Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Nanoencapsulation has gained popularity in recent decades due to its numerous benefits, such as improved stability, oxidation resistance, retention of volatile ingredients, controlled release, delivery of multiple active ingredients in a row, improvement in organoleptic properties, reduction of toxic side effects, and water solubility.

The present study was aimed to prepare eugenol nanoemulsions (EuNEs) using non-ionic surfactant (Tween 80) by ultrasound-assisted techniques and to evaluate the effects of surfactant concentration on their droplets size, polydispersity index (PDI), zeta potential, storage stability, antioxidant, and antibacterial activities. Antimicrobial activity of the prepared nanoemulsions was tested against Gram-positive; and Gram-negative; , and bacteria using well diffusion method.

The results showed that the droplet size decreased after a threshold Tween 80 concentration (10%), while PDI value increased with the increase in surfactant concentration (Tween 80).

The prepared EuNEs exhibited good antibacterial activity against all the four bacterial strains: , and .

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X262244231010050553
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X262244.html?itemId=/content/journals/cis/10.2174/012210299X262244231010050553&mimeType=html&fmt=ahah

References

  1. KumarS. SinghN. DeviL.S. KumarS. KamleM. KumarP. MukherjeeA. Neem oil and its nanoemulsion in sustainable food preservation and packaging: Current status and future prospects.J. Agric. Food Res.2022710025410.1016/j.jafr.2021.100254
    [Google Scholar]
  2. DeviL.S. MukherjeeA. DuttaD. KumarS. Carnauba wax-based sustainable coatings for prolonging postharvest shelf-life of citrus fruits.Sustainable Food Technology202310.1039/D2FB00049K
    [Google Scholar]
  3. YuH.H. ChinY.W. PaikH.D. Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review.Foods20211010241810.3390/foods1010241834681466
    [Google Scholar]
  4. AmbergN. FogarassyC. Green consumer behavior in the cosmetics market.Resources20198313710.3390/resources8030137
    [Google Scholar]
  5. NayakM. SreedharD. PrabhuS.S. LigadeV.S. Global trends in cosmetics use-related adverse effects: A bibliometric analysis of literature published during 1957–2021.Cosmetics2021837510.3390/cosmetics8030075
    [Google Scholar]
  6. DagliN. DagliR. MahmoudR. BaroudiK. Essential oils, their therapeutic properties, and implication in dentistry: A review.J. Int. Soc. Prev. Community Dent.20155533534010.4103/2231‑0762.16593326539382
    [Google Scholar]
  7. GandhiG.R. VasconcelosA.B.S. HaranG.H. CalistoV.K.S. JothiG. QuintansJ.S.S. CuevasL.E. NarainN. JúniorL.J.Q. CipolottiR. GurgelR.Q. Essential oils and its bioactive compounds modulating cytokines: A systematic review on anti-asthmatic and immunomodulatory properties.Phytomedicine20207315285410.1016/j.phymed.2019.15285431036393
    [Google Scholar]
  8. AmbrosioC.M.S. IkedaN.Y. MianoA.C. SaldañaE. MorenoA.M. StashenkoE. Contreras-CastilloC.J. Da GloriaE.M. Unraveling the selective antibacterial activity and chemical composition of citrus essential oils.Sci. Rep.2019911771910.1038/s41598‑019‑54084‑331776388
    [Google Scholar]
  9. Baptista-SilvaS. BorgesS. RamosO.L. PintadoM. SarmentoB. The progress of essential oils as potential therapeutic agents: A review.J. Essent. Oil Res.202032427929510.1080/10412905.2020.1746698
    [Google Scholar]
  10. AswathanarayanJ.B. VittalR.R. Nanoemulsions and their potential applications in food industry.Front. Sustain. Food Syst.201939510.3389/fsufs.2019.00095
    [Google Scholar]
  11. LouZ. ChenJ. YuF. WangH. KouX. MaC. ZhuS. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion.Lebensm. Wiss. Technol.20178037137710.1016/j.lwt.2017.02.037
    [Google Scholar]
  12. HarwanshR.K. DeshmukhR. RahmanM.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives.J. Drug Deliv. Sci. Technol.20195122423310.1016/j.jddst.2019.03.006
    [Google Scholar]
  13. GuanY. WuJ. ZhongQ. Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene.Food Chem.201619478779610.1016/j.foodchem.2015.08.09726471619
    [Google Scholar]
  14. DemisliS. MitsouE. PletsaV. XenakisA. PapadimitriouV. Development and study of nanoemulsions and nanoemulsion-based hydrogels for the encapsulation of lipophilic compounds.Nanomaterials.20201012246410.3390/nano1012246433317080
    [Google Scholar]
  15. Salvia-TrujilloL. Rojas-GraüA. Soliva-FortunyR. Martín-BellosoO. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils.Food Hydrocoll.20154354755610.1016/j.foodhyd.2014.07.012
    [Google Scholar]
  16. DasA.K. NandaP.K. BandyopadhyayS. BanerjeeR. BiswasS. McClementsD.J. Application of nanoemulsion‐based approaches for improving the quality and safety of muscle foods: A comprehensive review.Compr. Rev. Food Sci. Food Saf.20201952677270010.1111/1541‑4337.1260433336977
    [Google Scholar]
  17. SariT.P. MannB. KumarR. SinghR.R.B. SharmaR. BhardwajM. AthiraS. Preparation and characterization of nanoemulsion encapsulating curcumin.Food Hydrocoll.20154354054610.1016/j.foodhyd.2014.07.011
    [Google Scholar]
  18. Susmita DeviL. KalitaS. MukherjeeA. KumarS. Carnauba wax-based composite films and coatings: Recent advancement in prolonging postharvest shelf-life of fruits and vegetables.Trends Food Sci. Technol.202212929630510.1016/j.tifs.2022.09.019
    [Google Scholar]
  19. UlanowskaM. OlasB. Biological properties and prospects for the application of eugenol—a review.Int. J. Mol. Sci.2021227367110.3390/ijms2207367133916044
    [Google Scholar]
  20. BasumataryI.B. MukherjeeA. KatiyarV. DuttaJ. KumarS. Chitosan-based active coating for pineapple preservation: Evaluation of antimicrobial efficacy and shelf-life extension.Lebensm. Wiss. Technol.202216811394010.1016/j.lwt.2022.113940
    [Google Scholar]
  21. SharmaA. BhardwajG. SohalH.S. GohainA. Eugenol.Nutraceuticals and Health Care KourJ. NayikG.A. Academic Press2022177198
    [Google Scholar]
  22. ChenH. JinX. LiY. TianJ. Investigation into the physical stability of a eugenol nanoemulsion in the presence of a high content of triglyceride.RSC Adv.2016693910609106710.1039/C6RA16270C
    [Google Scholar]
  23. KhalilA.A. RahmanU. KhanM.R. SaharA. MehmoodT. KhanM. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives.RSC Adv.2017752326693268110.1039/C7RA04803C
    [Google Scholar]
  24. GhoshV. MukherjeeA. ChandrasekaranN. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage.Colloids Surf. B Biointerfaces201411439239710.1016/j.colsurfb.2013.10.03424252231
    [Google Scholar]
  25. JuJ. XieY. YuH. GuoY. ChengY. ZhangR. YaoW. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation.Food Chem.202031012597410.1016/j.foodchem.2019.12597431835216
    [Google Scholar]
  26. AgustinisariI. MuliaK. NasikinM. The effect of eugenol and chitosan concentration on the encapsulation of eugenol using whey protein–maltodextrin conjugates.Appl. Sci.2020109320510.3390/app10093205
    [Google Scholar]
  27. RasulH.O. AzizB.K. GhafourD.D. KivrakA. In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer.J. Mol. Model.20222811710.1007/s00894‑021‑05010‑w34962586
    [Google Scholar]
  28. DharaL. TripathiA. The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL‐producing quinolone‐resistant pathogenic Enterobacteriaceae.J. Appl. Microbiol.202012961566157610.1111/jam.1473732502298
    [Google Scholar]
  29. das ChagasP.A.F. MendesA.N. Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways.Sci. Rep.20201011620410.1038/s41598‑020‑73203‑z33004893
    [Google Scholar]
  30. Mondéjar-LópezM. López-JimenezA.J. García MartínezJ.C. AhrazemO. Gómez-GómezL. NizaE. Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics.Int. J. Biol. Macromol.202220628829710.1016/j.ijbiomac.2022.02.16435240208
    [Google Scholar]
  31. MakuchE. NowakA. GüntherA. PełechR. KucharskiŁ. DuchnikW. KlimowiczA. Enhancement of the antioxidant and skin permeation properties of eugenol by the esterification of eugenol to new derivatives.AMB Express202010118710.1186/s13568‑020‑01122‑333078274
    [Google Scholar]
  32. PengS. ZouL. LiuW. GanL. LiuW. LiangR. LiuC. NiuJ. CaoY. LiuZ. ChenX. Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method.J. Food Prot.2015781223010.4315/0362‑028X.JFP‑14‑24625581174
    [Google Scholar]
  33. PongsumpunP. IwamotoS. SiripatrawanU. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity.Ultrason. Sonochem.20206010460410.1016/j.ultsonch.2019.05.02131539730
    [Google Scholar]
  34. ZhangS. ZhangM. FangZ. LiuY. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions.Lebensm. Wiss. Technol.20177531632210.1016/j.lwt.2016.08.046
    [Google Scholar]
  35. NejatianM. AbbasiS. Formation of concentrated triglyceride nanoemulsions and nanogels: natural emulsifiers and high power ultrasound.RSC Adv.2019949283302834410.1039/C9RA04761A35529609
    [Google Scholar]
  36. KumarN. MandalA. Surfactant stabilized oil-in-water nanoemulsion: Stability, interfacial tension, and rheology study for enhanced oil recovery application.Energy Fuels20183266452646610.1021/acs.energyfuels.8b00043
    [Google Scholar]
  37. WitayaudomP. KlinkesornU. Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat.J. Colloid Interface Sci.20175051082109210.1016/j.jcis.2017.07.00828697547
    [Google Scholar]
  38. SaberiA.H. FangY. McClementsD.J. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification.J. Colloid Interface Sci.20133919510210.1016/j.jcis.2012.08.06923116862
    [Google Scholar]
  39. TianY. ChenL. ZhangW. Influence of ionic surfactants on the properties of nanoemulsions emulsified by nonionic surfactants span 80/Tween 80.J. Dispers. Sci. Technol.201637101511151710.1080/01932691.2015.1048806
    [Google Scholar]
  40. ShaoY. WuC. WuT. LiY. ChenS. YuanC. HuY. Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity.Carbohydr. Polym.201819314415210.1016/j.carbpol.2018.03.10129773366
    [Google Scholar]
  41. AnandT. AnbukkarasiM. ThomasP.A. GeraldineP. A comparison between plain eugenol and eugenol-loaded chitosan nanoparticles for prevention of in vitro selenite-induced cataractogenesis.J. Drug Deliv. Sci. Technol.20216510269610.1016/j.jddst.2021.102696
    [Google Scholar]
  42. KheradmandniaS. Vasheghani-FarahaniE. NosratiM. AtyabiF. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax.Nanomedicine20106675375910.1016/j.nano.2010.06.00320599527
    [Google Scholar]
  43. YangY. LeserM.E. SherA.A. McClementsD.J. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®).Food Hydrocoll.201330258959610.1016/j.foodhyd.2012.08.008
    [Google Scholar]
  44. Dynamic light scattering - common terms defined.Malvern Panalytical2017
    [Google Scholar]
  45. ChuacharoenT. PrasongsukS. SabliovC.M. Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization.Molecules20192415274410.3390/molecules2415274431362362
    [Google Scholar]
  46. MarcheseA. BarbieriR. CoppoE. OrhanI.E. DagliaM. NabaviS.F. IzadiM. AbdollahiM. NabaviS.M. AjamiM. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.Crit. Rev. Microbiol.201743666868910.1080/1040841X.2017.129522528346030
    [Google Scholar]
  47. DasB. MandalD. DashS.K. ChattopadhyayS. TripathyS. DolaiD.P. DeyS.K. RoyS. Eugenol provokes ros-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains.Infect. Dis.20169IDRT.S3174110.4137/IDRT.S3174126917967
    [Google Scholar]
/content/journals/cis/10.2174/012210299X262244231010050553
Loading
/content/journals/cis/10.2174/012210299X262244231010050553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test