Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

Plants and their derived phytochemicals commonly called secondary metabolites have been used in medicine as a good source of medicine for the treatment of numerous kinds of human disorders and associated complications. Herbal medicines have been used in modern medicine for the treatment of some chronic disorders, including cancer. Coumarins class phytochemicals are important in medicine and mainly derived from plant sources, including Angiosperms. Coumarins have numerous biological activities including antimicrobial, antibacterial, antifungal, antioxidant, antitumor, anti-HIV, antihypertension, anticoagulant, anticancer, antiviral, anti-inflammatory, analgesics, antidiabetic, and anti-depressive.

Methods

Here in the present work, numerous scientific data were collected from different scientific databases and analyzed in order to know the biological potential of alloimperatorin in medicine. Google, Google Scholar, PubMed, and Scopus databases were searched and analyzed to know the medicinal properties and therapeutic potential of alloimperatorin. Therapeutic potential of alloimperatorin was investigated in the present work through scientific data analysis of different scientific research work. Pharmacological activities of alloimperatorin were analyzed in the present work to know the beneficial health aspects of alloimperatorin against various forms of human disorders.

Results

Scientific data analysis of different research work revealed the therapeutic potential of alloimperatorin in medicine. Alloimperatorin is a coumarin class phytochemical found in the Alloimperatorin revealed significant therapeutic potential in medicine mainly due to its anti-oxidative, anti-inflammatory, anti-apoptotic potential, however its biological potential in breast cancer and their photosensitization effect were also discussed in the present work. Analytical data signified the presence of alloimperatorin in different medicinal plants.

Conclusion

Present work signified the biological importance and therapeutic potential of alloimperatorin in medicine.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X01666230124105950
2023-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E240123213083.html?itemId=/content/journals/cis/10.2174/2210299X01666230124105950&mimeType=html&fmt=ahah

References

  1. PatelK. PatelD.K. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects.Curr. Bioact. Compd.202016319120010.2174/1573407214666181023115355
    [Google Scholar]
  2. PatelK. KumarV. VermaA. RahmanM. PatelD.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery.Recent Patents Anti-Infect. Drug Disc.201914171510.2174/1574891X1366618091315435530210007
    [Google Scholar]
  3. PatelK. PatelD.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention.Curr. Bioact. Compd.202117320621310.2174/1573407216999200609130841
    [Google Scholar]
  4. OteizaP.I. FragaC.G. GalleanoM. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans.Redox Biol.20214210191410.1016/j.redox.2021.10191433750648
    [Google Scholar]
  5. PatelD.K. Medicinal importance of flavonoid “eupatorin” in the health sectors: Therapeutic benefit and pharmacological activities through scientific data analysis.Curr. Chin. Sci.20211662963810.2174/2210298101666210804141644
    [Google Scholar]
  6. PatelD.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits.Cardiovasc. Hematol. Disord. Drug Targets202121210411410.2174/1871529X2166621081211193134387174
    [Google Scholar]
  7. Al-HadhramiR.M.S. HossainM.A. Evaluation of antioxidant, antimicrobial and cytotoxic activities of seed crude extracts of Ammi majus grown in Oman.Egypt. J. Basic ppl. sci.20163432933410.1016/j.ejbas.2016.08.001
    [Google Scholar]
  8. BronikowskaJ. SzliszkaE. JaworskaD. CzubaZ.P. KrolW. The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).Molecules20121766449646410.3390/molecules1706644922643355
    [Google Scholar]
  9. PatelD.K. PatelK. DuraiswamyB. DhanabalS.P. Phytochemical analysis and standardization of Strychnos nux-vomica extract through HPTLC techniques.Asian Pac. J. Trop. Dis.20122S56S6010.1016/S2222‑1808(12)60124‑8
    [Google Scholar]
  10. PatelD.K. PatelK. DhanabalS.P. Development of quality control parameters for the standardization of gymnema sylvestre.J. Acute Dis.20121214114310.1016/S2221‑6189(13)60032‑3
    [Google Scholar]
  11. PatelK. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report.J. Tradit. Complement. Med.20177336036610.1016/j.jtcme.2016.11.00328725632
    [Google Scholar]
  12. RahejaS. GirdharA. KambojA. LatherV. PanditaD. Aegle marmelos leaf extract ameliorates the cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin in male rats.Life Sci.201922119620310.1016/j.lfs.2019.02.03230771313
    [Google Scholar]
  13. WandjiN.T. BitchagnoG.T.M. TchamgoueJ. StammlerH.G. FreseM. LentaB.N. SewaldN. FogueK.S. Furanocoumarins from the twigs of Ficus chlamydocarpa (Moraceae).Phytochem. Lett.202247384110.1016/j.phytol.2021.11.002
    [Google Scholar]
  14. BhattaraiN. KumbharA.A. PokharelY.R. YadavP.N. Anticancer potential of coumarin and its derivatives.Mini Rev Med Chem202121192996302910.2174/138955752166621040516032333820507
    [Google Scholar]
  15. LiG.J. WuH.J. WangY. HungW.L. RouseffR.L. Determination of citrus juice coumarins, furanocoumarins and methoxylated flavones using solid phase extraction and HPLC with photodiode array and fluorescence detection.Food Chem.2019271293810.1016/j.foodchem.2018.07.13030236679
    [Google Scholar]
  16. PatelK. KumarV. VermaA. RahmanM. Kumar PatelD. Health benefits of furanocoumarins ‘psoralidin’ an active phytochemical of psoralea corylifolia: The present, past and future scenario.Curr. Bioact. Compd.201915436937610.2174/1573407214666180511153438
    [Google Scholar]
  17. Sumorek-WiadroJ. ZającA. MaciejczykA. Jakubowicz-GilJ. Furanocoumarins in anticancer therapy – for and against.Fitoterapia202014210449210.1016/j.fitote.2020.10449232032635
    [Google Scholar]
  18. HeinkeR. FrankeK. PorzelA. WessjohannL.A. Awadh AliN.A. SchmidtJ. Furanocoumarins from dorstenia foetida.Phytochemistry201172992993410.1016/j.phytochem.2011.03.00821492886
    [Google Scholar]
  19. DreslerS. Bogucka-KockaA. KováčikJ. KubrakT. StrzemskiM. Wójciak-KosiorM. RysiakA. SowaI. Separation and determination of coumarins including furanocoumarins using micellar electrokinetic capillary chromatography.Talanta201818712012410.1016/j.talanta.2018.05.02429853023
    [Google Scholar]
  20. XuJ. MaL. JiangD. ZhuS. YanF. XieY. XieZ. GuoW. DengX. Content evaluation of 4 furanocoumarin monomers in various citrus germplasms.Food Chem.2015187758110.1016/j.foodchem.2015.04.00725977000
    [Google Scholar]
  21. GordonR.M. WashingtonT.L. SimsC.A. Goodrich-SchneiderR. BakerS.M. YagizY. GuL. Performance of macroporous resins for debittering HLB-affected grapefruit juice and its impacts on furanocoumarin and consumer sensory acceptability.Food Chem.202135212936710.1016/j.foodchem.2021.12936733684718
    [Google Scholar]
  22. ChenL. YangH. YuC. YuanM. LiH. High hepatic exposure of furanocoumarins in Radix Angelica dahuricae is associated with transporter mediated active uptake.J. Ethnopharmacol.2018212748510.1016/j.jep.2017.10.01429055720
    [Google Scholar]
  23. HungW-L. SuhJ.H. WangY. Chemistry and health effects of furanocoumarins in grapefruit.Yao Wu Shi Pin Fen Xi2017251718328911545
    [Google Scholar]
  24. AttiaG.I.E.A. Abou-El-seoudK.A. IbrahimA.R.S. Biotransformation of furanocoumarins by Cunninghamella elegans.Bull. Fac. Pharm. Cairo Univ.20155311410.1016/j.bfopcu.2014.09.001
    [Google Scholar]
  25. RajuR. SinghA. ReddellP. MünchG. Anti-inflammatory activity of prenyl and geranyloxy furanocoumarins from Citrus garrawayi (Rutaceae).Phytochem. Lett.20182719720210.1016/j.phytol.2018.07.030
    [Google Scholar]
  26. GomesA.R. VarelaC.L. Tavares-da-SilvaE.J. RoleiraF.M.F. Epoxide containing molecules: A good or a bad drug design approach.Eur. J. Med. Chem.202020111232710.1016/j.ejmech.2020.11232732526552
    [Google Scholar]
  27. BaiY. YangL. ZhangC. YangY. Studies on the mechanism of alloimperatorin on the proliferation and apoptosis of hela cells.J. Oncol.2021202111210.1155/2021/661731233897778
    [Google Scholar]
  28. YangW.Q. SongY.L. ZhuZ.X. SuC. ZhangX. WangJ. ShiS.P. TuP.F. Anti-inflammatory dimeric furanocoumarins from the roots of Angelica dahurica.Fitoterapia201510518719310.1016/j.fitote.2015.07.00626183116
    [Google Scholar]
  29. Abd-AllaH.I. Ibrahim FouadG. AhmedK.A. ShakerK. Alloimperatorin from Ammi majus fruits mitigates Piroxicam-provoked gastric ulcer and hepatorenal toxicity in rats via suppressing oxidative stress and apoptosis.Biomarkers202227872774210.1080/1354750X.2022.210221335837760
    [Google Scholar]
  30. ZhangJ. GaoR. LiJ. YuK. BiK. Alloimperatorin activates apoptosis, ferroptosis, and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem. Cell Biol.2022100321322210.1139/bcb‑2021‑039935263194
    [Google Scholar]
  31. KyagovaA. PotapenkoA. MöllerM. StopperH. AdamW. Photohemolysis sensitized by the furocoumarin derivative alloimperatorin and its hydroperoxide photooxidation product.Photochem. Photobiol.201490116217010.1111/php.1218424117477
    [Google Scholar]
  32. DengG-G. YangX-W. ZhangY-B. XuW. WeiW. LiZ-G. [Chemical constituents from lipophilic parts in roots of Angelica dahurica cv.Yubaizhi].Zhongguo Zhongyao Zazhi201742112102210928822155
    [Google Scholar]
  33. LiuL. ZhangW.J. YinQ.M. ZhangY. JiN. ZhangY.T. HuR. Chemical constituents from goodyera schlechtendaliana.Zhong Yao Cai201538122547254927352537
    [Google Scholar]
  34. DengG-G. YangX-W. ZhangY-B. XuW. WeiW. ChenT-L. [Chemical constituents from lipophilic parts in roots of Angelica dahurica var. formosana cv. Chuanbaizhi].Zhongguo Zhongyao Zazhi201540112148215626552172
    [Google Scholar]
  35. ZhaoA. YangX. YangX. LiuJ. WangQ. WangW. A new natural product from root of Angelica dahurica cv. Qibaizhi.Zhongguo Zhongyao Zazhi201237162400240723234138
    [Google Scholar]
  36. El-GogaryS.R. Photoionization of psoralen derivatives in micelles: Imperatorin and alloimperatorin.Spectrochim. Acta A Mol. Biomol. Spectrosc.201077481181510.1016/j.saa.2010.08.00920832354
    [Google Scholar]
  37. ElgendyE.M. RamadanA.A. FadalyW. HammoudaM. Photosynthesis of furocoumarin- and furochromone-types potential intercalative alkylating and oxidizing agents of DNA through photooxidations using gamma-ray.Boll. Chim. Farm.2002141643443712577512
    [Google Scholar]
  38. ChenQ. LiP. HeJ. ZhangZ. LiuJ. Supercritical fluid extraction for identification and determination of volatile metabolites from Angelica dahurica by GC-MS.J. Sep. Sci.200831183218322410.1002/jssc.20080032518705001
    [Google Scholar]
  39. LvY. LiC. WangZ. WangQ. LiG. DangJ. Preparative isolation of antioxidative furanocoumarins from Dracocephalum heterophyllum and their potential action target.J. Sep. Sci.202245244375438710.1002/jssc.20220030936222230
    [Google Scholar]
  40. ShahabS. SheikhiM. KhaleghianM. KumarR. MurashkoM. DFT study of physisorption effect of CO and CO2 on furanocoumarins for air purification.J. Environ. Chem. Eng.2018644784479610.1016/j.jece.2018.07.019
    [Google Scholar]
  41. CookD.W. BurnhamM.L. HarmesD.C. StollD.R. RutanS.C. Comparison of multivariate curve resolution strategies in quantitative LCxLC: Application to the quantification of furanocoumarins in apiaceous vegetables.Anal. Chim. Acta2017961495810.1016/j.aca.2017.01.04728224908
    [Google Scholar]
  42. KulikovO.A. AgeevV.P. BrodovskayaE.P. ShlyapkinaV.I. PetrovP.S. ZharkovM.N. YakobsonD.E. MaevI.V. SukhorukovG.B. PyataevN.A. Evaluation of photocytotoxicity liposomal form of furanocoumarins Sosnowsky’s hogweed.Chem. Biol. Interact.202235710988010.1016/j.cbi.2022.10988035271822
    [Google Scholar]
/content/journals/cis/10.2174/2210299X01666230124105950
Loading
/content/journals/cis/10.2174/2210299X01666230124105950
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test