Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Purpose of the study

In our present work, we have considered a simple parametric form of the Hubble parameter (H) for a canonical scalar field model described within a spatially flat FRW spacetime framework. Here we have considered a well-behaved parametrization scheme of the normalized Hubble parameter to explain the expansion history of the universe.

Methods

Under this scenario, we have obtained the analytic solutions for various relevant cosmological parameters. We have also reconstructed the potential function V(φ) for the scalar field φ.

Results

It has been found that the deceleration parameter (q) shows exactly the nature which is well expected, i.e., an accelerated expansion for low z limit and deceleration for high z limit, which is essential for the structure formation of the Universe. Detailed data analysis has been carried out to check the viability of the proposed theoretical model by using combined dataset SNIa+H(z)+BAO/CMB and put constraints on the cosmological parameters, viz. the present value of the Hubble parameter H0.

Conclusion

As it has been observed that the deceleration parameter undergoes a smooth transition from an accelerating phase to decelerating expansion, this result supports the structure formation at the early time and the late time cosmic acceleration measurements. The results are found to be closer to the value obtained by the PLANCK collaboration.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X01666230518085714
2023-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E180523217033.html?itemId=/content/journals/cis/10.2174/2210299X01666230518085714&mimeType=html&fmt=ahah

References

  1. RiessA.G. FilippenkoA.V. ChallisP. ClocchiattiA. DiercksA. GarnavichP.M. GillilandR.L. HoganC.J. JhaS. KirshnerR.P. LeibundgutB. PhillipsM.M. ReissD. SchmidtB.P. SchommerR.A. SmithR.C. SpyromilioJ. StubbsC. SuntzeffN.B. TonryJ. Observational evidencefrom supernovae for an accelerating universe and a cosmological constant.Astron. J.199811631009103810.1086/300499
    [Google Scholar]
  2. PerlmutterS. AlderingG. GoldhaberG. KnopR.A. NugentP. CastroP.G. DeustuaS. FabbroS. GoobarA. GroomD.E. HookI.M. KimA.G. KimM.Y. LeeJ.C. NunesN.J. PainR. PennypackerC.R. QuimbyR. LidmanC. EllisR.S. IrwinM. McMahonR.G. Ruiz-LapuenteP. WaltonN. SchaeferB. BoyleB.J. FilippenkoA.V. MathesonT. FruchterA.S. PanagiaN. NewbergH.J.M. CouchW.J. ProjectT.S.C. Measurements of ω and λfrom 42 high-redshift supernovae.Astrophys. J.1999517256558610.1086/307221
    [Google Scholar]
  3. MeszarosA. On the reality of the accelerating universe.Astrophys. J.20025801121510.1086/343071
    [Google Scholar]
  4. ArnaudM. AshdownM. Atrio-BarandelaF. AumontJ. BaccigalupiC. BandayA.J. BarreiroR.B. BattanerE. BenabedK. Benoit-LévyA. BernardJ-P. BersanelliM. BielewiczP. BobinJ. BondJ.R. BorrillJ. BouchetF.R. BroganC.L. BuriganaC. CardosoJ-F. CatalanoA. ChamballuA. ChiangH.C. ChristensenP.R. ColombiS. ColomboL.P.L. CrillB.P. CurtoA. CuttaiaF. DaviesR.D. DavisR.J. de BernardisP. de RosaA. de ZottiG. DelabrouilleJ. DésertF-X. DickinsonC. DiegoJ.M. DonzelliS. DoréO. DupacX. EnßlinT.A. EriksenH.K. FinelliF. ForniO. FrailisM. FraisseA.A. FranceschiE. GaleottaS. GangaK. GiardM. Giraud-HéraudY. González-NuevoJ. GórskiK.M. GregorioA. GruppusoA. HansenF.K. HarrisonD.L. Hernández-MonteagudoC. HerranzD. HildebrandtS.R. HobsonM. HolmesW.A. HuffenbergerK.M. JaffeA.H. JaffeT.R. KeihänenE. KeskitaloR. KisnerT.S. KneisslR. KnocheJ. KunzM. Kurki-SuonioH. LähteenmäkiA. LamarreJ-M. LasenbyA. LawrenceC.R. LeonardiR. LiguoriM. LiljeP.B. Linden-VørnleM. López-CaniegoM. LubinP.M. MainoD. MarisM. MarshallD.J. MartinP.G. Martínez-GonzálezE. MasiS. MatarreseS. MazzottaP. MelchiorriA. MendesL. MennellaA. MigliaccioM. Miville-DeschênesM-A. MonetiA. MontierL. MorganteG. MortlockD. MunshiD. MurphyJ.A. NaselskyP. NatiF. NovielloF. NovikovD. NovikovI. OppermannN. OxborrowC.A. PaganoL. PajotF. PaladiniR. PasianF. PeelM. PerdereauO. PerrottaF. PiacentiniF. PiatM. PietrobonD. PlaszczynskiS. PointecouteauE. PolentaG. PopaL. PrattG.W. PugetJ-L. RachenJ.P. ReachW.T. ReichW. ReineckeM. RemazeillesM. RenaultC. RhoJ. RicciardiS. RillerT. RistorcelliI. RochaG. RossetC. RoudierG. RusholmeB. SandriM. SaviniG. ScottD. StolyarovV. SuttonD. Suur-UskiA-S. SygnetJ-F. TauberJ.A. TerenziL. ToffolattiL. TomasiM. TristramM. TucciM. UmanaG. ValenzianoL. ValiviitaJ. Van TentB. VielvaP. VillaF. WadeL.A. YvonD. ZaccheiA. ZoncaA. Planck intermediate results.Astron. Astrophys.2016586A13410.1051/0004‑6361/201425022
    [Google Scholar]
  5. AhnC.P. AlexandroffR. Allende PrietoC. AndersonS.F. AndertonT. AndrewsB.H. AubourgÉ. BaileyS. BalbinotE. BarnesR. BautistaJ. BeersT.C. BeifioriA. BerlindA.A. BhardwajV. BizyaevD. BlakeC.H. BlantonM.R. BlomqvistM. BochanskiJ.J. BoltonA.S. BordeA. BovyJ. BrandtW.N. BrinkmannJ. BrownP.J. BrownsteinJ.R. BundyK. BuscaN.G. CarithersW. CarneroA.R. CarrM.A. Casetti-DinescuD.I. ChenY. ChiappiniC. ComparatJ. ConnollyN. CreppJ.R. CristianiS. CroftR.A.C. CuestaA.J. da CostaL.N. DavenportJ.R.A. DawsonK.S. de PutterR. De LeeN. DelubacT. DhitalS. EaletA. EbelkeG.L. EdmondsonE.M. EisensteinD.J. EscoffierS. EspositoM. EvansM.L. FanX. Femenía CastelláB. Fernández AlvarE. FerreiraL.D. Filiz AkN. FinleyH. FlemingS.W. Font-RiberaA. FrinchaboyP.M. García-HernándezD.A. PérezA.E.G. GeJ. Génova-SantosR. GillespieB.A. GirardiL. González HernándezJ.I. GrebelE.K. GunnJ.E. GuoH. HaggardD. HamiltonJ-C. HarrisD.W. HawleyS.L. HeartyF.R. HoS. HoggD.W. HoltzmanJ.A. HonscheidK. HuehnerhoffJ. IvansI.I. IvezićŽ. JacobsonH.R. JiangL. JohanssonJ. JohnsonJ.A. KauffmannG. KirkbyD. KirkpatrickJ.A. KlaeneM.A. KnappG.R. KneibJ-P. Le GoffJ-M. LeauthaudA. LeeK-G. LeeY.S. LongD.C. LoomisC.P. LucatelloS. LundgrenB. LuptonR.H. MaB. MaZ. MacDonaldN. MackC.E.III MahadevanS. MaiaM.A.G. MajewskiS.R. MaklerM. MalanushenkoE. MalanushenkoV. ManchadoA. MandelbaumR. ManeraM. MarastonC. MargalaD. MartellS.L. McBrideC.K. McGreerI.D. McMahonR.G. MénardB. MeszarosS. Miralda-EscudéJ. Montero-DortaA.D. MontesanoF. MorrisonH.L. MunaD. MunnJ.A. MurayamaH. MyersA.D. NetoA.F. NguyenD.C. NicholR.C. NideverD.L. NoterdaemeP. NuzaS.E. OgandoR.L.C. OlmsteadM.D. OravetzD.J. OwenR. PadmanabhanN. Palanque-DelabrouilleN. PanK. ParejkoJ.K. PariharP. PârisI. PattarakijwanichP. PepperJ. PercivalW.J. Pérez-FournonI. Pérez-RàfolsI. PetitjeanP. PforrJ. PieriM.M. PinsonneaultM.H. Porto de MelloG.F. PradaF. Price-WhelanA.M. RaddickM.J. ReboloR. RichJ. RichardsG.T. RobinA.C. Rocha-PintoH.J. RockosiC.M. RoeN.A. RossA.J. RossN.P. RossiG. Rubiño-MartinJ.A. SamushiaL. Sanchez AlmeidaJ. SánchezA.G. SantiagoB. SayresC. SchlegelD.J. SchlesingerK.J. SchmidtS.J. SchneiderD.P. SchultheisM. SchwopeA.D. ScóccolaC.G. SeljakU. SheldonE. ShenY. ShuY. SimmererJ. SimmonsA.E. SkibbaR.A. SkrutskieM.F. SlosarA. SobreiraF. SobeckJ.S. StassunK.G. SteeleO. SteinmetzM. StraussM.A. StreblyanskaA. SuzukiN. SwansonM.E.C. TalT. ThakarA.R. ThomasD. ThompsonB.A. TinkerJ.L. TojeiroR. TremontiC.A. Vargas MagañaM. VerdeL. VielM. VikasS.K. VogtN.P. WakeD.A. WangJ. WeaverB.A. WeinbergD.H. WeinerB.J. WestA.A. WhiteM. WilsonJ.C. WisniewskiJ.P. Wood-VaseyW.M. YannyB. YècheC. YorkD.G. ZamoraO. ZasowskiG. ZehaviI. ZhaoG-B. ZhengZ. ZhuG. ZinnJ.C. The ninth data release of the sloan digital sky survey: First spectroscopic data from the sdss-iii baryon oscillation spectroscopic survey.Astrophys. J. Suppl. Ser.201220322110.1088/0067‑0049/203/2/21
    [Google Scholar]
  6. RiessA.G. NugentP.E. GillilandR.L. SchmidtB.P. TonryJ. DickinsonM. ThompsonR.I. BudavariT. CasertanoS. EvansA.S. FilippenkoA.V. LivioM. SandersD.B. ShapleyA.E. SpinradH. SteidelC.C. SternD. SuraceJ. VeilleuxS. The farthestknown supernova: Support for an accelerating universe and a glimpse of the epochof deceleration.Astrophys. J.20015601497110.1086/322348
    [Google Scholar]
  7. AmendolaL. Acceleration at z > 1?Mon. Not. R. Astron. Soc.2003342122122610.1046/j.1365‑8711.2003.06540.x
    [Google Scholar]
  8. PadmanabhanT. Dark energy: Mystery of the millennium.AIP Conference Proceedings861American Institute of Physics2006179196
    [Google Scholar]
  9. SahniV. StarobinskyA. Reconstructing dark energy.Int. J. Mod. Phys. D200615122105213210.1142/S0218271806009704
    [Google Scholar]
  10. BambaK. CapozzielloS. NojiriS. OdintsovS.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests.Astrophys. Space Sci.2012342115522810.1007/s10509‑012‑1181‑8
    [Google Scholar]
  11. Armendariz-PiconC. MukhanovV. SteinhardtP.J. Essentials of k -essence.Phys. Rev. D Part. Fields2001631010351010.1103/PhysRevD.63.103510
    [Google Scholar]
  12. CaldwellR.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state.Phys. Lett. B20025451-2232910.1016/S0370‑2693(02)02589‑3
    [Google Scholar]
  13. CarrollS.M. HoffmanM. TroddenM. Can the dark energy equation-of-state parameter w be less than − 1?Phys. Rev. D Part. Fields200368202350910.1103/PhysRevD.68.023509
    [Google Scholar]
  14. KamenshchikA. MoschellaU. PasquierV. An alternative to quintessence.PhysicsLetters B20015112-4265268
    [Google Scholar]
  15. SenA. Tachyon matter.Journal of High Energy Physics200220020706510.1088/1126‑6708/2002/07/065
    [Google Scholar]
  16. PadmanabhanT. Accelerated expansion of the universe driven by tachyonic matter.Phys. Rev. D Part. Fields200266202130110.1103/PhysRevD.66.021301
    [Google Scholar]
  17. AmendolaL. TsujikawaS. Dark energy: Theory and observations.Cambridge University Press201010.1017/CBO9780511750823
    [Google Scholar]
  18. BanerjeeN. DasS. GangulyK. Chameleon field and the late time acceleration of the Universe.Pramana201074348148910.1007/s12043‑010‑0044‑5
    [Google Scholar]
  19. PacifS.K.J. MyrzakulovR. MyrzakulS. Reconstruction of cosmic history from a simple parametrization of H.Int. J. Geom. Methods Mod. Phys.2017147175011110.1142/S0219887817501110
    [Google Scholar]
  20. RoyN. GoswamiS. DasS. Quintessence or phantom: Study of scalar field dark energy models through a general parametrization of the Hubble parameter.Phys. Dark Univ.202236101037
    [Google Scholar]
  21. ZhangC. ZhangH. YuanS. LiuS. ZhangT.J. SunY.C. Four new observational H ( z ) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven.Res. Astron. Astrophys.201414101221123310.1088/1674‑4527/14/10/002
    [Google Scholar]
  22. MamonA.A. DasS. Study of non-canonical scalar field model using various parametrizations of dark energy equation of state.Eur. Phys. J. C201575624410.1140/epjc/s10052‑015‑3467‑9
    [Google Scholar]
  23. SimonJ. VerdeL. JimenezR. Constraints on the redshift dependence of the dark energy potential.Phys. Rev. D Part. Fields Gravit. Cosmol.2005711212300110.1103/PhysRevD.71.123001
    [Google Scholar]
  24. SuzukiN. RubinD. LidmanC. AlderingG. AmanullahR. BarbaryK. BarrientosL.F. BotyanszkiJ. BrodwinM. ConnollyN. DawsonK.S. DeyA. DoiM. DonahueM. DeustuaS. EisenhardtP. EllingsonE. FaccioliL. FadeyevV. FakhouriH.K. FruchterA.S. GilbankD.G. GladdersM.D. GoldhaberG. GonzalezA.H. GoobarA. GudeA. HattoriT. HoekstraH. HsiaoE. HuangX. IharaY. JeeM.J. JohnstonD. KashikawaN. KoesterB. KonishiK. KowalskiM. LinderE.V. LubinL. MelbourneJ. MeyersJ. MorokumaT. MunshiF. MullisC. OdaT. PanagiaN. PerlmutterS. PostmanM. PritchardT. RhodesJ. RipocheP. RosatiP. SchlegelD.J. SpadaforaA. StanfordS.A. StanishevV. SternD. StrovinkM. TakanashiN. TokitaK. WagnerM. WangL. YasudaN. YeeH.K.C. The hubble space telescope cluster supernova survey. v. improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample.Astrophys. J.201274618510.1088/0004‑637X/746/1/85
    [Google Scholar]
  25. BeutlerF. BlakeC. CollessM. JonesD.H. Staveley-SmithL. CampbellL. ParkerQ. SaundersW. WatsonF. The 6dF galaxy survey: Baryon acoustic oscillations and the local hubble constant.Mon. Not. R. Astron. Soc.201141643017303210.1111/j.1365‑2966.2011.19250.x
    [Google Scholar]
  26. JarosikN. BennettC.L. DunkleyJ. GoldB. GreasonM.R. HalpernM. HillR.S. HinshawG. KogutA. KomatsuE. LarsonD. LimonM. MeyerS.S. NoltaM.R. OdegardN. PageL. SmithK.M. SpergelD.N. TuckerG.S. WeilandJ.L. WollackE. WrightE.L. Seven-year wilkinson microwave anisotropy probe (wmap*) observations: Sky maps, systematic errors, and basic results.Astrophys. J. Suppl. Ser.201119221410.1088/0067‑0049/192/2/14
    [Google Scholar]
  27. ParkinsonD. Riemer-SørensenS. BlakeC. PooleG.B. DavisT.M. BroughS. CollessM. ContrerasC. CouchW. CroomS. CrotonD. DrinkwaterM.J. ForsterK. GilbankD. GladdersM. GlazebrookK. JelliffeB. JurekR.J. LiI. MadoreB. MartinD.C. PimbbletK. PracyM. SharpR. WisnioskiE. WoodsD. WyderT.K. YeeH.K.C. The WiggleZ Dark Energy Survey: Final data release and cosmological results.Phys. Rev. D Part. Fields Gravit. Cosmol.2012861010351810.1103/PhysRevD.86.103518
    [Google Scholar]
  28. PercivalW.J. ReidB.A. EisensteinD.J. BahcallN.A. BudavariT. FriemanJ.A. FukugitaM. GunnJ.E. Ivezi’cZ. KnappG.R. Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample.Monthly Notices of the Royal Astronomical Society2010401421482168
    [Google Scholar]
  29. Al MamonA. DasS. A divergence-free parametrization of deceleration parameter for scalar field dark energy.Int. J. Mod. Phys. D2016253165003210.1142/S0218271816500322
    [Google Scholar]
  30. CollaborationP. AghanimN. AkramiY. AshdownM. AumontJ. BaccigalupiC. BallardiniM. BandayA. BarreiroR. BartoloN. Planck 2018 results. VI. Cosmological parameters.arXiv2020
    [Google Scholar]
/content/journals/cis/10.2174/2210299X01666230518085714
Loading
/content/journals/cis/10.2174/2210299X01666230518085714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test