007.12.01118190800
    [Google Scholar]
  48. BuzzeoM.C. HardacreC. ComptonR.G. Use of room temperature ionic liquids in gas sensor design.Anal. Chem.200476154583458810.1021/ac040042w15283606
    [Google Scholar]
  49. OhnoH. Electrochemical aspects of ionic liquids.HobokenWiley-Interscience200510.1002/0471762512
    [Google Scholar]
  50. EndresF. AbbottA.P. MacFarlaneD.R. Electrodeposition from ionic liquids.WeinheimWiley-VCH Verlag GmbH & Co.2008
    [Google Scholar]
  51. TorrieroA.A.J. Electrochemistry in ionic liquids.SwitzerlandSpringer International Publishing2015
    [Google Scholar]
  52. HapiotP. LagrostC. Electrochemical reactivity in room-temperature ionic liquids.Chem. Rev.200810872238226410.1021/cr068068618564878
    [Google Scholar]
  53. FreudenmannD. WolfS. WolffM. FeldmannC. Ionic liquids: New perspectives for inorganic synthesis?Angew. Chem. Int. Ed.20115047110501106010.1002/anie.20110090421990270
    [Google Scholar]
  54. ZhenW. LiD. GuoW. Applications of Ionic Liquids (ILs) in synthesis of inorganic Nanomaterials.Materials science fluids “Ionic Liquidscurrent state of-the-art.INTECH2015
    [Google Scholar]
  55. AntoniettiM. KuangD. SmarslyB. ZhouY. Ionische flüssigkeiten für die synthese funktioneller nanopartikel und anderer anorganischer nanostrukturen.Angew. Chem.2004116385096510010.1002/ange.200460091
    [Google Scholar]
  56. ZhouY. AntoniettiM. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates.J. Am. Chem. Soc.200312549149601496110.1021/ja038099814653710
    [Google Scholar]
  57. WasserscheidP. WeltonT. Ionic liquids for the synthesis of functional nanoparticles and other inorganic nanostructures.Angew Chem.20031163850965100
    [Google Scholar]
  58. DupontJ. ItohT. LozanoP. MalhotraS.V. Environmentally friendly syntheses using ionic liquids.Cann MC (series ed) Sustainability: Contributions through science and technology.Boca Raton, LondonCRC Press, Taylor & Francis Group2015
    [Google Scholar]
  59. MuthyalaM. VelisettiK. ParangK. KumarA. Advances in functionalized ionic liquids as reagents and scavengers in organic synthesis.Curr. Org. Chem.201418192530255410.2174/138527281819141028114639
    [Google Scholar]
  60. KuchenbuchA. GiernothR. Ionic liquids beyond simple solvents: Glimpses at the state of the art in organic chemistry.ChemistryOpen20154667768110.1002/open.20150011327308192
    [Google Scholar]
  61. a TomarP.A. YadavS.M. GuptaG.R. The thermal gravimetric studies for polymer samples of polyvinyl chloride (PVC) and polyvinyl alcohol (PVA) obtained by treatment with ionic liquid [bmim]Br.Polym. Bull.20147161349135810.1007/s00289‑014‑1126‑1
    [Google Scholar]
  62. b KubisaP. Application of ionic liquids as solvents for polymerization processes.Prog. Polym. Sci.200429131210.1016/j.progpolymsci.2003.10.002
    [Google Scholar]
  63. cUnprecedented exploration of ionic liquids as an additive which astonishes thermal stability of the PVC formulations.Bull. Mater. Sci.201942520321410.1007/s12034‑019‑1866‑5
    [Google Scholar]
  64. BrazelC.S. RogersR.D. Ionic liquids in polymer systems: Solvents, additives, and novel applications.ACS Symp. Ser.200591391310.1021/bk‑2005‑0913
    [Google Scholar]
  65. KubisaP. Ionic liquids as solvents for polymerization processes—Progress and challenges.Prog. Polym. Sci.200934121333134710.1016/j.progpolymsci.2009.09.001
    [Google Scholar]
  66. StrehmelV. IonischeFlussigkeiten in der Polymersynthese.Chemieingenieurtechnik20118391443145310.1002/cite.201100058
    [Google Scholar]
  67. Duchet-RumeauM. GerardJ.F. GalliG. Macromol Symp Spec Issue Polym Ionic Liquids.2014342
  68. LozanoP. De DiegoT. IborraJ.L. Biocatalytic processes using ionic liquids and supercritical carbon dioxide.Biocatalysis.Wiley VCH2010
    [Google Scholar]
  69. HabulinM. PrimozicM. KnezZ. Application of ionic liquids in biocatalysis.Ionic liquids: Applications and perspectives. KokorinA. InTech201110.5772/15354
    [Google Scholar]
  70. TavaresA.P.M. RodriguezO. MacedoE.A. New generations of ionic liquids applied to enzymatic biocatalysis.Ionic liquids-new aspects for the future. KadowakaJ. InTech2013
    [Google Scholar]
  71. StepinskiD.C. JensenM.P. DzielawaJ.A. DietzM.L. Synergistic effects in the facilitated transfer of metal ions into room-temperature ionic liquids.Green Chem.20057315115810.1039/b414756a
    [Google Scholar]
  72. BerthodA. Ruiz-AngelM.J. HuguetS. Nonmolecular solvents in separation methods: Dual nature of room temperature ionic liquids.Anal. Chem.200577134071408010.1021/ac050304+15987112
    [Google Scholar]
  73. AnastasP.T. WasserscheidP. StarkA. Handbook of green chemistry.Ionic Liquids.Wiley-VCH Verlag GmbH & Co201010.1002/9783527628698
    [Google Scholar]
  74. RodríguezH. Green chemistry and sustainable technology, ionic liquids for better separation processes.BerlinSpringer201610.1007/978‑3‑662‑48520‑0
    [Google Scholar]
  75. SunX. LuoH. DaiS. Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle.Chem. Rev.201211242100212810.1021/cr200193x22136437
    [Google Scholar]
  76. RogersR.D. SeddonK.R. Ionic liquids as green solvents, progress and prospects.ACS Symposium Series 856.Washington, DC2003
    [Google Scholar]
  77. RogersR.D. SeddonK.R. Ionic liquids as green solvents, progress and prospects.ACS Symposium Series 818.Washington, DC2002
    [Google Scholar]
  78. SeddonK. Definition of ionic liquids given at the Bunsen Discussion meeting in Clausthal-Zellerfeld2008
    [Google Scholar]
  79. PlechkovaN.V. SeddonK.R. Applications of ionic liquids in the chemical industry.Chem. Soc. Rev.200837112315010.1039/B006677J18197338
    [Google Scholar]
  80. BonhôteP. DiasA.P. PapageorgiouN. KalyanasundaramK. GrätzelM. Hydrophobic, highly conductive ambient-temperature molten salts.Inorg. Chem.19963551168117810.1021/ic951325x11666305
    [Google Scholar]
  81. KochV.R. NanjundiahC. AppetecchiG.B. ScrosatiB. The interfacial stability of Li with two new solvent-free ionic liquids: 1, 2-dimethyl-3-propylimidazolium imide and methide.J. Electrochem. Soc.19951427L116L11810.1149/1.2044332
    [Google Scholar]
  82. MandaiT. YoshidaK. UenoK. DokkoK. WatanabeM. Criteria for solvate ionic liquids.Phys. Chem. Chem. Phys.201416198761877210.1039/c4cp00461b24676567
    [Google Scholar]
  83. TsuzukiS. WatanabeM. Chemistry and application of glymetype lithium solvate ionic liquids.Electrochemistry2014821210791084
    [Google Scholar]
  84. a DaviesE. D. Cyclodextrins in Pharmacy.Springer Science and Business Media Dordrecht Originally published by Kluwer Academic Publishers1994
    [Google Scholar]
  85. b Zheng-YuJ. Cyclodextrin Chemistry, Preparation and Application.USAWorld Scientific Publishing Co. Pte. Ltd2013
    [Google Scholar]
  86. AbderrazzakD. Cyclodextrin Materials Photochemistry, Photophysics and Photobiology.U.K.Elsevier B.V.2006
    [Google Scholar]
  87. AstrayG. Gonzalez-BarreiroC. MejutoJ.C. Rial-OteroR. Simal-GándaraJ. A review on the use of cyclodextrins in foods.Food Hydrocoll.20092371631164010.1016/j.foodhyd.2009.01.001
    [Google Scholar]
  88. SophieF. GrégorioC. EricL. Cyclodextrin Applications in Medicine, Food, Environment and Liquid Crystals.SwitzerlandSpringer2018
    [Google Scholar]
  89. BernhardV.K.J. Novel macromolecular architectures via a combination of cyclodextrin host/guest complexation and RAFT polymerization.Doctoral Thesis accepted by Karlsruhe Institute of Technology, Germany. Springer International Publishing Switzerland.2014
    [Google Scholar]
  90. HedgesA.R. ShiehW.J. SikorskiC.T. Use of cyclodextrins for encapsulation in the use and treatment of food products.Encapsulation and controlled release of food ingredients. RischS.J. ReinecciusG.A. Washington.1995607310.1021/bk‑1995‑0590.ch006
    [Google Scholar]
  91. MarquesH.M.C. Structure and properties of cyclodextrins. Inclusion complex formation.Rev. Port. Farm.1994447784
    [Google Scholar]
  92. DaletosG. PapaioannouG. MiguelG. MarquesH.C. Proceedings of the 14th International Cyclodextrin Symposium UedaH. JapanThe Society of Cyclodextrins2008291295
    [Google Scholar]
  93. PerevaS. SarafskaT. BogdanovaS. SpassovТ. Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation.J. Drug Deliv. Sci. Technol.201635343910.1016/j.jddst.2016.04.006
    [Google Scholar]
  94. TaoF. HillL.E. PengY. GomesC.L. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications.Lebensm. Wiss. Technol.201459124725510.1016/j.lwt.2014.05.037
    [Google Scholar]
  95. ÜnlüsayinM. HădărugăN.G. RusuG. GruiaA.T. PăunescuV. HădărugăD.I. Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/β-cyclodextrin complexes.Lebensm. Wiss. Technol.20166813514410.1016/j.lwt.2015.12.017
    [Google Scholar]
  96. SaengerW. Cyclodextrin inclusion compounds in research and industry.Angew. Chem. Int. Ed. Engl.198019534436210.1002/anie.198003441
    [Google Scholar]
  97. HirayamaF. UekamaK. Methods of investigating and preparing inclusion compounds.Cyclodextrins and their Industrial Uses. Les editions de Sante. DucheneD. Paris1987131172
    [Google Scholar]
  98. DuchěneD. WouessidjeweD. Pharmaceutical uses of cyclodextrins and derivatives.Drug Dev. Ind. Pharm.199016172487249910.3109/03639049009058543
    [Google Scholar]
  99. MenniniN. MaestrelliF. CirriM. MuraP. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l -arginine aimed to improve the drug solubility.J. Pharm. Biomed. Anal.201612935035810.1016/j.jpba.2016.07.02427454086
    [Google Scholar]
  100. CaoH. JiangY. ZhangH. NieK. LeiM. DengL. WangF. TanT. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation.Enzyme Microb. Technol.20179615716210.1016/j.enzmictec.2016.10.00727871377
    [Google Scholar]
  101. NakaiY. YamamotoK. TeradaK. WatanabeD. New methods for preparing cyclodextrin inclusion compounds. I. Heating in a sealed container.Chem. Pharm. Bull.198735114609461510.1248/cpb.35.4609
    [Google Scholar]
  102. JuncoS. CasimiroT. RibeiroN. Cabral MarquesH. MarquesH.M.C. A comparative study of naproxen–beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide.J. Incl. Phenom. Macrocycl. Chem.2002441/411712110.1023/A:1023022008337
    [Google Scholar]
  103. JonesS.P. GrantD.J.W. HadgraftJ. ParrG.D. Cyclodextrins in the pharmaceutical sciences. Part I: Preparation, structure and properties of cyclodextrins and cyclodextrin inclusion compounds.Acta Pharm. Tech198430213223
    [Google Scholar]
  104. HillL.E. GomesC. TaylorT.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications.Lebensm. Wiss. Technol.2013511869310.1016/j.lwt.2012.11.011
    [Google Scholar]
  105. KfouryM. AuezovaL. RuellanS. Greige-GergesH. FourmentinS. Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins.Carbohydr. Polym.201511815616410.1016/j.carbpol.2014.10.07325542121
    [Google Scholar]
  106. RakmaiJ. CheirsilpB. MejutoJ.C. Torrado-AgrasarA. Simal-GandaraJ. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-betacyclodextrin.Food Hydrocoll.201765157164
    [Google Scholar]
  107. RazaA. SunH. BanoS. ZhaoY. XuX. TangJ. Preparation, characterization, and in vitro anti-inflammatory evaluation of novel water soluble kamebakaurin/hydroxypropyl-β-cyclodextrin inclusion complex.J. Mol. Struct.2017113031932610.1016/j.molstruc.2016.10.059
    [Google Scholar]
  108. MichalskaP. WojniczA. Ruiz-NuñoA. AbrilS. BuendiaI. LeónR. Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: Preparation, physical characterization and pharmacological effect.Carbohydr. Polym.20171579410410.1016/j.carbpol.2016.09.07227988012
    [Google Scholar]
  109. AiassaV. ZoppiA. BecerraM.C. AlbesaI. LonghiM.R. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex.Carbohydr. Polym.201615267267810.1016/j.carbpol.2016.07.01327516318
    [Google Scholar]
  110. AlmeidaR. MarquesH.C. Pulmonary administration of beclomethasone: A-cyclodextrin complex.Proceedings of the 12th International Cyclodextrin Symposium DucheneD. ParisAPGI Publishing2004889892
    [Google Scholar]
  111. MarretoR.N. AlmeidaE.E.C.V. AlvesP.B. NiculauE.S. NunesR.S. MatosC.R.S. AraújoA.A.S. Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil.Thermochim. Acta20084751-2535810.1016/j.tca.2008.06.015
    [Google Scholar]
  112. AhmadM. QureshiS. MaqsoodS. GaniA. MasoodiF.A. Micro-encapsulation of folic acid using horse chestnut starch and ß-cyclodextrin: Microcapsule characterization, release behavior & antioxidant potential during GI tract conditions.Food Hydrocoll.66154160
    [Google Scholar]
  113. DattaB. BarmanS. RoyM.N. Self assembly inclusion of ionic liquid into hollow cylinder oligosaccharides.J. Mol. Liq.201621426426910.1016/j.molliq.2015.12.072
    [Google Scholar]
  114. RoyA. SahaS. DattaB. RoyM.N. Insertion behavior of imidazolium and pyrrolidinium based ionic liquids into α and β-cyclodextrins: Mechanism and factors leading to host–guest inclusion complexes.RSC Advances2016610210001610002710.1039/C6RA19684E
    [Google Scholar]
  115. RoyM.N. RoyM.C. RoyK. Investigation of an inclusion complex formed by ionic liquid and β-cyclodextrin through hydrophilic and hydrophobic interactions.RSC Advances2015570567175672310.1039/C5RA09823H
    [Google Scholar]
  116. RoyA. RoyM.N. Cage to cage study of ionic liquid and cyclic oligosaccharides to form inclusion complexes.RSC Advances2017765408034081210.1039/C7RA08397A
    [Google Scholar]
  117. SarkarK. BarmanB.K. Nath RoyM. Study to explore inclusion complexes of α- and β-cyclodextrin molecules with 3-octyl-1-methylimidazolium bromide with the manifestation of hydrophobic and hydrophilic interactions.Chem. Phys. Lett.2018707132110.1016/j.cplett.2018.07.019
    [Google Scholar]
  118. BarmanB.K. BarmanS. RoyM.N. Inclusion complexation between tetrabutylphosphonium methanesulfonate as guest and α- and β-cyclodextrin as hosts investigated by physicochemical methodology.J. Mol. Liq.2018264808710.1016/j.molliq.2018.04.148
    [Google Scholar]
  119. GaoY-A. LiZ-H. DuJ-M. HanB-X. LiG-Z. HouW-G. ShenD. Preparation and cauterization of inclusion complexes of β-cyclodextrin with ionic liquid.Chemistry2005115875588010.1002/chem.20050012016038004
    [Google Scholar]
  120. GaoY. ZhaoX. DongB. ZhengL. LiN. ZhangS. Inclusion complexes of β-cyclodextrin with ionic liquid surfactants.J. Phys. Chem. B2006110178576858110.1021/jp057478f16640409
    [Google Scholar]
  121. LiNa. LiuJ. ZhaoX. GaoY. ZhengL. ZhangJ. YuLi. Complex formation of ionic liquid surfactant and β-cyclodextrin.Colloids Surf. Physicochem. Eng. Aspects.2007292(2-3)196201
    [Google Scholar]
  122. AmajjaheS. RitterH. Anion complexations of Vinylimidazolium salt and its influence on polymerization.Macromolecules200841371671810.1021/ma702271p
    [Google Scholar]
  123. ZhengY. XuanX. WangJ. FanM. The enhanced dissolution of β-cyclodextrin in some hydrophilic ionic liquids.J. Phys. Chem. A2010114113926393110.1021/jp907333v20235607
    [Google Scholar]
  124. ShenJ. SongL. XinX. WuD. WangS. ChenR. XuG. Self-assembled supramolecular hydrogel induced by β-cyclodextrin and ionic liquid-type imidazolium gemini surfactant.Colloids Surf. A Physicochem. Eng. Asp.201650951252010.1016/j.colsurfa.2016.09.064
    [Google Scholar]
  125. BanjareM.K. BeheraK. SatnamiM.L. PandeyS. GhoshK.K. Supra-molecular inclusion complexation of ionic liquid 1-butyl-3-methylimidazolium octylsulphate with α- and β-cyclodextrins.Chem. Phys. Lett.2017689304010.1016/j.cplett.2017.09.033
    [Google Scholar]
  126. AtaharA. MollahM.Y.A. RahmanM.M. SusanM.A.B.H. Inclusion complexes of cyclodextrins with hydrophobic ionic liquids.J. Incl. Phenom. Macrocycl. Chem.2018923-430130910.1007/s10847‑018‑0848‑3
    [Google Scholar]
  127. HeY. ChenQ. XuC. ZhangJ. ShenX. Interaction between ionic liquids and β-cyclodextrin: A discussion of association pattern.J. Phys. Chem. B2009113123123810.1021/jp808540m19072707
    [Google Scholar]
  128. HeY. ShenX. Interaction between β-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. J. Photo. Chem. And Photo. Bio. Chem200819723, 253-259
    [Google Scholar]
  129. ZhangJ. ShenX. Multiple equilibria interaction pattern between the ionic liquids C(n)mimPF6 and β-cyclodextrin in aqueous solutions.J. Phys. Chem. B201111541118521186110.1021/jp206418m21899312
    [Google Scholar]
  130. BanjareM.K. BanjareR.K. BeheraK. PandeyS. MundejaP. GhoshK.K. Inclusion complexation of novel synthesis amino acid based ionic liquids with β-Cyclodextrin.J. Mol. Liq.201829911220410.1016/j.molliq.2019.112204
    [Google Scholar]
  131. BanjareM.K. BeheraK. BanjareR.K. PandeyS. GhoshK.K. Multi-spectroscopic investigation on the inclusion complexation of α- cyclodextrin with long chain ionic liquid.Carbohydr Res.2020491107982
    [Google Scholar]
  132. SuzukiM. KurahashiN. TakeokaY. RikukawaM. Yoshizawa-FujitaM. Effect of β-cyclodextrin on physicochemical properties of an ionic liquid electrolyte composed of N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)amide.Front Chem.201979010.3389/fchem.2019.0009030842943
    [Google Scholar]
  133. AgudeloÁ.J.P. CoelhoY.L. FerreiraG.M.D. FerreiraG.M.D. HudsonE.A. dos Santos PiresA.C. da SilvaL.H.M. Solvophobic effect of 1-alkyl-3-methylimidazolium chloride on the thermodynamic of complexation between β-cyclodextrin and dodecylpyridinium cation.Colloids Surf. A Physicochem. Eng. Asp.201958212385010.1016/j.colsurfa.2019.123850
    [Google Scholar]
  134. ZeweldiH.G. BendoyA.P. ParkM.J. ShonH.K. KimH.S. JohnsonE.M. KimH. ChungW.J. NisolaG.M. Supramolecular host-guest complex of methylated β-cyclodextrin with polymerized ionic liquid ([vbim]TFSI) as highly effective and energy-efficient thermo-regenerable draw solutes in forward osmosis.Chem. Eng. J.202141112852010.1016/j.cej.2021.128520
    [Google Scholar]
  135. MohamadS. SurikumaranH. RaoovM. MarimuthuT. ChandrasekaramK. SubramaniamP. Conventional study on novel dicationic ionic liquid inclusion with β-cyclodextrin.Int. J. Mol. Sci.20111296329634510.3390/ijms1209632922016662
    [Google Scholar]
  136. HuM. YangY. GuX. HuY. HuangJ. WangC. One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag + detection.RSC Advances20144107624466245210.1039/C4RA11491D
    [Google Scholar]
  137. HuangY. GaoA. SongX. ShuD. YiF. ZhongJ. ZengR. ZhaoS. MengT. Supramolecule-inspired fabrication of carbon nanoparticles in situ anchored graphene nanosheets material for high-performance supercapacitors.ACS Appl. Mater. Interfaces2016840267752678210.1021/acsami.6b0851127654113
    [Google Scholar]
/content/journals/cis/10.2174/2210299X01666230821142719
Loading
/content/journals/cis/10.2174/2210299X01666230821142719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test