Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007
side by side viewer icon HTML

Abstract

The unique physicochemical properties, low cost, low toxicity, and size- and shape-dependent magnetic properties of the ferrite-based nanoparticles make them an indispensable choice of material for various applications, including catalysis.

The objective of this review is to summarize the results of the most widely used ferrite nanoparticles such as NiFeO, CuFeO, CoFeO, ZnFeO, and MnFeO as catalysts in organic reactions such as C–X (X = N, O, and S) coupling, oxidation, and -heterocycles formation reactions.

This review includes a well-summarized compilation of the most widely used nanostructured ferrites such as NiFeO, CuFeO, CoFeO, ZnFeO, and MnFeO as heterogeneous catalysts in selected organic reactions such as C–X (X = N, O, and S) coupling, oxidation, and -heterocycles formation reactions. The nanostructured magnetic ferrite catalysts are reliable and extremely effective and facilitate the quick separation of catalysts, making the process sustainable.

The presentation of the review has been proposed anticipating new perspectives and insight in the field of catalysis and to investigate further development of novel ferrite materials on an industrial scale for practical applications.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X312557240625064143
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X312557.html?itemId=/content/journals/cis/10.2174/012210299X312557240625064143&mimeType=html&fmt=ahah

References

  1. HauerB. Embracing nature’s catalysts: A viewpoint on the future of biocatalysis.ACS Catal.202010158418842710.1021/acscatal.0c01708
    [Google Scholar]
  2. KhalilM. KadjaG.T.M. IlmiM.M. Advanced nanomaterials for catalysis: Current progress in fine chemical synthesis, hydrocarbon processing, and renewable energy.J. Ind. Eng. Chem.2021937810010.1016/j.jiec.2020.09.028
    [Google Scholar]
  3. GallezotP. Catalytic routes from renewables to fine chemicals.Catal. Today20071211-2769110.1016/j.cattod.2006.11.019
    [Google Scholar]
  4. ClimentM.J. CormaA. IborraS. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals.Chem. Rev.201111121072113310.1021/cr100208421105733
    [Google Scholar]
  5. Cole-HamiltonD.J. ToozeR.P. Catalyst Separation, Recovery and Recycling: Chemistry and Process Design.SpringerDordrecht20063018
    [Google Scholar]
  6. FalbeJ. BahrmannH. Homogeneous catalysis-industrial applications.J. Chem. Educ.1984611196110.1021/ed061p961
    [Google Scholar]
  7. MüllerC. NijkampM.G. VogtD. Continuous homogeneous catalysis.Eur. J. Inorg. Chem.20052005204011402110.1002/ejic.200500466
    [Google Scholar]
  8. DaviesI.W. MattyL. HughesD.L. ReiderP.J. Are heterogeneous catalysts precursors to homogeneous catalysts?J. Am. Chem. Soc.200112341101391014010.1021/ja016877v11592910
    [Google Scholar]
  9. SchnoorJ.K. FuchsM. BöckingA. WesslingM. LiauwM.A. Homogeneous catalyst recycling and separation of a multicomponent mixture using organic solvent nanofiltration.Chem. Eng. Technol.201942102187219410.1002/ceat.201900110
    [Google Scholar]
  10. CornilsB. HerrmannW.A. Concepts in homogeneous catalysis: the industrial view.J. Catal.20032161-2233110.1016/S0021‑9517(02)00128‑8
    [Google Scholar]
  11. BlaserH.U. Heterogeneous catalysis for fine chemicals production.Catal. Today2000603-416116510.1016/S0920‑5861(00)00332‑1
    [Google Scholar]
  12. CiriminnaR. PagliaroM. LuqueR. Heterogeneous catalysis under flow for the 21st century fine chemical industry.Green Energy & Environment20216216116610.1016/j.gee.2020.09.013
    [Google Scholar]
  13. CormaA. GarciaH. Crossing the borders between homogeneous and heterogeneous catalysis: Developing recoverable and reusable catalytic systems.Top. Catal.2008481-483110.1007/s11244‑008‑9056‑5
    [Google Scholar]
  14. MukhtarA. SaqibS. LinH. Hassan ShahM.U. UllahS. YounasM. RezakazemiM. IbrahimM. MahmoodA. AsifS. BokhariA. Current status and challenges in the heterogeneous catalysis for biodiesel production.Renew. Sustain. Energy Rev.202215711201210.1016/j.rser.2021.112012
    [Google Scholar]
  15. PoovanF. ChandrashekharV.G. NatteK. JagadeeshR.V. Synergy between homogeneous and heterogeneous catalysis.Catal. Sci. Technol.202212226623664910.1039/D2CY00232A
    [Google Scholar]
  16. HoelderichW.F. Environmentally benign manufacturing of fine and intermediate chemicals.Catal. Today200062111513010.1016/S0920‑5861(00)00413‑2
    [Google Scholar]
  17. HölderichW.F. New Frontiers in Catalysis, Parts A-C.Stud. Surf. Sci. Catal. GucziL. SolymosiF. TÉTÉNyiP. Elsevier199375127163
    [Google Scholar]
  18. GawandeM. RathiA. BrancoP. VarmaR. Sustainable utility of magnetically recyclable nano-catalysts in water: Applications in organic synthesis.Appl. Sci.20133465667410.3390/app3040656
    [Google Scholar]
  19. LimC.W. LeeI.S. Magnetically recyclable nanocatalyst systems for the organic reactions.Nano Today20105541243410.1016/j.nantod.2010.08.008
    [Google Scholar]
  20. PolshettiwarV. LuqueR. FihriA. ZhuH. BouhraraM. BassetJ.M. Magnetically recoverable nanocatalysts.Chem. Rev.201111153036307510.1021/cr100230z21401074
    [Google Scholar]
  21. WangD. AstrucD. Fast-growing field of magnetically recyclable nanocatalysts.Chem. Rev.2014114146949698510.1021/cr500134h24892491
    [Google Scholar]
  22. AmiriM. EskandariK. Salavati-NiasariM. Magnetically retrievable ferrite nanoparticles in the catalysis application.Adv. Colloid Interface Sci.201927110198210.1016/j.cis.2019.07.00331325653
    [Google Scholar]
  23. ChengT. ZhangD. LiH. LiuG. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium.Green Chem.20141673401342710.1039/C4GC00458B
    [Google Scholar]
  24. KarimiB. MansouriF. MirzaeiH.M. Recent applications of magnetically recoverable nanocatalysts in C–C and C–X coupling reactions.ChemCatChem20157121736178910.1002/cctc.201403057
    [Google Scholar]
  25. RossiL.M. CostaN.J.S. SilvaF.P. WojcieszakR. Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond.Green Chem.20141662906293310.1039/c4gc00164h
    [Google Scholar]
  26. Naik ShreyankaS. TheerthagiriJ. LeeS.J. YuY. ChoiM.Y. Multiscale design of 3D metal–organic frameworks (M−BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting.Chem. Eng. J.202244613704510.1016/j.cej.2022.137045
    [Google Scholar]
  27. Shankar NaikS. TheerthagiriJ. NogueiraF.S. LeeS.J. MinA. KimG.A. MaiaG. PintoL.M.C. ChoiM.Y. Dual-cation-coordinated cofe-layered double-hydroxide nanosheets using the pulsed laser ablation technique for efficient electrochemical water splitting: mechanistic screening by in situ/operando raman and density functional theory calculations.ACS Catal.20231321477149110.1021/acscatal.2c05017
    [Google Scholar]
  28. TandonR. TandonN. PatilS.M. Overview on magnetically recyclable ferrite nanoparticles: synthesis and their applications in coupling and multicomponent reactions.RSC Advances20211147293332935310.1039/D1RA03874E35479579
    [Google Scholar]
  29. VirenderK.S. Ruey-anD. HyunookK. Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental RemediationAmerican Chemical Society2016
    [Google Scholar]
  30. Abdel-LatifI.A. Magnetic Nanoferrites and their Composites. KaliaS. JasrotiaR. Pratap SinghV. Woodhead Publishing2023638510.1016/B978‑0‑323‑96115‑8.00002‑7
    [Google Scholar]
  31. AmiriM. Salavati-NiasariM. AkbariA. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications.Adv. Colloid Interface Sci.2019265294410.1016/j.cis.2019.01.00330711796
    [Google Scholar]
  32. SilvaJ.F.M. GardenS.J. PintoA.C. The chemistry of isatins: A review from 1975 to 1999.J. Braz. Chem. Soc.200112327332410.1590/S0103‑50532001000300002
    [Google Scholar]
  33. GomesG.A. AkhtarK. da CostaG.L. JavedY. SharmaS.K. Spinel Nanoferrites: Synthesis, Properties and Applications.SpringerCham202185100
    [Google Scholar]
  34. KefeniK.K. MambaB.B. MsagatiT.A.M. Application of spinel ferrite nanoparticles in water and wastewater treatment: A review.Separ. Purif. Tech.201718839942210.1016/j.seppur.2017.07.015
    [Google Scholar]
  35. KefeniK.K. MsagatiT.A.M. MambaB.B. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device.Mater. Sci. Eng. B2017215375510.1016/j.mseb.2016.11.002
    [Google Scholar]
  36. ManoharA. GeletaD.D. KrishnamoorthiC. LeeJ. Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles.Ceram. Int.2020461818, Part A280352804110.1016/j.ceramint.2020.07.298
    [Google Scholar]
  37. YadavA.A. HungeY.M. KulkarniS.B. TerashimaC. KangS.W. Three-dimensional nanoflower–like hierarchical array of multifunctional copper cobaltate electrode as efficient electrocatalyst for oxygen evolution reaction and energy storage application.J. Colloid Interface Sci.202057647648510.1016/j.jcis.2020.04.10032485397
    [Google Scholar]
  38. HungeY.M. YadavA.A. KangS.W. KimH. FujishimaA. TerashimaC. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications.J. Hazard. Mater.202141912645310.1016/j.jhazmat.2021.12645334323738
    [Google Scholar]
  39. HermosillaD. HanC. NadagoudaM.N. MachalaL. GascóA. CampoP. DionysiouD.D. Environmentally friendly synthesized and magnetically recoverable designed ferrite photo-catalysts for wastewater treatment applications.J. Hazard. Mater.202038112120010.1016/j.jhazmat.2019.12120031563035
    [Google Scholar]
  40. IraquiS. KalitaB. StarR. GuptaM. RashidM.H. Green synthesis of shape-tunable CuFe 2 O 4 NPs: A magnetically retrievable and efficient catalyst for Chan–Lam type C–N coupling reactions under base-free conditions.New J. Chem.20234722105641057510.1039/D3NJ00733B
    [Google Scholar]
  41. IraquiS. KashyapS.S. RashidM.H. NiFe 2 O 4 nanoparticles: An efficient and reusable catalyst for the selective oxidation of benzyl alcohol to benzaldehyde under mild conditions.Nanoscale Adv.20202125790580210.1039/D0NA00591F36133875
    [Google Scholar]
  42. IraquiS. RashidM.H. Magnetically recyclable CoFe 2 O 4 nanoparticles as stable and efficient catalysts for the synthesis of aryl thioethers via C–S coupling reactions.New J. Chem.20224647227662277710.1039/D2NJ04847G
    [Google Scholar]
  43. KalitaB. IraquiS. BorgohainX. RashidM.H. Ultrasonic irradiation-assisted MnFe 2 O 4 nanoparticles catalyzed solvent-free selective oxidation of benzyl alcohol to benzaldehyde at room temperature.RSC Advances20231344308553086810.1039/D3RA03797E37869381
    [Google Scholar]
  44. KaurG. DeviP. ThakurS. KumarA. ChandelR. BanerjeeB. Magnetically separable transition metal ferrites: Versatile heterogeneous nano‐catalysts for the synthesis of diverse bioactive heterocycles.ChemistrySelect2019472181219910.1002/slct.201803600
    [Google Scholar]
  45. KharisovB.I. DiasH.V.R. KharissovaO.V. Mini-review: Ferrite nanoparticles in the catalysis.Arab. J. Chem.20191271234124610.1016/j.arabjc.2014.10.049
    [Google Scholar]
  46. WeiS. LiuJ. XiaY. ZhangH. ChengR. SunL. XuF. HuangP. RoseiF. PimerzinA.A. SeifertH.J. PanH. Remarkable catalysis of spinel ferrite XFe2O4 (X = Ni, Co, Mn, Cu, Zn) nanoparticles on the dehydrogenation properties of LiAlH4: An experimental and theoretical study.J. Mater. Sci. Technol.202211118920310.1016/j.jmst.2021.08.088
    [Google Scholar]
  47. MajiN. DosanjhH.S. Ferrite nanoparticles as catalysts in organic reactions: A mini review.Magnetochemistry20239615610.3390/magnetochemistry9060156
    [Google Scholar]
  48. RoyP. HoqueS.M. LibaS.I. ChoudhuryS. Investigation of various magnetic features of spinel type cobalt ferrite (CoFe2O4) nanoparticles tuned by annealing temperature.AIP Adv.201881010512410.1063/1.5040890
    [Google Scholar]
  49. ChatterjeeJ. HaikY. ChenC.J. Size dependent magnetic properties of iron oxide nanoparticles.J. Magn. Magn. Mater.2003257111311810.1016/S0304‑8853(02)01066‑1
    [Google Scholar]
  50. GuoH. MarschilokA.C. TakeuchiK.J. TakeuchiE.S. LiuP. Rationalization of diversity in spinel MgFe 2 O 4 surfaces.Adv. Mater. Interfaces2019622190121810.1002/admi.201901218
    [Google Scholar]
  51. Sanchez-LievanosK.R. StairJ.L. KnowlesK.E. Cation distribution in spinel ferrite nanocrystals: Characterization, impact on their physical properties, and opportunities for synthetic control.Inorg. Chem.20216074291430510.1021/acs.inorgchem.1c0004033734686
    [Google Scholar]
  52. BurdettJ.K. PriceG.D. PriceS.L. Role of the crystal-field theory in determining the structures of spinels.J. Am. Chem. Soc.19821041929510.1021/ja00365a019
    [Google Scholar]
  53. SoufiA. HajjaouiH. ElmoubarkiR. AbdennouriM. QourzalS. BarkaN. Spinel ferrites nanoparticles: Synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants : A review.Appl. Surf. Sci. Adv.2021610014510.1016/j.apsadv.2021.100145
    [Google Scholar]
  54. DuttaS. AkhterM. AhmedJ. AminM.K. DharP. Synthesis and catalytic activity of spinel ferrites: A brief review.Biointerface Res. Appl. Chem.20221243994416
    [Google Scholar]
  55. TatarchukT. BououdinaM. Judith VijayaJ. John KennedyL. Nanophysics, nanomaterials, interface studies, and applications.Selected Proceedings of the 4th International Conference Nanotechnology and Nanomaterials (NANO2016),August 24-27, 2016, Lviv, Ukraine; Springer, 2017, pp 305-325.
    [Google Scholar]
  56. AhmadS. AliS. UllahI. ZobaerM.S. AlbakriA. MuhammadT. Synthesis and characterization of manganese ferrite from low grade manganese ore through solid state reaction route.Sci. Rep.20211111619010.1038/s41598‑021‑95625‑z34376713
    [Google Scholar]
  57. BidS. PradhanS.K. Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis.Mater. Chem. Phys.2003821273710.1016/S0254‑0584(03)00169‑X
    [Google Scholar]
  58. CeylanA. OzcanS. NiC. Ismat ShahS. Solid state reaction synthesis of NiFe2O4 nanoparticles.J. Magn. Magn. Mater.2008320685786310.1016/j.jmmm.2007.09.003
    [Google Scholar]
  59. ZhangL. WangY. LiuB. WangJ. HanG. ZhangY. Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction.Ceram. Int.2021478109271093910.1016/j.ceramint.2020.12.212
    [Google Scholar]
  60. ZhangZ. YaoG. ZhangX. MaJ. LinH. Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction.Ceram. Int.20154133, Part B4523453010.1016/j.ceramint.2014.11.147
    [Google Scholar]
  61. LasherasX. InsaustiM. Gil de MuroI. GaraioE. PlazaolaF. MorosM. De MatteisL. de la FuenteM. Chemical synthesis and magnetic properties of monodisperse nickel ferrite nanoparticles for biomedical applications.J. Phys. Chem. C201612063492350010.1021/acs.jpcc.5b10216
    [Google Scholar]
  62. MahhoutiZ. El MoussaouiH. MahfoudT. HamedounM. El MarssiM. LahmarA. El KenzA. BenyoussefA. Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles.J. Mater. Sci. Mater. Electron.20193016149131492210.1007/s10854‑019‑01863‑3
    [Google Scholar]
  63. QinH. HeY. XuP. HuangD. WangZ. WangH. WangZ. ZhaoY. TianQ. WangC. Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field.Adv. Colloid Interface Sci.202129410248610.1016/j.cis.2021.10248634274724
    [Google Scholar]
  64. SalihS.J. MahmoodW.M. Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application.Heliyon202396e1660110.1016/j.heliyon.2023.e1660137274649
    [Google Scholar]
  65. LathamA.H. WilliamsM.E. Controlling transport and chemical functionality of magnetic nanoparticles.Acc. Chem. Res.200841341142010.1021/ar700183b18251514
    [Google Scholar]
  66. NeveuS. BeeA. RobineauM. TalbotD. Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid.J. Colloid Interface Sci.2002255229329810.1006/jcis.2002.867912505076
    [Google Scholar]
  67. Pérez-MirabetL. SolanoE. Martínez-JuliánF. GuzmánR. ArbiolJ. PuigT. ObradorsX. PomarA. YáñezR. RosJ. RicartS. One-pot synthesis of stable colloidal solutions of MFe2O4 nanoparticles using oleylamine as solvent and stabilizer.Mater. Res. Bull.201348396697210.1016/j.materresbull.2012.11.086
    [Google Scholar]
  68. DivakaraS.G. MaheshB. A comprehensive review on current trends in greener and sustainable synthesis of ferrite nanoparticles and their promising applications.Results Eng.20242110170210.1016/j.rineng.2023.101702
    [Google Scholar]
  69. RoyS.D. DasK.C. DharS.S. Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short review.Inorg. Chem. Commun.202113410905010.1016/j.inoche.2021.109050
    [Google Scholar]
  70. NguyenN.T.T. NguyenT.T.T. NguyenD.T.C. TranT.V. Green synthesis of ZnFe2O4 nanoparticles using plant extracts and their applications: A review.Sci. Total Environ.202387216221210.1016/j.scitotenv.2023.16221236796693
    [Google Scholar]
  71. WaniT.A. SureshG. Plant‐mediated green synthesis of magnetic spinel ferrite nanoparticles: A sustainable trend in nanotechnology.Adv. Sustain. Syst.202266220003510.1002/adsu.202200035
    [Google Scholar]
  72. ChengY. ZhangS. WangZ. WangB. YouJ. GuoR. ZhangH. Review on spinel ferrites-based materials (MFe2O4) as photo-Fenton catalysts for degradation of organic pollutants.Separ. Purif. Tech.202331812397110.1016/j.seppur.2023.123971
    [Google Scholar]
  73. HuangW. JiangJ. MandalT. Ferrite nanoparticles: Catalysis in multicomponent reactions (MCR).Synth. Commun.202151162397242210.1080/00397911.2021.1939883
    [Google Scholar]
  74. GhobadiM. Based on copper ferrite nanoparticles (CuFe2O4 NPs): Catalysis in synthesis of heterocycles.J. Synth. Chem.2022128496
    [Google Scholar]
  75. LiY. NingY. LeiJ. MingT. Ferrite nanocatalysts in the synthesis of heterocycles.Synth. Commun.2021511014961515
    [Google Scholar]
  76. LakshmanM. Recent developments in coupling reactions catalyzed by copper ferrite nanoparticles (CuFe2O4 NPs).J. Synth. Chem.202313148154
    [Google Scholar]
  77. SharmaS. JakharP. SharmaH. CuFe 2 O 4 nanomaterials: Current discoveries in synthesis, catalytic efficiency in coupling reactions, and their environmental applications.J. Chin. Chem. Soc.202370210712710.1002/jccs.202200519
    [Google Scholar]
  78. PathakR. PunethaV.D. BhattS. PunethaM. A review on copper-based nanoparticles as a catalyst: Synthesis and applications in coupling reactions.J. Mater. Sci.202459156169620510.1007/s10853‑024‑09546‑z
    [Google Scholar]
  79. BergwerffJ.A. van de WaterL.G.A. LysovaA.A. KoptyugI.V. VisserT. de JongK.P. WeckhuysenB.M. Studies in surface science and catalysis. GaigneauxE.M. DevillersM. De VosD.E. HermansS. JacobsP.A. MartensJ.A. RuizP. Elsevier2006Vol. 162175186
    [Google Scholar]
  80. BlockE. Reactions of organosulfur compounds: Organic chemistry: A series of monographs.Academic press201337.
    [Google Scholar]
  81. GholinejadM. KarimiB. MansouriF. Synthesis and characterization of magnetic copper ferrite nanoparticles and their catalytic performance in one-pot odorless carbon-sulfur bond formation reactions.J. Mol. Catal. Chem.2014386202710.1016/j.molcata.2014.02.006
    [Google Scholar]
  82. LiuG. HuthJ.R. OlejniczakE.T. MendozaR. DeVriesP. LeitzaS. ReillyE.B. OkasinskiG.F. FesikS.W. von GeldernT.W. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties.J. Med. Chem.20014481202121010.1021/jm000503f11312920
    [Google Scholar]
  83. GangjeeA. ZengY. TalrejaT. McGuireJ.J. KisliukR.L. QueenerS.F. Design and synthesis of classical and nonclassical 6-arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as antifolates.J. Med. Chem.200750133046305310.1021/jm070165j17552508
    [Google Scholar]
  84. WangY. ChackalamannilS. ChangW. GreenleeW. RupertoV. DuffyR.A. McQuadeR. LachowiczJ.E. Design and synthesis of ether analogues as potent and selective M2 muscarinic receptor antagonists.Bioorg. Med. Chem. Lett.200111789189410.1016/S0960‑894X(01)00100‑711294385
    [Google Scholar]
  85. PaulS. PradhanK. GhoshS. DeS.K. DasA.R. Magnetically retrievable nano crystalline Nickel Ferrite- catalyzed aerobic, ligand-free C-N, C-O and C-C cross- coupling reactions for the synthesis of a diversified library of heterocyclic molecules.Adv. Synth. Catal.201435661301131610.1002/adsc.201300686
    [Google Scholar]
  86. SatishG. ReddyK.H.V. RameshK. KumarB.S.P.A. NageswarY.V.D. An elegant protocol for the synthesis of N-substituted pyrroles through C–N cross coupling/aromatization process using CuFe2O4 nanoparticles as catalyst under ligand-free conditions.Tetrahedron Lett.201455162596259910.1016/j.tetlet.2014.01.075
    [Google Scholar]
  87. MoghaddamF.M. TavakoliG. MoafiA. SaberiV. RezvaniH.R. C-N bond formation using highly effective and reusable nickel ferrite nanoparticles in water.ChemCatChem20146123474348110.1002/cctc.201402556
    [Google Scholar]
  88. HajipourA.R. KhorsandiZ. A comparative study of the catalytic activity of Co- and CoFe 2 O 4 -NPs in C–N and C–O bond formation: synthesis of benzimidazoles and benzoxazoles from o-haloanilides.New J. Chem.20164012104741048110.1039/C6NJ02293F
    [Google Scholar]
  89. MoghaddamF.M. PourkavehR. Nano cobalt ferrite catalyzed coupling reaction of nitroarene and alkyl halide: An odorless and ligand-free rout to unsymmetrical thioether synthesis.Catal. Commun.201794333710.1016/j.catcom.2017.02.009
    [Google Scholar]
  90. AmiriK. RostamiA. RostamiA. CuFe 2 O 4 magnetic nanoparticle catalyzed odorless synthesis of sulfides using phenylboronic acid and aryl halides in the presence of S 8.New J. Chem.20164097522752810.1039/C6NJ01434H
    [Google Scholar]
  91. WangH. YangD. ZhuX. WeiW. JiangM. ZhangN. RenD. YouJ. Magnetic copper ferrite nanoparticles: An inexpensive, efficient, recyclable catalyst for the synthesis of substituted benzoxazoles via Ullmann-type coupling under ligand-free conditions.Synlett201425572973510.1055/s‑0033‑1340599
    [Google Scholar]
  92. MoghaddamF.M. TavakoliG. AliabadiA. Application of nickel ferrite and cobalt ferrite magnetic nanoparticles in C–O bond formation: A comparative study between their catalytic activities.RSC Adv.2015573591425915310.1039/C5RA08146G
    [Google Scholar]
  93. KazemiN. Mahdavi ShahriM. Magnetically separable and reusable CuFe2O4 spinel nanocatalyst for the O-arylation of phenol with aryl halide under ligand-free condition.J. Inorg. Organomet. Polym. Mater.20172751264127310.1007/s10904‑017‑0574‑0
    [Google Scholar]
  94. PaiG. ChattopadhyayA.P. N-Arylation of nitrogen containing heterocycles with aryl halides using copper nanoparticle catalytic system.Tetrahedron Lett.201657293140314510.1016/j.tetlet.2016.06.019
    [Google Scholar]
  95. NakhateA.V. YadavG.D. Hydrothermal synthesis of CuFe2O4 magnetic nanoparticles as active and robust catalyst for N-arylation of indole and imidazole with aryl halide.ChemistrySelect2017282395240510.1002/slct.201601846
    [Google Scholar]
  96. KahlichD. WiechernU. LindnerJ. Propylene Oxide; Ullmann’s Encyclopedia of Industrial Chemistry.Wiley-VCH Verlag GmbH & Co.2000
    [Google Scholar]
  97. KopylovichM.N. RibeiroA.P.C. AlegriaE.C.B.A. MartinsN.M.R. MartinsL.M.D.R.S. PombeiroA.J.L. Advances in Organometallic Chemistry. PérezP.J. Academic Press20156391174
    [Google Scholar]
  98. MatsumotoT. UenoM. WangN. KobayashiS. Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols.Chem. Asian J.20083219621410.1002/asia.20070035918232022
    [Google Scholar]
  99. SatrioJ.A.B. DoraiswamyL.K. Production of benzaldehyde: A case study in a possible industrial application of phase-transfer catalysis.Chem. Eng. J.2001821-3435610.1016/S1385‑8947(00)00351‑X
    [Google Scholar]
  100. ZhuX. YangD. WeiW. JiangM. LiL. ZhuX. YouJ. WangH. Magnetic copper ferrite nanoparticles/TEMPO catalyzed selective oxidation of activated alcohols to aldehydes under ligand- and base-free conditions in water.RSC Adv.20144110649306493510.1039/C4RA14152K
    [Google Scholar]
  101. SaranyaR. RajR.A. AlSalhiM.S. DevanesanS. Dependence of catalytic activity of nanocrystalline Nickel Ferrite on its structural, morphological, optical, and magnetic properties in aerobic oxidation of benzyl alcohol.J. Supercond. Nov. Magn.20183141219122510.1007/s10948‑017‑4305‑0
    [Google Scholar]
  102. PaulB. PurkayasthaD.D. DharS.S. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid.Appl. Surf. Sci.201637046947510.1016/j.apsusc.2016.02.129
    [Google Scholar]
  103. PaulB. PurkayasthaD.D. DharS.S. One-pot hydrothermal synthesis and characterization of CoFe 2 O 4 nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid.Mater. Chem. Phys.20161819910510.1016/j.matchemphys.2016.06.039
    [Google Scholar]
  104. SadriF. RamazaniA. MassoudiA. KhoobiM. AzizkhaniV. TarasiR. DolatyariL. MinB.K. Magnetic CoFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant.Bull. Korean Chem. Soc.20143572029203210.5012/bkcs.2014.35.7.2029
    [Google Scholar]
  105. ManikandanA. SridharR. Arul AntonyS. RamakrishnaS. A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures.J. Mol. Struct.2014107618820010.1016/j.molstruc.2014.07.054
    [Google Scholar]
  106. NasrollahzadehM. BagherzadehM. KarimiH. Preparation, characterization and catalytic activity of CoFe 2 O 4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes.J. Colloid Interface Sci.201646527127810.1016/j.jcis.2015.11.07426674244
    [Google Scholar]
  107. Abdel-RahmanA.H. KeshkE.M. HannaM.A. El-BadyS.M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents.Bioorg. Med. Chem.20041292483248810.1016/j.bmc.2003.10.06315080944
    [Google Scholar]
  108. LombardinoJ.G. WisemanE.H. Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles.J. Med. Chem.197417111182118810.1021/jm00257a0114415171
    [Google Scholar]
  109. PuratchikodyA. DobleM. Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles.Bioorg. Med. Chem.20071521083109010.1016/j.bmc.2006.10.02517079151
    [Google Scholar]
  110. SymeonidisT. FylaktakidouK.C. Hadjipavlou-LitinaD.J. LitinasK.E. Synthesis and anti-inflammatory evaluation of novel angularly or linearly fused coumarins.Eur. J. Med. Chem.200944125012501710.1016/j.ejmech.2009.09.00419781823
    [Google Scholar]
  111. ZahaA.A. HazemA. Antimicrobial activity of two novel coumarin derivatives: 3-cyanonaphtho[1,2-(e)] pyran-2-one and 3-cyanocoumarin.New Microbiol.200225221322212019728
    [Google Scholar]
  112. KotharkarS.A. ShindeD.B. Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo-7,12-dihydro-chromeno[3,4-b]quinoxalines.Bioorg. Med. Chem. Lett.200616246181618410.1016/j.bmcl.2006.09.04017027265
    [Google Scholar]
  113. AbdelrazekF.M. MetzP. KataevaO. JägerA. El-MahroukyS.F. Synthesis and molluscicidal activity of new chromene and pyrano[2,3-c]pyrazole derivatives.Arch. Pharm.20073401054354810.1002/ardp.20070015717912679
    [Google Scholar]
  114. Lazzeri AdreaniL. LapiE. On some new esters of coumarin-3-carboxylic acid wit balsamic and bronchodilator action.Boll. Chim. Farm.19609958358613759798
    [Google Scholar]
  115. CraigP. DraytonC. Comprehensive medicinal chemistry.Old, Org. Lett.Pergamon PressNew York, NY, USAPergamon Press New York199181403
    [Google Scholar]
  116. KimJ.S. RheeH.K. ParkH.J. LeeS.K. LeeC.O. Park ChooH.Y. Synthesis of 1-/2-substituted-[1,2,3]triazolo[4,5-g]phthalazine-4,9-diones and evaluation of their cytotoxicity and topoisomerase II inhibition.Bioorg. Med. Chem.20081684545455010.1016/j.bmc.2008.02.04918321715
    [Google Scholar]
  117. SinkkonenJ. OvcharenkoV. ZeleninK.N. BezhanI.P. ChakchirB.A. Al-AssarF. PihlajaK. 1H and 13C NMR Study of 1-Hydrazino-2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones and -1H-pyrazolo[1,2-b]phthalazine-5,10-diones and Their Ring-Chain Tautomerism.Eur. J. Org. Chem.20022002132046205310.1002/1099‑0690(200207)2002:13<2046::AID‑EJOC2046>3.0.CO;2‑C
    [Google Scholar]
  118. BahekarS. ShindeD. Synthesis and anti-inflammatory activity of 1, 4-dihydropyridines.Acta Pharm.2002524281287
    [Google Scholar]
  119. Emmanuel-GiotaA.A. FylaktakidouK.C. LitinasK.E. NicolaidesD.N. Hadjipavlou-LitinaD.J. Synthesis and biological evaluation of several 3‐(coumarin‐4‐yl)tetrahydroisoxazole and 3‐(coumarin‐4‐yl)dihydropyrazole derivatives.J. Heterocycl. Chem.200138371772210.1002/jhet.5570380329
    [Google Scholar]
  120. GordeevM.F. PatelD.V. GordonE.M. Approaches to combinatorial synthesis of heterocycles: A solid-phase synthesis of 1, 4-dihydropyridines.J. Org. Chem.199661392492810.1021/jo951706s
    [Google Scholar]
  121. HwuJ.R. SinghaR. HongS.C. ChangY.H. DasA.R. VliegenI. De ClercqE. NeytsJ. Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents.Antiviral Res.200877215716210.1016/j.antiviral.2007.09.00317977606
    [Google Scholar]
  122. MarzoukA.A. Abu-DiefA.M. AbdelhamidA.A. Hydrothermal preparation and characterization of ZnFe 2 O 4 magnetic nanoparticles as an efficient heterogeneous catalyst for the synthesis of multi‐substituted imidazoles and study of their anti‐inflammatory activity.Appl. Organomet. Chem.2018321e379410.1002/aoc.3794
    [Google Scholar]
  123. Moghaddam-ManeshM. GhazanfariD. SheikhhosseiniE. AkhgarM. Synthesis, characterization and antimicrobial evaluation of novel 6′-amino-spiro[indeno[1,2-b] quinoxaline[1,3]dithiine]-5′-carbonitrile derivatives.Acta Chim. Slov.202067127628210.17344/acsi.2019.543733558928
    [Google Scholar]
  124. DubursG. SausinsA. Synthesis of 1, 4-dihydropyridines by cyclocondensation reactions.Heterocycles198827126928910.3987/REV‑87‑370
    [Google Scholar]
  125. SharmaV.K. SinghS.K. Synthesis, utility and medicinal importance of 1,2- & 1,4-dihydropyridines.RSC Adv.2017752682273210.1039/C6RA24823C
    [Google Scholar]
  126. PaulS. PalG. DasA.R. Three-component synthesis of a polysubstituted pyrrole core containing heterocyclic scaffolds over magnetically separable nanocrystalline copper ferrite.RSC Adv.20133238637864410.1039/c3ra40571k
    [Google Scholar]
  127. BazgirA. HosseiniG. GhahremanzadehR. Copper ferrite nanoparticles: An efficient and reusable nanocatalyst for a green one-pot, three-component synthesis of spirooxindoles in water.ACS Comb. Sci.2013151053053410.1021/co400057h24050156
    [Google Scholar]
  128. DandiaA. SinghR. JoshiJ. MaheshwariS. Magnetically separable CuFe2O4 nanoparticles: An efficient catalyst for the synthesis of quinoxaline derivatives in tap-water under sonication.Eur. Chem. Bull.2013210825829
    [Google Scholar]
  129. BaghbanianS.M. FarhangM. CuFe2O4 Nanoparticles: A magnetically recoverable and reusable catalyst for the synthesis of coumarins via pechmann reaction in water.Synth. Commun.201444569770610.1080/00397911.2013.835423
    [Google Scholar]
  130. BaghbanianS.M. FarhangM. CuFe2O4 nanoparticles: A magnetically recoverable and reusable catalyst for the synthesis of quinoline and quinazoline derivatives in aqueous media.RSC Adv.2014423116241163310.1039/c3ra46119j
    [Google Scholar]
  131. PradhanK. PaulS. DasA.R. Magnetically retrievable nano crystalline CuFe2O4 catalyzed multi-component reaction: A facile and efficient synthesis of functionalized dihydropyrano[2,3-c]pyrazole, pyrano[3,2-c]coumarin and 4H-chromene derivatives in aqueous media.Catal. Sci. Technol.20144382283110.1039/c3cy00901g
    [Google Scholar]
  132. Safaei-GhomiJ. Shahbazi-AlaviH. Heidari-BaghbahadoraniE. ZnFe2O4 nanoparticles as a robust and reusable magnetically catalyst in the four component synthesis of [(5-hydroxy-3-methyl-1H-pyrazol-4yl) (phenyl) Methyl]propAnedinitriles and substituted 6-Amino-Pyrano[2,3-c]Pyrazoles.J. Chem. Res.201539741041310.3184/174751915X14358475706316
    [Google Scholar]
  133. El-RemailyM.A.E.A.A.A. Abu-DiefA.M. CuFe2O4 nanoparticles: An efficient heterogeneous magnetically separable catalyst for synthesis of some novel propynyl-1H-imidazoles derivatives.Tetrahedron201571172579258410.1016/j.tet.2015.02.057
    [Google Scholar]
  134. HazarikaR. GargA. ChetiaS. PhukanP. KulshresthaA. KumarA. BordoloiA. KalitaA.J. GuhaA.K. SarmaD. Magnetically separable ZnFe2O4 nanoparticles: A low cost and sustainable catalyst for propargyl amine and NH-triazole synthesis.Appl. Catal. A Gen.202162511833810.1016/j.apcata.2021.118338
    [Google Scholar]
  135. SahaM. PradhanK. DasA.R. Facile and eco-friendly synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives applying magnetically recoverable nano crystalline CuFe 2 O 4 involving a domino three-component reaction in aqueous media.RSC Adv.2016660550335503810.1039/C6RA06979G
    [Google Scholar]
  136. VuC.M. LeK.B. VoU.N. VanV.D.T. NguyenA.T. PhanN.T.S. LeN.T.H. NguyenT.T. Recyclable CuFe2O4 for the synthesis of 2,3-disubstituted indoles.Tetrahedron Lett.2020615015262910.1016/j.tetlet.2020.152629
    [Google Scholar]
  137. NguyenN.K. HaM.T. BuiH.Y. TrinhQ.T. TranB.N. NguyenV.T. HungT.Q. DangT.T. VuX.H. Magnetically recyclable CuFe2O4 catalyst for efficient synthesis of bis(indolyl)methanes using indoles and alcohols under mild condition.Catal. Commun.202114910624010.1016/j.catcom.2020.106240
    [Google Scholar]
  138. SreekandanS. ThadathilA. JoshyD. VellayanK. PeriyatP. Synthesis of 2, 3-dihydroquinozoline- 4(1H) - Ones using magnetically retrievable nickel based nanocatalyst.Results Eng.20221510055210.1016/j.rineng.2022.100552
    [Google Scholar]
  139. Aleem Ali El-RemailyM.A.E. Abu-DiefA.M. El-KhatibR.M. A robust synthesis and characterization of superparamagnetic CoFe 2 O 4 nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings.Appl. Organomet. Chem.201630121022102910.1002/aoc.3536
    [Google Scholar]
  140. DandiaA. JainA.K. SharmaS. CuFe2O4 nanoparticles as a highly efficient and magnetically recoverable catalyst for the synthesis of medicinally privileged spiropyrimidine scaffolds.RSC Adv.2013392924293410.1039/c2ra22477a
    [Google Scholar]
  141. EidiE. KassaeeM.Z. NasresfahaniZ. Synthesis of 2,4,5‐trisubstituted imidazoles over reusable CoFe 2 O 4 nanoparticles: An efficient and green sonochemical process.Appl. Organomet. Chem.201630756156510.1002/aoc.3470
    [Google Scholar]
  142. BoradeR.M. KaleS.B. TekaleS.U. JadhavK.M. PawarR.P. Cobalt ferrite magnetic nanoparticles as highly efficient catalyst for the mechanochemical synthesis of 2-aryl benzimidazoles.Catal. Commun.202115910634910.1016/j.catcom.2021.106349
    [Google Scholar]
  143. Ravikumar NaikT.R. ShivashankarS.A. Heterogeneous bimetallic ZnFe2O4 nanopowder catalyzed synthesis of Hantzsch 1,4-dihydropyridines in water.Tetrahedron Lett.201657364046404910.1016/j.tetlet.2016.07.071
    [Google Scholar]
  144. JadhavS. FarooquiM. ChavanP. HussainS. RaiM. ZnFe2O4 nano-catalyzed one-pot multi-component synthesis of substituted tetrahydropyranoquinoline under neat ultrasonic irradiation.Polycycl. Aromat. Compd.20224252067207510.1080/10406638.2020.1825005
    [Google Scholar]
  145. BrahmachariG. LaskarS. BarikP. Magnetically separable MnFe2O4 nano-material: An efficient and reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles and the extended synthesis of quinoxalines at room temperature under aerobic conditions.RSC Adv.2013334142451425310.1039/c3ra41457d
    [Google Scholar]
  146. MoradiS. MoradianM. NaeimiH. Efficient one-pot synthesis of 1,4-dihydropyridines catalyzed by magnetic MnFe2O4 nanoparticles.Acta Chim. Slov.202269234935810.17344/acsi.2021.723835861082
    [Google Scholar]
/content/journals/cis/10.2174/012210299X312557240625064143
Loading
/content/journals/cis/10.2174/012210299X312557240625064143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test