Skip to content
2000
image of Phytochemicals for the Improvement of Cognitive Function through Cholinergic Anti-inflammatory Pathway

Abstract

Cognition encompasses the interdisciplinary scientific study of the brain and its processes, including intelligence and behavior in living beings. While humans are typically born with the capacity for cognitive function, certain conditions, such as infection and oxidative stress, can lead to impaired cognition. Herbal drugs and phytochemicals are utilized to enhance cognitive functions and alleviate symptoms associated with impaired cognition. Despite ongoing research, a complete cure for cognitive dysfunction remains elusive, with current treatments primarily providing symptomatic relief. This has prompted a review of the significance of phytochemicals and their potential mechanisms for improving cognitive functions.

For this review, a comprehensive literature search was conducted by referencing research and review articles published in reputable journals and available on web databases. The analysis of available literature revealed the prevalence of age-related cognitive dysfunction and dementia in the elderly. Traditional plant-based remedies are commonly used to address learning and memory deficits, but some available drugs pose the risk of being potentially toxic alkaloidal choline esterase inhibitors. Researchers have demonstrated that many plant-based drugs act through various mechanisms, including the inhibition of acetylcholinesterase (AChE), activation of antioxidants, and enhancement of blood flow to the brain.

The investigation of medicinal plants has led to the development of various successful drugs for improving cognition. These drugs belong to different classes of secondary metabolites, such as alkaloids, polyphenolics, terpenoids, and fatty acids. Although the precise mechanism of action of most natural/herbal drugs is still not fully understood, they have demonstrated promise in enhancing cognitive function. However, their herbal extracts and compounds are not yet fully explored.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X309791240914125655
2024-12-12
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cis/10.2174/012210299X309791240914125655/e2210299X309791.html?itemId=/content/journals/cis/10.2174/012210299X309791240914125655&mimeType=html&fmt=ahah

References

  1. Ringman J.M. Cummings J.L. Current and emerging pharmacological treatment options for dementia. Behav. Neurol. 2006 17 1 5 16
    [Google Scholar]
  2. Ingole S.R. Rajput S.K. Sharma S.S. Cognition enhancers: Current strategies and future perspectives. CRIPS 2008 9 3 42 48
    [Google Scholar]
  3. Tully T. Bourtchouladze R. Scott R. Tallman J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov. 2003 2 4 267 277
    [Google Scholar]
  4. Lynch G. AMPA receptor modulators as cognitive enhancers. Curr. Opin. Pharmacol. 2004 4 1 4 11
    [Google Scholar]
  5. O’Mahony A. Raber J. Montano M. Foehr E. Han V. Lu S. NF-κB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity. Mol. Cell. Biol. 2006 26 19 7283 7298
    [Google Scholar]
  6. Ceskova E. Cas. Lek. Cesk. 2004 144 12 801 804 [Cognitive dysfunction and its therapy].
    [Google Scholar]
  7. Bhattacharya P. Implications of an aging population in India: challenges and opportunities. Living To 2005 100 12 14
    [Google Scholar]
  8. Howes M-J.R. 2013 http://link.springer.com/10.1007/978-3-642-22144-6_43
  9. Das A. Shanker G. Nath C. Pal R. Singh S. Singh H.K. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol. Biochem. Behav. 2002 73 4 893 900
    [Google Scholar]
  10. Kennedy D.O. Scholey A.B. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol. Biochem. Behav. 2003 75 3 687 700
    [Google Scholar]
  11. Kennedy D.O. Wightman E.L. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr Int Rev J 2011 2 1 32 50
    [Google Scholar]
  12. Kumar V. Potential medicinal plants for CNS disorders: an overview. Phytother. Res. 2006 20 12 1023 1035
    [Google Scholar]
  13. Shiksharthi A.R. Mittal S. Ramana J. Systematic review of herbals as potential memory enhancers. Int. J. Res. Pharm. Biomed. Sci. 2011 3 918 925
    [Google Scholar]
  14. Mukherjee P.K. Kumar V. Houghton P.J. Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity. Phytother. Res. 2007 21 12 1142 1145
    [Google Scholar]
  15. Mors W.B. Rizzini C.T. Pereira N.A. 2000 http://www.cabdirect.org/abstracts/20013120590.html
  16. Ikeda K. Negishi H. Yamori Y. Antioxidant nutrients and hypoxia/ischemia brain injury in rodents. Toxicology 2003 189 1 55 61
    [Google Scholar]
  17. Liu R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003 78 3 517S 520S
    [Google Scholar]
  18. Joseph J.A. Shukitt-Hale B. Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr. 2005 81 1 313S 316S
    [Google Scholar]
  19. Larson R.A. The antioxidants of higher plants. Phytochemistry 1988 27 4 969 978
    [Google Scholar]
  20. Kennedy D.O. Scholey A.B. The psychopharmacology of European herbs with cognition-enhancing properties. Curr. Pharm. Des. 2006 12 35 4613 4623
    [Google Scholar]
  21. Goldman P. Herbal medicines today and the roots of modern pharmacology. Ann. Intern. Med. 2001 135 8_Part_1 594 600
    [Google Scholar]
  22. Zenk M.H. Juenger M. Evolution and current status of the phytochemistry of nitrogenous compounds. Phytochemistry 2007 68 22 2757 2772
    [Google Scholar]
  23. Pearson V.E. Galantamine: a new Alzheimer drug with a past life. Ann. Pharmacother. 2001 35 11 1406 1413
    [Google Scholar]
  24. Kumar G.P. Khanum F. others. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012 6 12 81
    [Google Scholar]
  25. Willis L.M. Shukitt-Hale B. Joseph J.A. Recent advances in berry supplementation and age-related cognitive decline. Curr. Opin. Clin. Nutr. Metab. Care 2009 12 1 91 94
    [Google Scholar]
  26. Zheng Y. Layne J. Toborek M. Hennig B. The roles of caveolin-1 and heme oxygenase-1 in EGCG-mediated protection against TNF-α-induced endothelial inflammation. FASEB J. 2010 24 1 Suppl. 541 10
    [Google Scholar]
  27. Zhang L. Jie G. Zhang J. Zhao B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic. Biol. Med. 2009 46 3 414 421
    [Google Scholar]
  28. Weinreb O. Mandel S. Amit T. Youdim M.B. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J. Nutr. Biochem. 2004 15 9 506 516
    [Google Scholar]
  29. Bowsher C. Steer M. Tobin A. 2008 https://books.google.co.in/books?hl=en&lr=&id=GDIWBAAAQBAJ&oi=fnd&pg=PP1&dq=11.%09Bowsher+C,+Steer+M,+Tobin+A.+2008.+Plant+biochemistry.+New+York,+NY,+USA:+Garland+Science.&ots=3UTzOehaES&sig=Vf6lEhMdmqnMxgPp-EMuvzdBE8M
  30. Guo S. Yan J. Yang T. Yang X. Bezard E. Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol. Psychiatry 2007 62 12 1353 1362
    [Google Scholar]
  31. Ehrnhoefer D.E. Duennwald M. Markovic P. Wacker J.L. Engemann S. Roark M. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum. Mol. Genet. 2006 15 18 2743 2751
    [Google Scholar]
  32. Sutherland B.A. Rahman R.M. Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J. Nutr. Biochem. 2006 17 5 291 306
    [Google Scholar]
  33. Youdim K.A. Spencer J.P. Schroeter H. Rice-Evans C. Dietary flavonoids as potential neuroprotectants. Biol. Chem. 2002 383 3–4 503 519
    [Google Scholar]
  34. Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants†. Nat. Prod. Rep. 1999 16 5 565 574
    [Google Scholar]
  35. Rattan R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010 29 9 913 920
    [Google Scholar]
  36. Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 2003 64 1 3 19
    [Google Scholar]
  37. Kleijnen J. Knipschild P. Ginkgo biloba for cerebral insufficiency. Br. J. Clin. Pharmacol. 1992 34 4 352 358
    [Google Scholar]
  38. Chan P-C. Xia Q. Fu P.P. Ginkgo biloba leave extract: biological, medicinal, and toxicological effects. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2007 25 3 211 244
    [Google Scholar]
  39. Warot D. Lacomblez L. Danjou P. Weiller E. Payan C. Puech A.J. Therapie 1990 46 1 33 36 [Comparative effects of Ginkgo biloba extracts on psychomotor performances and memory in healthy subjects].
    [Google Scholar]
  40. Yun T.K. Brief introduction of Panax ginseng CA Meyer. J. Korean Med. Sci. 2001 16 Suppl. S3
    [Google Scholar]
  41. Lu J-M. Yao Q. Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 2009 7 3 293 302
    [Google Scholar]
  42. Sparg S. Light M.E. Van Staden J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004 94 2 219 243
    [Google Scholar]
  43. Eskelinen M.H. Ngandu T. Tuomilehto J. Soininen H. Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J. Alzheimers Dis. 2009 16 1 85 91
    [Google Scholar]
  44. Tohda C. Kuboyama T. Komatsu K. Search for natural products related to regeneration of the neuronal network. Neurosignals 2005 14 1–2 34 45
    [Google Scholar]
  45. Coley N. Andrieu S. Gardette V. Gillette-Guyonnet S. Sanz C. Vellas B. Dementia prevention: methodological explanations for inconsistent results. Epidemiol. Rev. 2008 30 1 35 66
    [Google Scholar]
  46. DeKosky S.T. Williamson J.D. Fitzpatrick A.L. Kronmal R.A. Ives D.G. Saxton J.A. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 2008 300 19 2253 2262
    [Google Scholar]
  47. Ng T-P. Chiam P-C. Lee T. Chua H-C. Lim L. Kua E-H. Curry consumption and cognitive function in the elderly. Am. J. Epidemiol. 2006 164 9 898 906
    [Google Scholar]
  48. Elbaz A. Moisan F. Update in the epidemiology of Parkinson’s disease. Curr. Opin. Neurol. 2008 21 4 454 460
    [Google Scholar]
  49. Ortiz J.G. Nieves-Natal J. Chavez P. Effects of Valeriana officinalis extracts on [3H] flunitrazepam binding, synaptosomal [3H] GABA uptake, and hippocampal [3H] GABA release. Neurochem. Res. 1999 24 11 1373 1378
    [Google Scholar]
  50. Sakina M.R. Dandiya P.C. others. A psycho-neuropharmacological profile of Centella asiatica extract. Fitoterapia 1990 61 4 291 296
    [Google Scholar]
  51. Nalini K. Aroor A.R. Rao A. Karanth K.S. Effect of Centella asiatica fresh leaf aqueous extract on learning and memory and biogenic amine turnover in albino rats. Fitoterapia 1992 63 3 231 238
    [Google Scholar]
  52. Crews C. Hough P. Godward J. Brereton P. Lees M. Guiet S. Study of the main constituents of some authentic hazelnut oils. J. Agric. Food Chem. 2005 53 12 4843 4852
    [Google Scholar]
  53. Yehuda S. Rabinovitz S. Carasso R.L. Mostofsky D.I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 2002 23 5 843 853
    [Google Scholar]
  54. Rang H.P. Dale M.M. Ritter J.M. Flower R.J. Anxiolytic and hypnotic drugs. Rang Dales Pharmacol. 6th ed Elsevier Churchill Livingstone 2007 538
    [Google Scholar]
  55. Wilens T.E. Klint T. Adler L. West S. Wesnes K. Graff O. A randomized controlled trial of a novel mixed monoamine reuptake inhibitor in adults with ADHD. Behav. Brain Funct. 2008 4 1 1
    [Google Scholar]
  56. Turner D.C. Clark L. Dowson J. Robbins T.W. Sahakian B.J. Modafinil improves cognition and response inhibition in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 2004 55 10 1031 1040
    [Google Scholar]
  57. Upton N. Chuang T.T. Hunter A.J. Virley D.J. 5-HT 6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 2008 5 3 458 469
    [Google Scholar]
  58. Brown E.S. Vazquez M. Nakamura A. Randomized, placebo-controlled, crossover trial of memantine for cognitive changes with corticosteroid therapy. Biol. Psychiatry 2008 64 8 727 729
    [Google Scholar]
  59. Robinson D.M. Keating G.M. Memantine. Drugs 2006 66 11 1515 1534
    [Google Scholar]
  60. Erberk O.N. Rezaki M. [Prefrontal cortex: implications for memory functions and dementia]. Turk Psikiyatri Derg Turk. J. Psychiatry 2006 18 3 262 269
    [Google Scholar]
  61. Lanni C. Lenzken S.C. Pascale A. Del Vecchio I. Racchi M. Pistoia F. Cognition enhancers between treating and doping the mind. Pharmacol. Res. 2008 57 3 196 213
    [Google Scholar]
  62. Bitner R.S. Bunnelle W.H. Anderson D.J. Briggs C.A. Buccafusco J. Curzon P. Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J. Neurosci. 2007 27 39 10578 10587
    [Google Scholar]
  63. Akhondzadeh S. Sabet M.S. Harirchian M.H. Togha M. Cheraghmakani H. Razeghi S. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology (Berl.) 2010 207 4 637 643
    [Google Scholar]
  64. Feuerbach D. Lingenhoehl K. Olpe H-R. Vassout A. Gentsch C. Chaperon F. The selective nicotinic acetylcholine receptor α7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology 2009 56 1 254 263
    [Google Scholar]
  65. Rutten K. Prickaerts J. Schaenzle G. Rosenbrock H. Blokland A. Sub-chronic rolipram treatment leads to a persistent improvement in long-term object memory in rats. Neurobiol. Learn. Mem. 2008 90 3 569 575
    [Google Scholar]
  66. Gouliaev A.H. Senning A. Piracetam and other structurally related nootropics. Brain Res. Brain Res. Rev. 1994 19 2 180 222
    [Google Scholar]
  67. Winblad B. Fioravanti M. Dolezal T. Logina I. Milanov I.G. Popescu D.C. Therapeutic use of nicergoline. Clin. Drug Investig. 2008 28 9 533 552
    [Google Scholar]
  68. Kidd P.M. A review of nutrients and botanicals in the integrative management of cognitive dysfunction. Altern. Med. Rev. 1999 4 3 144 161
    [Google Scholar]
  69. Bennett G.W. Ballard T.M. Watson C.D. Fone K.C.F. Effect of neuropeptides on cognitive function. Exp. Gerontol. 1997 32 4 451 469
    [Google Scholar]
  70. Weiss R.F. Fintelmann V. Herbal medicine. rev. and exp. Stuttg, N Y Thieme 2000
    [Google Scholar]
  71. Viana M. Barbas C. Bonet B. Bonet M.V. Castro M. Fraile M.V. In vitro effects of a flavonoid-rich extract on LDL oxidation. Atherosclerosis 1996 123 1 83 91
    [Google Scholar]
  72. Pinder R.M. Sandler M. Alcohol, wine and mental health: focus on dementia and stroke. J Psychopharmacol (Oxf) 2004 18 4 449 456
    [Google Scholar]
  73. Berger M.M. Can oxidative damage be treated nutritionally? Clin. Nutr. 2005 24 2 172 183
    [Google Scholar]
  74. Floyd R.A. Antioxidants, oxidative stress, and degenerative neurological disorders. Exp. Biol. Med. 1999 222 3 236 245
    [Google Scholar]
  75. Kumar M. Kumar S. Kaur S. Identification of polyphenols in leaf extracts of Lawsonia inermis L. with antioxidant, antigenotoxic and antiproliferative potential. Int J Green Pharm IJGP [Internet] 2014 8 1 http://greenpharmacy.info/index.php/ijgp/article/view/350
    [Google Scholar]
  76. Gamage R. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front. Cell. Neurosci. 2020 ••• 14
    [Google Scholar]
  77. Tracey K.J. The inflammatory refex. Nature 2002 420 853
    [Google Scholar]
  78. Trakhtenberg E.F. Goldberg J.L. Neuroimmune communication. Science 2011 334 6052 47 48
    [Google Scholar]
  79. Albuquerque E.X. Pereira E.F. Alkondon M. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 2009 89 73 120
    [Google Scholar]
  80. Zoli M. Pucci S. Vilella A. Neuronal and extra neuronal nicotinic acetylcholine receptors. Curr. Neuropharmacol. 2018 16 338 349
    [Google Scholar]
  81. Borovikova L.V. Ivanova S. Zhang M. Vagus nerve stimulation attenuates the systemic infammatory response to endotoxin. Nature 2000 405 458 462
    [Google Scholar]
  82. Benfante R. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin. Exp. Res. 2021 33 4 823 834
    [Google Scholar]
  83. Maurer S.V. Williams C.L. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells. Front. Immunol. 2017 8 1489
    [Google Scholar]
  84. Rawat J.K. Transcutaneous vagus nerve stimulation regulates the cholinergic anti-inflammatory pathway to counteract 1, 2-dimethylhydrazine induced colon carcinogenesis in albino wistar rats. Front. Pharmacol. 2019 10 353
    [Google Scholar]
  85. Perry E.K. Pickering A.T. Wang W.W. Houghton P. Perry N.S. Medicinal plants and Alzheimer’s disease: Integrating ethnobotanical and contemporary scientific evidence. J. Altern. Complement. Med. 1998 4 4 419 428
    [Google Scholar]
  86. Mills S.Y. The essential book of herbal medicine. Penguin 1993
    [Google Scholar]
  87. Perry E. Howes M-J.R. Medicinal plants and dementia therapy: herbal hopes for brain aging? CNS Neurosci. Ther. 2011 17 6 683 698
    [Google Scholar]
  88. Howes M-J.R. Houghton P.J. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol. Biochem. Behav. 2003 75 3 513 527
    [Google Scholar]
  89. Heinrich M. Teoh H.L. Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J. Ethnopharmacol. 2004 92 2 147 162
    [Google Scholar]
  90. Pari L. Tewas D. Eckel J. Role of curcumin in health and disease. Arch. Physiol. Biochem. 2008 114 2 127 149
    [Google Scholar]
  91. Kinrys G. Coleman E. Rothstein E. Natural remedies for anxiety disorders: potential use and clinical applications. Depress. Anxiety 2009 26 3 259 265
    [Google Scholar]
  92. Erdõ S.L. Molnár P. Lakics V. Bence J.Z. Tömösközi Z. Vincamine and vincanol are potent blockers of voltage-gated Na+ channels. Eur. J. Pharmacol. 1996 314 1 69 73
    [Google Scholar]
  93. Nyakas C. Felszeghy K. Szabó R. Keijser J.N. Luiten P.G. Szombathelyi Z. Neuroprotective Effects of Vinpocetine and its Major Metabolite Cis-apovincaminic Acid on NMDA-Induced Neurotoxicity in a Rat Entorhinal Cortex Lesion Model. CNS Neurosci. Ther. 2009 15 2 89 99
    [Google Scholar]
  94. Howes M-J.R. Perry E. The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging 2011 28 6 439 468
    [Google Scholar]
  95. Perry N.S. Houghton P.J. Theobald A. Jenner P. Perry E.K. In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia lavandulaefolia Essential Oil and Constituent Terpenes. J. Pharm. Pharmacol. 2000 52 7 895 902
    [Google Scholar]
  96. Savelev S. Okello E. Perry N.S.L. Wilkins R.M. Perry E.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 2003 75 3 661 668
    [Google Scholar]
  97. Napryeyenko O. Borzenko I. Ginkgo biloba special extract in dementia with neuropsychiatric features. Arzneimittelforschung 2007 57 01 4 11
    [Google Scholar]
  98. Shin K.Y. Lee J-Y. Won B.Y. Jung H.Y. Chang K-A. Koppula S. BT-11 is effective for enhancing cognitive functions in the elderly humans. Neurosci. Lett. 2009 465 2 157 159
    [Google Scholar]
  99. Arai H. Suzuki T. Sasaki H. Hanawa T. Toriizuka K. Yamada H. [A new interventional strategy for Alzheimer’s disease by Japanese herbal medicine]. Nihon Ronen Igakkai Zasshi. Jpn. J. Geriatr. 2000 37 3 212 215
    [Google Scholar]
  100. Papandreou M.A. Kanakis C.D. Polissiou M.G. Efthimiopoulos S. Cordopatis P. Margarity M. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem. 2006 54 23 8762 8768
    [Google Scholar]
  101. Leung KW Angiomodulatory and neurological effects of ginsenosides. Curr. Med. Chem. 2007 14 12 1371 1380
    [Google Scholar]
  102. Hsieh M.T. Peng W.H. Wu C.R. Ng K.Y. Cheng C.L. Xu H.X. Review on experimental research of herbal medicines with anti-amnesic activity. Planta Med. 2010 76 03 203 217
    [Google Scholar]
  103. Nah S-Y. Kim D-H. Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev. 2007 13 4 381 404
    [Google Scholar]
  104. Lee M.S. Yang E.J. Kim J-I. Ernst E. Ginseng for cognitive function in Alzheimer’s disease: a systematic review. J. Alzheimers Dis. 2009 18 2 339 344
    [Google Scholar]
  105. Haskell C.F. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology (Berl.) 2005 179 4 813 825
    [Google Scholar]
  106. Ferré S. An update on the mechanisms of the psychostimulant effects of caffeine. J. Neurochem. 2008 105 1067 1079
    [Google Scholar]
  107. Qi G. Mi Y. Fan R. Li R. Liu Z. Liu X. Nobiletin Protects against Systemic Inflammation-Stimulated Memory Impairment via MAPK and NF-κB Signaling Pathways. J. Agric. Food Chem. 2019 67 18 5122 5134
    [Google Scholar]
  108. Gupta M. Herbal bioactives in treatment of inflammation: An overview. S. Afr. J. Bot. 2021 143 205 225
    [Google Scholar]
  109. Ebrahimpour Saeedeh Boswellic acid improves cognitive function in a rat model through its antioxidant activity:-neuroprotective effect of boswellic acid. 2017
    [Google Scholar]
  110. Sontakke S. Open, randomized, controlled clinical trial of Boswellia serrata extract as compared to valdecoxib in osteoarthritis of knee. 2007
    [Google Scholar]
  111. Deshpande P. Gogia N. Singh A. Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regen. Res. 2019 14 1321 1329 10.4103/1673‑5374.253509
    [Google Scholar]
  112. Carnicella S. Pain L. Oberling P. Cholinergic effects on fear conditioning II: nicotinic and muscarinic modulations of atropine-induced disruption of the degraded contingency effect. Psychopharmacology (Berl.) 2005 178 4 533 541
    [Google Scholar]
  113. Bartus R.T. Dean R.L. III Pharmaceutical treatment for cognitive deficits in Alzheimer’s disease and other neurodegenerative conditions: exploring new territory using traditional tools and established maps. Psychopharmacology (Berl.) 2009 202 1–3 15 36
    [Google Scholar]
/content/journals/cis/10.2174/012210299X309791240914125655
Loading
/content/journals/cis/10.2174/012210299X309791240914125655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test