Skip to content
2000
image of Atopic Dermatitis: A Review on Nanocarrier-based Dermo-Pharmaceutical Formulation for Inflammatory Effect

Abstract

Atopic dermatitis [AD], a disorder that is on the rise, affects about 20% of people globally, including children. It is believed that immunological inadequacies, pathogenic microorganisms, the environment, and anomalies in the function of the epidermal barrier interact intricately with the pathophysiology of AD. Studies on the impact of oxidative stress on many skin conditions have been carried out, but there aren’t many on AD. Topical corticosteroids and calcineurin inhibitors are among the available drugs; nonetheless, they cause burning sensations, skin atrophy, and systemic side effects that hinder patient adherence. These limitations emphasize how important it is to have a fresh approach to AD management. Inflammation, the biological reaction of the immune system, can be caused by a number of factors, such as pathogens, damaged cells, and poisonous substances. Herbal anti-inflammatory medications and their ingredients offer strong defence against a range of pro-inflammatory mediators in illnesses and conditions.

Due to their ability to protect, encapsulate, and discharge the cargo at the location of skin damage. Nanomaterials have attracted a lot of interest as a way to provide medications for skin conditions like AD. However, many unanswered questions remain, particularly when creating safe formulations and translating proven nanomedicines into usable products for clinical use. Lipidic, polymeric, metal, silica, liposomes, hydrocarbon gels, and many other formulations have been developed as carriers for poorly soluble and permeable pharmaceuticals. This field is still developing. This review aims to shed light on incidents linked to the pathophysiology of AD and the difficulties facing current AD treatments. The review emphasizes the advantages of different nanomedicines in resolving problems with existing products and their possible prospects for the future.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X358884250211064638
2025-03-11
2025-03-28
The full text of this item is not currently available.

References

  1. Guo J. Zhang H. Lin W. Lu L. Su J. Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct. Target. Ther. 2023 8 1 437 10.1038/s41392‑023‑01655‑6 38008779
    [Google Scholar]
  2. Silverberg J.I. Barbarot S. Gadkari A. Simpson E.L. Weidinger S. Osorio M.P. Rossi A.B. Brignoli L. Saba G. Guillemin I. Fenton M.C. Auziere S. Eckert L. Atopic dermatitis in the pediatric population. Ann. Allergy Asthma Immunol. 2021 126 4 417 428.e2 10.1016/j.anai.2020.12.020 33421555
    [Google Scholar]
  3. Adhikary P.P. Idowu T. Tan Z. Hoang C. Shanta S. Dumbani M. Mappalakayil L. Awasthi B. Bermudez M. Weiner J. Beule D. Wolber G. Page B.D.G. Hedtrich S. Disrupting TSLP–TSLP receptor interactions via putative small molecule inhibitors yields a novel and efficient treatment option for atopic diseases. EMBO Mol. Med. 2024 16 7 1630 1656 10.1038/s44321‑024‑00085‑3 38877290
    [Google Scholar]
  4. Zhang Y. Zhang B. Wang R. Chen X. Xiao H. Xu X. The causal relationship and potential mediators between plasma lipids and atopic dermatitis: A bidirectional two-sample, two-step mendelian randomization. Lipids Health Dis. 2024 23 1 191 10.1186/s12944‑024‑02134‑9 38909247
    [Google Scholar]
  5. Bieber T. Atopic dermatitis. N. Engl. J. Med. 2008 358 14 1483 1494 10.1056/NEJMra074081 18385500
    [Google Scholar]
  6. Bieber T. Disease modification in inflammatory skin disorders: Opportunities and challenges. Nat. Rev. Drug Discov. 2023 22 8 662 680 10.1038/s41573‑023‑00735‑0 37443275
    [Google Scholar]
  7. Zhu X. Tian X. Wang M. Li Y. Yang S. Kong J. Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes. Int. Microbiol. 2024 27 5 1417 1428 10.1007/s10123‑024‑00485‑y 38278974
    [Google Scholar]
  8. Hu Y. He Z. Li Z. Wang Y. Wu N. Sun H. Zhou Z. Hu Q. Cong X. Lactylation: The novel histone modification influence on gene expression, protein function, and disease. Clin. Epigenetics 2024 16 1 72 10.1186/s13148‑024‑01682‑2 38812044
    [Google Scholar]
  9. Thomas K.S. Apfelbacher C.A. Chalmers J.R. Simpson E. Spuls P.I. Gerbens L.A.A. Williams H.C. Schmitt J. Gabes M. Howells L. Stuart B.L. Grinich E. Pawlitschek T. Burton T. Howie L. Gadkari A. Eckert L. Ebata T. Boers M. Saeki H. Nakahara T. Katoh N. Recommended core outcome instruments for health‐related quality of life, long‐term control and itch intensity in atopic eczema trials: Results of the HOME VII consensus meeting. Br. J. Dermatol. 2021 185 1 139 146 10.1111/bjd.19751 33393074
    [Google Scholar]
  10. Amerio P. Ferrucci S.M. Galluzzo M. Napolitano M. Narcisi A. Levi A. Fino D.S. Palladino C. Patruno C. Rossi M. A multidisciplinary approach is beneficial in atopic dermatitis. Dermatol. Ther. 2024 14 6 1443 1455 10.1007/s13555‑024‑01185‑1 38811470
    [Google Scholar]
  11. Sakai T. Herrmann N. Maintz L. Nümm T.J. Welchowski T. Claus R.A. Gräler M.H. Bieber T. Serum sphingosine‐1‐phosphate is elevated in atopic dermatitis and associated with severity. Allergy 2021 76 8 2592 2595 10.1111/all.14826 33764548
    [Google Scholar]
  12. Facheris P. Jeffery J. Duca D.E. Yassky G.E. The translational revolution in atopic dermatitis: The paradigm shift from pathogenesis to treatment. Cell. Mol. Immunol. 2023 20 5 448 474 10.1038/s41423‑023‑00992‑4 36928371
    [Google Scholar]
  13. Weidinger S. Novak N. Atopic dermatitis. Lancet 2016 387 10023 1109 1122 10.1016/S0140‑6736(15)00149‑X 26377142
    [Google Scholar]
  14. Bieber T. Atopic dermatitis: An expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 2022 21 1 21 40 10.1038/s41573‑021‑00266‑6 34417579
    [Google Scholar]
  15. Kukreja T. Saraf S. NLC Based topical nano formulations for the management of atopic dermatitis: An updated review. J. Popul. Ther. Clin. Pharmacol. 2023 30 3 708 720
    [Google Scholar]
  16. Saloki A. Kukreja T. Saraf S. Advancements in drug delivery for chronic inflammatory diseases: Recent approaches and strategies. J. Popul. Ther. Clin. Pharmacol. 2023 29 04 376 385
    [Google Scholar]
  17. Eczema (Atopic Dermatitis) | NIH: National institute of allergy and infectious diseases. Available from: https://www.niaid.nih.gov/diseases-conditions/eczema-atopic-dermatitis 2022
  18. Condrò G. Guerini M. Castello M. Perugini P. Acne vulgaris, atopic dermatitis and rosacea: The role of the skin microbiota—A review. Biomedicines 2022 10 10 2523 10.3390/biomedicines10102523 36289784
    [Google Scholar]
  19. Hammond M. Gamal A. Mukherjee P.K. Damiani G. McCormick T.S. Ghannoum M.A. Nedorost S. Cutaneous dysbiosis may amplify barrier dysfunction in patients with atopic dermatitis. Front. Microbiol. 2022 13 944365 10.3389/fmicb.2022.944365 36452925
    [Google Scholar]
  20. Mottaleb A.M.M.A. Neumann D. Lamprecht A. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm. 2011 79 1 36 42 10.1016/j.ejpb.2011.04.009 21558002
    [Google Scholar]
  21. Jakasa I. Kezic S. Evaluation of in-vivo animal and in-vitro models for prediction of dermal absorption in man. Hum. Exp. Toxicol. 2008 27 4 281 288 10.1177/0960327107085826 18684798
    [Google Scholar]
  22. Chrishtop V.V. Prilepskii A.Y. Nikonorova V.G. Mironov V.A. Nanosafety vs. nanotoxicology: Adequate animal models for testing in vivo toxicity of nanoparticles. Toxicology 2021 462 152952 10.1016/j.tox.2021.152952 34543703
    [Google Scholar]
  23. Lemos C.N. Pereira F. Dalmolin L.F. Cubayachi C. Ramos D.N. Lopez R.F.V. Nanoparticles influence in skin penetration of drugs: In vitro and in vivo characterization. Nanostructures Eng Cells, Tissues Organs From Des to Appl 2018 187 248 10.1016/B978‑0‑12‑813665‑2.00006‑5
    [Google Scholar]
  24. Tabas I. Glass C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science 2013 339 6116 166 172 10.1126/science.1230720 23307734
    [Google Scholar]
  25. Mottaleb A.M.M.A. Moulari B. Beduneau A. Pellequer Y. Lamprecht A. Nanoparticles enhance therapeutic outcome in inflamed skin therapy. Eur. J. Pharm. Biopharm. 2012 82 1 151 157 10.1016/j.ejpb.2012.06.006 22728016
    [Google Scholar]
  26. Nutten S. Atopic dermatitis: Global epidemiology and risk factors. Ann. Nutr. Metab. 2015 66 S1 8 16 10.1159/000370220 25925336
    [Google Scholar]
  27. Tsujimoto H. Hara K. Tsukada Y. Huang C.C. Kawashima Y. Arakaki M. Okayasu H. Mimura H. Miwa N. Evaluation of the permeability of hair growing ingredient encapsulated PLGA nanospheres to hair follicles and their hair growing effects. Bioorg. Med. Chem. Lett. 2007 17 17 4771 4777 10.1016/j.bmcl.2007.06.057 17658251
    [Google Scholar]
  28. Jung E.C. Maibach H.I. Animal models for percutaneous absorption. J. Appl. Toxicol. 2015 35 1 1 10 10.1002/jat.3004 25345378
    [Google Scholar]
  29. Limcharoen B. Toprangkobsin P. Banlunara W. Wanichwecharungruang S. Richter H. Lademann J. Patzelt A. Increasing the percutaneous absorption and follicular penetration of retinal by topical application of proretinal nanoparticles. Eur. J. Pharm. Biopharm. 2019 139 93 100 10.1016/j.ejpb.2019.03.014 30878519
    [Google Scholar]
  30. Summerfield A. Meurens F. Ricklin M.E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 2015 66 1 14 21 10.1016/j.molimm.2014.10.023 25466611
    [Google Scholar]
  31. Parveen N. Sheikh A. Molugulu N. Annadurai S. Wahab S. Kesharwani P. Drug permeation enhancement, efficacy, and safety assessment of azelaic acid loaded SNEDDS hydrogel to overcome the treatment barriers of atopic dermatitis. Environ. Res. 2023 236 Pt 2 116850 10.1016/j.envres.2023.116850 37558118
    [Google Scholar]
  32. Shrotriya S. Ranpise N. Satpute P. Vidhate B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif. Cells Nanomed. Biotechnol. 2018 46 7 1471 1482 10.1080/21691401.2017.1373659 28884598
    [Google Scholar]
  33. Chen Q. Yi S. Yang L. Zhu L. Penetration pathways, influencing factors and predictive models for dermal absorption of exobiotic molecules: A critical review. Sci. Total Environ. 2024 927 172390 10.1016/j.scitotenv.2024.172390 38608904
    [Google Scholar]
  34. Khan S.J. Dharmage S.C. Matheson M.C. Gurrin L.C. Is the atopic march related to confounding by genetics and early‐life environment? A systematic review of sibship and twin data. Allergy 2018 73 1 17 28 10.1111/all.13228 28618023
    [Google Scholar]
  35. Thomsen S.F. The contribution of twin studies to the understanding of the aetiology of asthma and atopic diseases. Eur Clin Respir J 2015 2 27803 10.3402/ecrj.v2.27803
    [Google Scholar]
  36. Thomsen S.F. Exploring the origins of asthma: Lessons from twin studies. Eur. Clin. Respir. J. 2014 1 1 25535 10.3402/ecrj.v1.25535 26557247
    [Google Scholar]
  37. Jalón d.E.G. Príeto B.M.J. Ygartua P. Santoyo S. PLGA microparticles: Possible vehicles for topical drug delivery. Int. J. Pharm. 2001 226 1-2 181 184 10.1016/S0378‑5173(01)00811‑0 11532580
    [Google Scholar]
  38. Serda M. Synthesis and biological activity of new thiosemicarbazone analogues of iron chelators. Balint G. University of Silesia 2013 7 1 343 54
    [Google Scholar]
  39. Goodarzi V. Nouri S. Nassaj Z.S. Bighash M. Abbasian S. Hagh R. Long non coding RNAs reveal important pathways in childhood asthma: A future perspective. J. Mol. Histol. 2023 54 4 257 269 10.1007/s10735‑023‑10131‑y 37537509
    [Google Scholar]
  40. Lademann J. Richter H. Teichmann A. Otberg N. Peytavi B.U. Luengo J. Weiß B. Schaefer U.F. Lehr C.M. Wepf R. Sterry W. Nanoparticles – An efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 2007 66 2 159 164 10.1016/j.ejpb.2006.10.019 17169540
    [Google Scholar]
  41. Wheatley L.M. Holloway J.W. Svanes C. Sears M.R. Breton C. Fedulov A.V. Nilsson E. Vercelli D. Zhang H. Togias A. Arshad S.H. The role of epigenetics in multi‐generational transmission of asthma: An NIAID workshop report‐based narrative review. Clin. Exp. Allergy 2022 52 11 1264 1275 10.1111/cea.14223 36073598
    [Google Scholar]
  42. Sørensen S.B.T. George P. Jagun O. Wolk R. Napatalung L. Zwillich S.H. Iversen L. Ehrenstein V. The epidemiology of hospital-treated alopecia areata in Denmark, 1995–2016. Dermatol. Ther. 2024 14 4 993 1006 10.1007/s13555‑024‑01145‑9 38625633
    [Google Scholar]
  43. Sheu M.Y. Fowler A.J. Kao J. Schmuth M. Fluhr J.W. Man M-Q. Elias P.M. Feingold K.R. Schoonjans K. Auwerx J. Topical peroxisome proliferator activated receptor-α activators reduce inflammation in irritant and allergic contact dermatitis models. J. Invest. Dermatol. 2002 118 1 94 101 10.1046/j.0022‑202x.2001.01626.x 11851881
    [Google Scholar]
  44. Biswas S. Nain M. Ahmad S.S. Sharma A. Role of human twin studies to identify genetic linkage of malaria pathogenesis and outcomes. Am. J. Trop. Med. Hyg. 2023 109 2 241 247 10.4269/ajtmh.23‑0028 37277110
    [Google Scholar]
  45. Deka H. Siddique M.A. Ahmed S.J. Mahanta P. Mahanta P. Evaluation of IL-4 and IL-13 single nucleotide polymorphisms and their association with childhood asthma and its severity: A hospital-based case-control study. Cureus 2024 16 4 e57465 10.7759/cureus.57465 38699097
    [Google Scholar]
  46. Thomsen S.F. Epidemiology and natural history of atopic diseases. Eur. Clin. Respir. J. 2015 2 1 24642 10.3402/ecrj.v2.24642 26557262
    [Google Scholar]
  47. Moulari B. Béduneau A. Pellequer Y. Lamprecht A. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J. Control. Release 2014 188 9 17 10.1016/j.jconrel.2014.05.046 24910194
    [Google Scholar]
  48. Mottaleb A.M.M.A. Beduneau A. Pellequer Y. Lamprecht A. Stability of fluorescent labels in PLGA polymeric nanoparticles: Quantum dots versus organic dyes. Int. J. Pharm. 2015 494 1 471 478 10.1016/j.ijpharm.2015.08.050 26307264
    [Google Scholar]
  49. Mittal A. Raber A.S. Schaefer U.F. Weissmann S. Ebensen T. Schulze K. Guzmán C.A. Lehr C.M. Hansen S. Non-invasive delivery of nanoparticles to hair follicles: A perspective for transcutaneous immunization. Vaccine 2013 31 34 3442 3451 10.1016/j.vaccine.2012.12.048 23290836
    [Google Scholar]
  50. Vogt A. Combadiere B. Hadam S. Stieler K.M. Lademann J. Schaefer H. Autran B. Sterry W. Peytavi B.U. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J. Invest. Dermatol. 2006 126 6 1316 1322 10.1038/sj.jid.5700226 16614727
    [Google Scholar]
  51. Patzelt A. Richter H. Knorr F. Schäfer U. Lehr C.M. Dähne L. Sterry W. Lademann J. Selective follicular targeting by modification of the particle sizes. J. Control. Release 2011 150 1 45 48 10.1016/j.jconrel.2010.11.015 21087645
    [Google Scholar]
  52. Busch L. Keziban Y. Dähne L. Keck C.M. Meinke M.C. Lademann J. Patzelt A. The impact of skin massage frequency on the intrafollicular transport of silica nanoparticles: Validation of the ratchet effect on an ex vivo porcine skin model. Eur. J. Pharm. Biopharm. 2021 158 266 272 10.1016/j.ejpb.2020.11.018 33264667
    [Google Scholar]
  53. Rizwan M. Aqil M. Talegaonkar S. Azeem A. Sultana Y. Ali A. Enhanced transdermal drug delivery techniques: An extensive review of patents. Recent Pat. Drug Deliv. Formul. 2009 3 2 105 124 10.2174/187221109788452285 19519571
    [Google Scholar]
  54. Mashhad A.H. Najaran T.Z. Golmohammadzadeh S. Preparation and characterization of novel nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN) containing coenzyme Q10 as potent antioxidants and antityrosinase agents. Heliyon 2024 10 11 e31429 10.1016/j.heliyon.2024.e31429 38882272
    [Google Scholar]
  55. Try C. Moulari B. Béduneau A. Fantini O. Pin D. Pellequer Y. Lamprecht A. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models. Eur. J. Pharm. Biopharm. 2016 100 101 108 10.1016/j.ejpb.2016.01.002 26792104
    [Google Scholar]
  56. Chauhan I. Yasir M. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull. 2020 10 2 150 165 10.34172/apb.2020.021
    [Google Scholar]
  57. Hafez A.S.M. Hathout R.M. Sammour O.A. Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy. Int. J. Biol. Macromol. 2018 108 753 764 10.1016/j.ijbiomac.2017.10.170 29104049
    [Google Scholar]
  58. Kahr N. Naeser V. Stensballe L.G. Kyvik K.O. Skytthe A. Backer V. Bønnelykke K. Thomsen S.F. Gene–environment interaction in atopic diseases: A population‐based twin study of early‐life exposures. Clin. Respir. J. 2015 9 1 79 86 10.1111/crj.12110 24444295
    [Google Scholar]
  59. Man M.Q. Hatano Y. Lee S.H. Man M. Chang S. Feingold K.R. Leung D.Y.M. Holleran W. Uchida Y. Elias P.M. Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: Structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges. J. Invest. Dermatol. 2008 128 1 79 86 10.1038/sj.jid.5701011 17671515
    [Google Scholar]
  60. Thomsen S.F. Ulrik C.S. Kyvik K.O. Skadhauge L.R. Steffensen I. Backer V. Findings on the atopic triad from a Danish twin registry. Int. J. Tuberc. Lung Dis. 2006 10 11 1268 1272 17131787
    [Google Scholar]
  61. Parhi R. Suresh P. Patnaik S. Physical means of stratum corneum barrier manipulation to enhance transdermal drug delivery. Curr. Drug Deliv. 2015 12 2 122 138 10.2174/1567201811666140515145329 24827915
    [Google Scholar]
  62. Zhao C.Y. Tran A.Q.T. Dizon L.J.P. Kim J. Daniel B.S. Venugopal S.S. Rhodes L.M. Law M.G. Murrell D.F. A pilot comparison study of four clinician‐rated atopic dermatitis severity scales. Br. J. Dermatol. 2015 173 2 488 497 10.1111/bjd.13846 25891151
    [Google Scholar]
  63. Santos C.P.A. Gama M. Peixoto D. Oliveira S.I. Faria F.I. Zeinali M. Ravasjani A.S. Melo M.F. Hamishehkar H. Veiga F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int. J. Pharm. 2022 618 121656 10.1016/j.ijpharm.2022.121656 35278601
    [Google Scholar]
  64. Benson HAE Mohammed Y Grice JE Roberts MS Formulation effects on topical nanoparticle penetration. Nanoscience in dermatology 2016 115 126 10.1016/B978‑0‑12‑802926‑8.00009‑4
    [Google Scholar]
  65. Mottaleb A.M.M.A. Moulari B. Beduneau A. Pellequer Y. Lamprecht A. Surface-charge-dependent nanoparticles accumulation in inflamed skin. J. Pharm. Sci. 2012 101 11 4231 4239 10.1002/jps.23282 22855370
    [Google Scholar]
  66. Jin H. He R. Oyoshi M. Geha R.S. Animal models of atopic dermatitis. J. Invest. Dermatol. 2009 129 1 31 40 10.1038/jid.2008.106 19078986
    [Google Scholar]
  67. Din T.U.A. Malik I. Arshad D. Din T.U.A. Dupilumab for atopic dermatitis: The silver bullet we have been searching for? Cureus 2020 12 4 e7565 10.7759/cureus.7565 32382467
    [Google Scholar]
  68. Mair K.H. Sedlak C. Käser T. Pasternak A. Levast B. Gerner W. Saalmüller A. Summerfield A. Gerdts V. Wilson H.L. Meurens F. The porcine innate immune system: An update. Dev. Comp. Immunol. 2014 45 2 321 343 10.1016/j.dci.2014.03.022 24709051
    [Google Scholar]
  69. Godin B. Touitou E. Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliv. Rev. 2007 59 11 1152 1161 10.1016/j.addr.2007.07.004 17889400
    [Google Scholar]
  70. Avci P. Sadasivam M. Gupta A. Melo D.W.C.M.A. Huang Y.Y. Yin R. Chandran R. Kumar R. Otufowora A. Nyame T. Hamblin M.R. Animal models of skin disease for drug discovery. Expert Opin. Drug Discov. 2013 8 3 331 355 10.1517/17460441.2013.761202 23293893
    [Google Scholar]
  71. Tanaka A. Amagai Y. Oida K. Matsuda H. Recent findings in mouse models for human atopic dermatitis. Exp. Anim. 2012 61 2 77 84 10.1538/expanim.61.77 22531722
    [Google Scholar]
  72. Wachsmann P. Moulari B. Béduneau A. Pellequer Y. Lamprecht A. Surfactant-dependence of nanoparticle treatment in murine experimental colitis. J. Control. Release 2013 172 1 62 68 10.1016/j.jconrel.2013.07.031 23933520
    [Google Scholar]
  73. Mangelsdorf S. Vergou T. Sterry W. Lademann J. Patzelt A. Comparative study of hair follicle morphology in eight mammalian species and humans. Skin Res. Technol. 2014 20 2 147 154 10.1111/srt.12098 23800212
    [Google Scholar]
  74. Try C. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models. European J. Pharmaceut. Biopharm. 2016 100 101 108
    [Google Scholar]
  75. Mottaleb A.M.M.A. Try C. Pellequer Y. Lamprecht A. Nanomedicine strategies for targeting skin inflammation. Nanomedicine 2014 9 11 1727 1743 10.2217/nnm.14.74 25321172
    [Google Scholar]
  76. Fowler A.J. Sheu M.Y. Schmuth M. Kao J. Fluhr J.W. Rhein L. Collins J.L. Willson T.M. Mangelsdorf D.J. Elias P.M. Feingold K.R. Liver X receptor activators display anti-inflammatory activity in irritant and allergic contact dermatitis models: Liver-X-receptor-specific inhibition of inflammation and primary cytokine production. J. Invest. Dermatol. 2003 120 2 246 255 10.1046/j.1523‑1747.2003.12033.x 12542530
    [Google Scholar]
  77. Khan M.M. Zaidi S.S. Siyal F.J. Khan S.U. Ishrat G. Batool S. Mustapha O. Khan S. Din F. Statistical optimization of co-loaded rifampicin and pentamidine polymeric nanoparticles for the treatment of cutaneous leishmaniasis. J. Drug Deliv. Sci. Technol. 2023 79 104005 10.1016/j.jddst.2022.104005
    [Google Scholar]
  78. Tahir M.A. Ali M.E. Lamprecht A. Nanoparticle formulations as recrystallization inhibitors in transdermal patches. Int. J. Pharm. 2020 575 118886 10.1016/j.ijpharm.2019.118886 31790804
    [Google Scholar]
  79. Gattu S. Maibach H.I. Modest but increased penetration through damaged skin: An overview of the in vivo human model. Skin Pharmacol. Physiol. 2011 24 1 2 9 10.1159/000314995 20588085
    [Google Scholar]
  80. Ahmad J. Gautam A. Komath S. Bano M. Garg A. Jain K. Topical nano-emulgel for skin disorders: Formulation approach and characterization. Recent Patents Anti-Infect. Drug Disc. 2019 14 1 36 48 10.2174/1574891X14666181129115213 30488798
    [Google Scholar]
  81. Ojha B. Jain V.K. Gupta S. Talegaonkar S. Jain K. Nanoemulgel: A promising novel formulation for treatment of skin ailments. Polym. Bull. 2022 79 7 4441 4465 10.1007/s00289‑021‑03729‑3
    [Google Scholar]
  82. Algahtani M.S. Ahmad M.Z. Ahmad J. Nanoemulgel for improved topical delivery of retinyl palmitate: Formulation design and stability evaluation. Nanomaterials 2020 10 5 848 10.3390/nano10050848 32353979
    [Google Scholar]
  83. Ambhore N.P. Dandagi P.M. Gadad A.P. Mandora P. Formulation and characterization of tapentadol loaded nanoemulgel for topical application. Ind. J. Pharm. Educ. Res. 2017 51 4 525 535 10.5530/ijper.51.4.81
    [Google Scholar]
  84. Parekh K. Mehta T.A. Dhas N. Kumar P. Popat A. Emerging nanomedicines for the treatment of atopic dermatitis. AAPS PharmSciTech 2021 22 2 55 10.1208/s12249‑021‑01920‑3 33486609
    [Google Scholar]
  85. Alam M.J. Xie L. Yap Y.A. Robert R. A mouse model of MC903‐induced atopic dermatitis. Curr. Protoc. 2023 3 3 e695 10.1002/cpz1.695 36913546
    [Google Scholar]
  86. Espinoza L.C. García V.R. Abreu S.M. Domènech Ò. Badia J. Lagunas R.M.J. Clares B. Calpena A.C. Topical pioglitazone nanoformulation for the treatment of atopic dermatitis: Design, characterization and efficacy in hairless mouse model. Pharmaceutics 2020 12 3 255 10.3390/pharmaceutics12030255 32178278
    [Google Scholar]
  87. Misery L. Huet F. Gouin O. Ständer S. Deleuran M. Current pharmaceutical developments in atopic dermatitis. Curr. Opin. Pharmacol. 2019 46 7 13 10.1016/j.coph.2018.12.003 30611103
    [Google Scholar]
  88. Kukreja T. Saraf S. Formulation of topical itraconazole nanostructured lipid carriers (Nlc) gel for onychomycosis. J. Ravishankar Univ. 2023 35 2 8 18 10.52228/JRUB.2023‑35‑2‑2
    [Google Scholar]
  89. Newby P.K. Maras J. Bakun P. Muller D. Ferrucci L. Tucker K.L. Intake of whole grains, refined grains, and cereal fiber measured with 7-D diet records and associations with risk factors for chronic disease. Am. J. Clin. Nutr. 2007 86 6 1745 1753 10.1093/ajcn/86.5.1745 18065595
    [Google Scholar]
  90. Jett J. McLaughlin M. Wilson T. Somerville M. DellaMaestra W. Rubenstein D. Piscitelli S. Dermal safety of tapinar of cream 1%: Results from 4 phase 1 trials. J. Drugs Dermatol. 2022 21 10 1084 1090 10.36849/JDD.6627 36219046
    [Google Scholar]
  91. Cassano R. Serini S. Curcio F. Trombino S. Calviello G. Preparation and study of solid lipid nanoparticles based on curcumin, resveratrol and capsaicin containing linolenic acid. Pharmaceutics 2022 14 8 1593 10.3390/pharmaceutics14081593 36015219
    [Google Scholar]
  92. Jaiswal P. Gidwani B. Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 27 40 10.3109/21691401.2014.909822 24813223
    [Google Scholar]
  93. Ferreira K.C.B. Valle A.B.C.S. Paes C.Q. Tavares G.D. Pittella F. Nanostructured lipid carriers for the formulation of topical anti-inflammatory nanomedicines based on natural substances. Pharmaceutics 2021 13 9 1454 10.3390/pharmaceutics13091454 34575531
    [Google Scholar]
  94. Gomaa E. Fathi H.A. Eissa N.G. Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods 2022 199 3 8 10.1016/j.ymeth.2021.05.003 33992771
    [Google Scholar]
  95. Li Q. Cai T. Huang Y. Xia X. Cole S.P.C. Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs Nanomaterials 2017 7 6 122 10.3390/nano7060122
    [Google Scholar]
  96. Panarese F. Auriemma M. Carbone A. Amerio P. Atopic dermatitis treatment: What’s new on the horizon? G. Ital. Dermatol. Venereol. 2018 153 1 95 101 29319277
    [Google Scholar]
  97. Abd E. Benson H. Roberts M. Grice J. Minoxidil skin delivery from nanoemulsion formulations containing eucalyptol or oleic acid: Enhanced diffusivity and follicular targeting. Pharmaceutics 2018 10 1 19 10.3390/pharmaceutics10010019 29370122
    [Google Scholar]
  98. Svejgaard E. Larsen Ø.P. Deleuran M. Ternowitz T. Petersen R.J. Nilsson J. Treatment of head and neck dermatitis comparing itraconazole 200 mg and 400 mg daily for 1 week with placebo. J. Eur. Acad. Dermatol. Venereol. 2004 18 4 445 449 10.1111/j.1468‑3083.2004.00963.x 15196159
    [Google Scholar]
  99. Mallol J. Crane J. Mutius v.E. Odhiambo J. Keil U. Stewart A. The international study of asthma and allergies in childhood (ISAAC) Phase Three: A global synthesis. Allergol. Immunopathol. 2013 41 2 73 85 10.1016/j.aller.2012.03.001 22771150
    [Google Scholar]
  100. Pahwa R Goyal A Jialal I. Chronic inflammation. Pathobiol Hum Dis A Dyn Encycl Dis Mech. 2022 300 14
    [Google Scholar]
  101. Sendekie A.K. Dagnew E.M. Tefera B.B. Belachew E.A. Health-related quality of life and its determinants among patients with diabetes mellitus: A multicentre cross-sectional study in Northwest Ethiopia. BMJ Open 2023 13 1 e068518 10.1136/bmjopen‑2022‑068518 36697040
    [Google Scholar]
  102. Odhiambo J.A. Williams H.C. Clayton T.O. Robertson C.F. Asher M.I. Global variations in prevalence of eczema symptoms in children from ISAAC phase three. J. Allergy Clin. Immunol. 2009 124 6 1251 1258.e23 10.1016/j.jaci.2009.10.009 20004783
    [Google Scholar]
  103. Papukashvili D. Rcheulishvili N. Liu C. Wang X. He Y. Wang P.G. Strategy of developing nucleic acid-based universal monkeypox vaccine candidates. Front. Immunol. 2022 13 1050309 10.3389/fimmu.2022.1050309 36389680
    [Google Scholar]
  104. Girard TJ Antunes L Zhang N Amrute JM Subramanian R Eldem I Peripheral blood mononuclear cell tissue factor (F3 gene) transcript levels and circulating extracellular vesicles are elevated in severe coronavirus 2019 (COVID-19) disease. J. Thromb. Haemost. 2022 21 3 629 638
    [Google Scholar]
  105. Chinnappanna N.K.R. Yennam G. Chaitanya C.B.H.N.V. Pottathil S. Borah P. Venugopala K.N. Deb P.K. Mailavaram R.P. Recent approaches in the drug research and development of novel antimalarial drugs with new targets. Acta Pharm. 2023 73 1 1 27 10.2478/acph‑2023‑0001 36692468
    [Google Scholar]
  106. Calderon A.A. Dimond C. Choy D.F. Pappu R. Grimbaldeston M.A. Mohan D. Chung K.F. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur. Respir. Rev. 2023 32 167 220144 10.1183/16000617.0144‑2022 36697211
    [Google Scholar]
  107. Bari E. Ferrera F. Altosole T. Perteghella S. Mauri P. Rossi R. Passignani G. Mastracci L. Galati M. Astone G.I. Mastrogiacomo M. Castagnola P. Fenoglio D. Silvestre D.D. Torre M.L. Filaci G. Trojan-horse silk fibroin nanocarriers loaded with a re-call antigen to redirect immunity against cancer. J. Immunother. Cancer 2023 11 1 e005916 10.1136/jitc‑2022‑005916 36697251
    [Google Scholar]
  108. Olofsson E.H Haglund M Englund E. On the regional distribution of cerebral microvascular ‘raspberries’ and their association with cerebral atherosclerosis and acute circulatory failure. Cerebral Circul. Cognition Behav. 2023 4 100157 10.1016/j.cccb.2023.100157
    [Google Scholar]
  109. Ramsook A.H. Schaeffer M.R. Mitchell R.A. Dhillon S.S. Milne K.M. Ferguson O.N. Puyat J.H. Koehle M.S. Sheel A.W. Guenette J.A. Voluntary activation of the diaphragm after inspiratory pressure threshold loading. Physiol. Rep. 2023 11 2 e15575 10.14814/phy2.15575 36695772
    [Google Scholar]
  110. Satman I. Bayirlioglu S. Okumus F. Erturk N. Yemenici M. Cinemre S. Gulfidan G. Arga K.Y. Merih D.Y. Issever H. Estimates and forecasts on the burden of prediabetes and diabetes in adult and elderly population in turkiye. Eur. J. Epidemiol. 2023 38 3 313 323 10.1007/s10654‑022‑00960‑8 36696072
    [Google Scholar]
  111. Saldanha S. Goyal S. Dasappa L. Jacob L.A. Babu M.C.S. Lokesh K.N. Rudresha A.H. Rajeev L.K. Madhumathi D.S. Rapidly progressing plasma cell leukemia with underlying plasmablastic morphology: A rare case report of a 25-year old male. Int. J. Hematol. Oncol. Stem Cell Res. 2022 16 3 184 188 10.18502/ijhoscr.v16i3.10142 36694704
    [Google Scholar]
  112. Singh A. Ejaz A. Gunta P.S. Jakulla R.S. Singh D. Infective endocarditis as a complication of Crohn’s disease on immunotherapy. Cureus 2022 14 12 e32847 10.7759/cureus.32847 36694487
    [Google Scholar]
  113. Liu Y. Xiao Z. Ye K. Xu L. Zhang Y. Smoking, alcohol consumption, diabetes, body mass index, and peptic ulcer risk: A two-sample Mendelian randomization study. Front. Genet. 2023 13 Jan 992080 10.3389/fgene.2022.992080 36685897
    [Google Scholar]
  114. Povarnina P.Y. Volkova A.A. Vorontsova O.N. Kamensky A.A. Gudasheva T.A. Seredenin S.B. A low-molecular-weight BDNF mimetic, dipeptide GSB-214, prevents memory impairment in rat models of alzheimer’s disease. Acta Nat. 2022 14 4 94 100 36694902
    [Google Scholar]
  115. Bassols J. Zegher d.F. Diaz M. Badosa C.G. Beltran G.C. Carranza P.E. Vila O.C. Casano P. Franco C.A. Malpique R. Bermejo L.A. Ibáñez L. Effects of half-dose spiomet treatment in girls with early puberty and accelerated bone maturation: A multicenter, randomized, placebo-controlled study protocol. Trials 2023 24 1 56 10.1186/s13063‑022‑07050‑w 36694227
    [Google Scholar]
  116. Lomakin Y.A. Ovchinnikova L.A. Zakharova M.N. Ivanova M.V. Simaniv T.O. Kabilov M.R. Bykova N.A. Mukhina V.S. Kaminskaya A.N. Tupikin A.E. Zakharova M.Y. Favorov A.V. Illarioshkin S.N. Belogurov A.A. Gabibov A.G. Multiple sclerosis is associated with immunoglobulin germline gene variation of transitional B cells. Acta Nat. 2022 14 4 84 93 36694905
    [Google Scholar]
  117. Orgil Z. Johnson L. Karthic A. Williams S.E. Ding L. Zuck K.S. King C.D. Olbrecht V.A. Feasibility and acceptability of perioperative application of biofeedback-based virtual reality versus active control for pain and anxiety in children and adolescents undergoing surgery: Protocol for a pilot randomised controlled trial. BMJ Open 2023 13 1 e071274 10.1136/bmjopen‑2022‑071274 36697053
    [Google Scholar]
  118. Filho L.R Fortuna JS Cozachenco D Isaac AR Silva L.E.N Saldanha A Brain FNDC5/Irisin expression in patients and mouse models of major depression. Eneuro 2023 10 2 ENEURO.0256 22.2023
    [Google Scholar]
  119. Scott M.R. Zong W. Ketchesin K.D. Seney M.L. Tseng G.C. Zhu B. Twelve-hour rhythms in transcript expression within the human dorsolateral prefrontal cortex are altered in schizophrenia. PLoS Biol. 2023 21 e3001688 10.1371/journal.pbio.3001688
    [Google Scholar]
  120. Jin Y-X. Wang B. Wang X. Yu X. Chen L. Yang Y. Relationship between obstructive sleep apnea and liver abnormalities in older patients: A cross‐sectional study. Int. J. Clin. Prac. 2023 2023 9310588
    [Google Scholar]
  121. Escher C. Nagy E. Creutzfeldt J. Dahl O. Ruiz M. Ericson M. Osika W. Meurling L. Fear of making a mistake: A prominent cause of stress for COVID-19 ICU staff—a mixed-methods study. BMJ Open Qual. 2023 12 1 e002009 10.1136/bmjoq‑2022‑002009 36697055
    [Google Scholar]
  122. Sato F. Yamano T. Manbo Y. Sakaguchi K. Yamaguchi K. Miyake T. A rare case of scleritis and multiple rheumatoid pulmonary nodules associated with seronegative rheumatoid arthritis. Oxf. Med. Case Rep. 2023 2023 1 omac155 10.1093/omcr/omac155 36694604
    [Google Scholar]
  123. Li Q. Yan W. Liu S. Li H. Study on the correlation and clinical significance of T-lymphocyte subsets, IL-6 and PCT in the severity of patients with sepsis. Pak. J. Med. Sci. 2023 39 1 227 231 36694784
    [Google Scholar]
  124. Lombardo D. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomat. 2019 2019 3702518
    [Google Scholar]
  125. Amnuaikit T. Limsuwan T. Khongkow P. Boonme P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J. Pharm. Sci. 2018 13 5 472 484 10.1016/j.ajps.2018.02.004 32104421
    [Google Scholar]
  126. García F.R. Lalatsa A. Statts L. Fernández B.F. Ballesteros M.P. Serrano D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020 573 118817 10.1016/j.ijpharm.2019.118817 31678520
    [Google Scholar]
  127. Naseri N. Valizadeh H. Milani Z.P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 2015 5 3 305 313 10.15171/apb.2015.043 26504751
    [Google Scholar]
  128. Galeano G.A. Huertas M.C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018 133 285 308 10.1016/j.ejpb.2018.10.017 30463794
    [Google Scholar]
  129. Solaro R. Chiellini F. Battisti A. Targeted delivery of protein drugs by nanocarriers. Materials 2010 3 3 1928 1980 10.3390/ma3031928
    [Google Scholar]
  130. Souto E.B. Almeida A.J. Müller R.H. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: Structure, protection and skin effects. J. Biomed. Nanotechnol. 2007 3 4 317 331 10.1166/jbn.2007.049 20055078
    [Google Scholar]
  131. Pardeike J. Hommoss A. Müller R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009 366 1-2 170 184 10.1016/j.ijpharm.2008.10.003 18992314
    [Google Scholar]
  132. Bhatia S. Natural polymer drug delivery systems: Nanoparticles, plants, and algae. Nat Polym Drug Deliv Syst Nanoparticles, Plants. Algae 2016 Jan 1 225
    [Google Scholar]
  133. Zhang Z. Tsai P.C. Ramezanli T. Kohn M.B.B. Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013 5 3 205 218 10.1002/wnan.1211 23386536
    [Google Scholar]
  134. Say E.K.M. Sawy E.H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm. 2017 528 1-2 675 691 10.1016/j.ijpharm.2017.06.052 28629982
    [Google Scholar]
  135. Kumari A. Yadav S.K. Yadav S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010 75 1 1 18 10.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  136. Costa d.L.A.G. Souza d.M.L. Sousa d.A.L.M.D. Silva E.O. Silva d.R.M.F. Rolim L.A. Neto R.P.J. Innovation overview of nanoparticle-based dermatological products: A patent study. Recent Pat. Nanotechnol. 2020 14 2 128 140 10.2174/1872210514666200214125222 32056534
    [Google Scholar]
  137. Ghosh P. Han G. De M. Kim C. Rotello V. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008 60 11 1307 1315 10.1016/j.addr.2008.03.016 18555555
    [Google Scholar]
  138. Yeh Y.C. Creran B. Rotello V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012 4 6 1871 1880 10.1039/C1NR11188D 22076024
    [Google Scholar]
  139. Gurunathan S. Park J.H. Han J.W. Kim J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int. J. Nanomedicine 2015 10 1 4203 4222 10.2147/IJN.S83953 26170659
    [Google Scholar]
  140. Zhang X.F. Liu Z.G. Shen W. Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016 17 9 1534 10.3390/ijms17091534 27649147
    [Google Scholar]
  141. Jafari S. Derakhshankhah H. Alaei L. Fattahi A. Varnamkhasti B.S. Saboury A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 2019 109 1100 1111 10.1016/j.biopha.2018.10.167 30551360
    [Google Scholar]
  142. Balzus B. Sahle F.F. Hönzke S. Gerecke C. Schumacher F. Hedtrich S. Kleuser B. Bodmeier R. Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium. Eur. J. Pharm. Biopharm. 2017 115 122 130 10.1016/j.ejpb.2017.02.001 28189623
    [Google Scholar]
  143. Dong P. Sahle F.F. Lohan S.B. Saeidpour S. Albrecht S. Teutloff C. Bodmeier R. Unbehauen M. Wolff C. Haag R. Lademann J. Patzelt A. Korting S.M. Meinke M.C. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J. Control. Release 2019 295 214 222 10.1016/j.jconrel.2018.12.045 30597246
    [Google Scholar]
  144. Rosado C. Silva C. Reis C.P. Hydrocortisone-loaded poly(ε-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm. Dev. Technol. 2013 18 3 710 718 10.3109/10837450.2012.712537 22889124
    [Google Scholar]
  145. Hussain Z. Katas H. Amin M.M.C. Kumolosasi E. Sahudin S. Downregulation of immunological mediators in 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions by hydrocortisone-loaded chitosan nanoparticles. Int. J. Nanomedicine 2014 9 1 5143 5156 25395851
    [Google Scholar]
  146. Jung S.M. Yoon G.H. Lee H.C. Jung M.H. Yu S.I. Yeon S.J. Min S.K. Kwon Y.S. Hwang J.H. Shin H.S. Thermodynamic insights and conceptual design of skin-sensitive chitosan coated Ceramide/Plga nanodrug for regeneration of stratum corneum on atopic dermatitis. Sci. Rep. 2015 5 1 18089 10.1038/srep18089 26666701
    [Google Scholar]
  147. Tessema E.N. Mariam G.T. Paulos G. Wohlrab J. Neubert R.H.H. Delivery of oat-derived phytoceramides into the stratum corneum of the skin using nanocarriers: Formulation, characterization and in vitro and ex-vivo penetration studies. Eur. J. Pharm. Biopharm. 2018 127 260 269 10.1016/j.ejpb.2018.02.037 29501672
    [Google Scholar]
  148. Deli G. Hatziantoniou S. Nikas Y. Demetzos C. Solid lipid nanoparticles and nanoemulsions containing ceramides: Preparation and physicochemical characterization. J. Liposome Res. 2009 19 3 180 188 10.1080/08982100802702046 19552579
    [Google Scholar]
  149. Gaur P.K. Mishra S. Verma A. Verma N. Ceramide–palmitic acid complex based Curcumin solid lipid nanoparticles for transdermal delivery: Pharmacokinetic and pharmacodynamic study. J. Exp. Nanosci. 2016 11 1 38 53 10.1080/17458080.2015.1025301
    [Google Scholar]
  150. Noh G.Y. Suh J.Y. Park S.N. Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies. Korean J. Chem. Eng. 2017 34 2 400 406 10.1007/s11814‑016‑0267‑3
    [Google Scholar]
/content/journals/cis/10.2174/012210299X358884250211064638
Loading
/content/journals/cis/10.2174/012210299X358884250211064638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test