Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Background

Dysbiosis of the gastrointestinal microbiota is not only related to the pathogenesis of intestinal disorders but also associated with extra-intestinal diseases. Various studies have revealed the role of an imbalance of intestinal microbiota and their metabolites including bile acids, indole derivatives, polyamines, and trimethylamine in the progression of various diseases. The elevated plasma level of the oxidized form of trimethylamine is associated with the increased risk of cardiovascular diseases. Literature supports that herbal medicines can modulate human health by altering the diversity of gut microbiota and their metabolites and proposes the use of prebiotics to improve dysbiotic conditions as a new way of therapeutic strategy.

Methods

studies including drug likeliness, toxicity prediction, and molecular interaction of phytochemicals against trimethylamine lyase enzyme have been done. Antimicrobial activity of extracts of selected plant . was done by disc diffusion and the protective effects of plant compounds were examined on trimethylamine-n-oxide a bacterial metabolic product and high glucose induced toxicity.

Results

The current study has found that the phytochemicals of identified as nontoxic and followed the standard rules of drug likeliness and showed a significant binding affinity against trimethylamine-n-oxide producing enzymes. Furthermore, extract was found to have antimicrobial potential and cardioprotective effects by reducing the production of intracellular reactive oxygen species and correcting the distorted nuclear morphology in the presence of high trimethylamine-n-oxide.

Conclusion

Conclusively, our study explored the herbal intervention in intestinal dysbiosis and suggested a natural therapy against dysbiosis associated with cardiac disease, and was found to have exceptional cardioprotective potential against TMAO induced gut dysbiosis, which provides a novel future therapeutic intervention for treating cardiovascular complications.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/1871525721666230822100142
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. WuY. DingY. TanakaY. ZhangW. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention.Int. J. Med. Sci.201411111185120010.7150/ijms.1000125249787
    [Google Scholar]
  2. LaaksoM. Biomarkers for type 2 diabetes.Mol. Metab.201927SSuppl.S139S14610.1016/j.molmet.2019.06.01631500825
    [Google Scholar]
  3. RaniV. SharmaK. Therapeutic potential of stable organosulfur compounds of aged garlic.Cardiovasc. Hematol. Agents Med. Chem.2023212849510.2174/187152572166622102012305636278448
    [Google Scholar]
  4. KingC.H. DesaiH. SylvetskyA.C. LoTempioJ. AyanyanS. CarrieJ. CrandallK.A. FochtmanB.C. GasparyanL. GulzarN. HowellP. IssaN. KrampisK. MishraL. MorizonoH. PisegnaJ.R. RaoS. RenY. SimonyanV. SmithK. VedBrat, S.; Yao, M.D.; Mazumder, R. Baseline human gut microbiota profile in healthy people and standard reporting template.PLoS One2019149e020648410.1371/journal.pone.020648431509535
    [Google Scholar]
  5. YangG. WeiJ. LiuP. ZhangQ. TianY. HouG. MengL. XinY. JiangX. Role of the gut microbiota in type 2 diabetes and related diseases.Metabolism202111715471210.1016/j.metabol.2021.15471233497712
    [Google Scholar]
  6. DeGruttolaA.K. LowD. MizoguchiA. MizoguchiE. Current understanding of dysbiosis in disease in human and animal models.Inflamm. Bowel Dis.20162251137115010.1097/MIB.000000000000075027070911
    [Google Scholar]
  7. LinL. ZhangJ. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.BMC Immunol.2017181210.1186/s12865‑016‑0187‑328061847
    [Google Scholar]
  8. ZhuW. RomanoK.A. LiL. BuffaJ.A. SangwanN. PrakashP. TittleA.N. LiX.S. FuX. AndrojnaC. DiDonatoA.J. BrinsonK. TrappB.D. FischbachM.A. ReyF.E. HajjarA.M. DiDonatoJ.A. HazenS.L. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway.Cell Host Microbe202129711991208.e510.1016/j.chom.2021.05.00234139173
    [Google Scholar]
  9. RexidamuM. LiH. JinH. HuangJ. Serum levels of trimethylamine-N-oxide in patients with ischemic stroke.Biosci. Rep.2019396BSR2019051510.1042/BSR2019051531142624
    [Google Scholar]
  10. RathS. HeidrichB. PieperD.H. VitalM. Uncovering the trimethylamine-producing bacteria of the human gut microbiota.Microbiome2017515410.1186/s40168‑017‑0271‑928506279
    [Google Scholar]
  11. SudheerS. GangwarP. UsmaniZ. SharmaM. SharmaV.K. SanaS.S. AlmeidaF. DubeyN.K. SinghD.P. DilbaghiN. Khayat KashaniH.R. GuptaV.K. SinghB.N. KhayatkashaniM. NabaviS.M. Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases.Biochimie2022193386310.1016/j.biochi.2021.10.01034688789
    [Google Scholar]
  12. Tresserra-RimbauA. Medina-RemónA. Pérez-JiménezJ. Martínez-GonzálezM.A. CovasM.I. CorellaD. Salas-SalvadóJ. Gómez-GraciaE. LapetraJ. ArósF. FiolM. RosE. Serra-MajemL. PintóX. MuñozM.A. SaezG.T. Ruiz-GutiérrezV. WarnbergJ. EstruchR. Lamuela-RaventósR.M. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: The PREDIMED study.Nutr. Metab. Cardiovasc. Dis.2013231095395910.1016/j.numecd.2012.10.00823332727
    [Google Scholar]
  13. VicidominiC. RovielloV. RovielloG.N. Molecular basis of the therapeutical potential of clove (Syzygium aromaticum L.) and clues to its anti-COVID-19 utility.Molecules2021267188010.3390/molecules2607188033810416
    [Google Scholar]
  14. KeeganK.P. GlassE.M. MeyerF. MG-RAST, a metagenomics service for analysis of microbial community structure and function.Methods Mol. Biol.2016139920723310.1007/978‑1‑4939‑3369‑3_1326791506
    [Google Scholar]
  15. YenS. JohnsonJ.S. Metagenomics: A path to understanding the gut microbiome.Mamm. Genome202132428229610.1007/s00335‑021‑09889‑x34259891
    [Google Scholar]
  16. OndovB.D. BergmanN.H. PhillippyA.M. Interactive metagenomic visualization in a Web browser.BMC Bioinformatics201112138510.1186/1471‑2105‑12‑38521961884
    [Google Scholar]
  17. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_1932801594
    [Google Scholar]
  18. NzeakoB.C. Al-KharousiZ.S. Al-MahrooquiZ. Antimicrobial activities of clove and thyme extracts.Sultan Qaboos Univ. Med. J.200661333921748125
    [Google Scholar]
  19. TekwuE.M. PiemeA.C. BengV.P. Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance.J. Ethnopharmacol.2012142126527310.1016/j.jep.2012.05.00522583961
    [Google Scholar]
  20. LiM. LiuQ. TengY. OuL. XiY. ChenS. DuanG. The resistance mechanism of Escherichia coli induced by ampicillin in laboratory.Infect. Drug Resist.2019122853286310.2147/IDR.S22121231571941
    [Google Scholar]
  21. ZhouP. ZhaoX.N. MaY.Y. TangT.J. WangS.S. WangL. HuangJ.L. Virtual screening analysis of natural flavonoids as trimethylamine (TMA)‐lyase inhibitors for coronary heart disease.J. Food Biochem.20224612e1437610.1111/jfbc.1437635945702
    [Google Scholar]
  22. RamireddyL. TsenH.Y. ChiangY.C. HungC.Y. ChenF.C. YenH.T. The gene expression and bioinformatic analysis of choline trimethylamine-lyase (CutC) and its activating enzyme (CutD) for gut microbes and comparison with their TMA production levels.Curr. Res. Microb2021210004310.1016/j.crmicr.2021.10004334841334
    [Google Scholar]
  23. El-Saber BatihaG. AlkazmiL.M. WasefL.G. BeshbishyA.M. NadwaE.H. RashwanE.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities.Biomolecules202010220210.3390/biom1002020232019140
    [Google Scholar]
  24. LiuJ. LaiL. LinJ. ZhengJ. NieX. ZhuX. XueJ. LiuT. Ranitidine and finasteride inhibit the synthesis and release of trimethylamine N-oxide and mitigates its cardiovascular and renal damage through modulating gut microbiota.Int. J. Biol. Sci.202016579080210.7150/ijbs.4093432071549
    [Google Scholar]
  25. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  26. BrancoA.F. PereiraS.P. GonzalezS. GusevO. RizvanovA.A. OliveiraP.J. Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype.PLoS One2015106e012930310.1371/journal.pone.012930326121149
    [Google Scholar]
  27. BoccaliniG. SassoliC. FormigliL. BaniD. NistriS. Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: Involvement of the Notch‐1 pathway.FASEB J.201529123924910.1096/fj.14‑25485425342127
    [Google Scholar]
  28. WitekP. KorgaA. BurdanF. OstrowskaM. NosowskaB. IwanM. DudkaJ. The effect of a number of H9C2 rat cardiomyocytes passage on repeatability of cytotoxicity study results.Cytotechnology20166862407241510.1007/s10616‑016‑9957‑226946144
    [Google Scholar]
  29. AtaleN. ChakrabortyM. MohantyS. BhattacharyaS. NigamD. SharmaM. RaniV. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes.Cardiovasc. Toxicol.201313327828910.1007/s12012‑013‑9207‑123512199
    [Google Scholar]
  30. AtaleN. MishraC.B. KohliS. MongreR.K. PrakashA. KumariS. YadavU.C.S. JeonR. RaniV. Anti-inflammatory effects of S. cumini seed extract on gelatinase-b (MMP-9) regulation against hyperglycemic cardiomyocyte stress.Oxid. Med. Cell. Longev.2021202111410.1155/2021/883947933747350
    [Google Scholar]
  31. JainA. RaniV. Curcumin-mediated effects on anti-diabetic drug-induced cardiotoxicity.3 Biotech201889399
    [Google Scholar]
  32. RaniV. SharmaK. Organosulfur compounds in aged garlic extract ameliorate glucose induced diabetic cardiomyopathy by attenuating oxidative stress, cardiac fibrosis, and cardiac apoptosis.Cardiovasc. Hematol. Agents Med. Chem.20232110.2174/187152572166623022314521836825728
    [Google Scholar]
  33. ChackoS.M. NevinK.G. DhanyakrishnanR. KumarB.P. Protective effect of p -coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines.Toxicol. Rep.201521213122110.1016/j.toxrep.2015.08.00228962464
    [Google Scholar]
  34. KhanA. GillisK. ClorJ. TyagarajanK. Simplified evaluation of apoptosis using the Muse cell analyzer.Postepy Biochem.201258449249623662443
    [Google Scholar]
  35. DziedzicA. KubinaR. Kabała-DzikA. TanasiewiczM. Induction of cell cycle arrest and apoptotic response of head and neck squamous carcinoma cells (detroit 562) by caffeic acid and caffeic acid phenethyl ester derivative.Evid. Based Complement. Alternat. Med.2017201711010.1155/2017/679345628167973
    [Google Scholar]
  36. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  37. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  38. Martínez-del CampoA. BodeaS. HamerH.A. MarksJ.A. HaiserH.J. TurnbaughP.J. BalskusE.P. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.MBio201562e00042e1510.1128/mBio.00042‑1525873372
    [Google Scholar]
  39. Dalla ViaA. GargariG. TavernitiV. RondiniG. VelardiI. GambaroV. ViscontiG.L. De VitisV. GardanaC. RaggE. PintoA. RisoP. GuglielmettiS. Urinary TMAO levels are associated with the taxonomic composition of the gut microbiota and with the choline TMA-lyase gene (cutC) harbored by enterobacteriaceae.Nutrients20191216210.3390/nu1201006231881690
    [Google Scholar]
  40. WagnerJ.A. ColomboJ.M. Medicine and media: The ranitidine debate.Clin. Transl. Sci.202013464965110.1111/cts.1275332107850
    [Google Scholar]
  41. PolatliM. Methimazole-induced asthma?Chest2002121130530610.1378/chest.121.1.30511796476
    [Google Scholar]
  42. CraciunS. BalskusE.P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.Proc. Natl. Acad. Sci. USA201210952213072131210.1073/pnas.121568910923151509
    [Google Scholar]
/content/journals/chamc/10.2174/1871525721666230822100142
Loading
/content/journals/chamc/10.2174/1871525721666230822100142
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test