Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Entropy is a natural process that affects all living cells, including senescence, an irreversible physiological process that impairs cell homeostasis. Age is a significant factor in disease development, and the pathogenesis of endothelial cell aging is multifactorial. Autophagy dysfunction accelerates endothelial cell aging and cell death, while autophagy preserves endothelial cell youthfulness through intracellular homeostasis and gene expression regulation. Sirt, mTORC1, and AMPK are youthfulness genes that induce autophagy by inhibiting mTOR and upregulating FIP200/Atg13/ULK1. Aged endothelial cells have decreased levels of Lamin B1, γH2AX, Ki67, BrdU, PCNA, and SA β-Gal. Maintaining healthy young endothelial cells can prevent most cardiovascular diseases. Autophagy targeting is a potential future therapeutic strategy to modify endothelial cell age and potentially slow or reverse the aging process. This article provides state-of-the-art research on the role of autophagy in endothelial cell aging. Hypothesizing that autophagy dysregulation is associated with early endothelial cell dysfunction and further clinical sequelae, including atherosclerosis formation, leading to various cardiovascular diseases.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257275690231129101408
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. PilardM. OllivierE.L. Gourdou-LatyszenokV. CouturaudF. LemariéC.A. Endothelial cell phenotype, a major determinant of venous thrombo-inflammation.Front. Cardiovasc. Med.2022986473510.3389/fcvm.2022.864735 35528838
    [Google Scholar]
  2. YangJ.H. Loss of epigenetic information as a cause of mammalian aging.SSRN202110.2139/ssrn.3951490
    [Google Scholar]
  3. Cardiovascular diseases (CVDs). Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascul ar-diseases-(cvds) (Accessed on: 01.06.2022).
  4. DonatoA.J. MachinD.R. LesniewskiL.A. Mechanisms of dysfunction in the aging vasculature and role in age-related disease.Circ. Res.2018123782584810.1161/CIRCRESAHA.118.312563 30355078
    [Google Scholar]
  5. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. The hallmarks of aging.Cell. Elsevier B.V.2013153611941217 23746838
    [Google Scholar]
  6. MengL. ZhangY. LuoY. GongT. LiuD. Chronic stress a potential suspect zero of atherosclerosis: A systematic review.Front. Cardiovasc. Med.2021873865410.3389/fcvm.2021.738654 34988123
    [Google Scholar]
  7. Hernandez-SeguraA. NehmeJ. DemariaM. Hallmarks of cellular senescence.Trends Cell Biol.201828643645310.1016/j.tcb.2018.02.001 29477613
    [Google Scholar]
  8. CampisiJ. d’Adda di, F.F. Cellular senescence: When bad things happen to good cells.Nat. Rev. Mol. Cell Biol.20078972974010.1038/nrm2233 17667954
    [Google Scholar]
  9. LiuF. HamerM.A. DeelenJ. LallJ.S. JacobsL. van HeemstD. MurrayP.G. WollsteinA. de CraenA.J.M. UhH.W. ZengC. HofmanA. UitterlindenA.G. Houwing-DuistermaatJ.J. PardoL.M. BeekmanM. SlagboomP.E. NijstenT. KayserM. GunnD.A. The MC1R gene and youthful looks.Curr. Biol.20162691213122010.1016/j.cub.2016.03.008 27133870
    [Google Scholar]
  10. MenghiniR. CasagrandeV. MarinoA. MarchettiV. CardelliniM. StoehrR. RizzaS. MartelliE. GrecoS. MaurielloA. IppolitiA. MartelliF. LauroR. FedericiM. MiR-216a: A link between endothelial dysfunction and autophagy.Cell Death Dis.201451e102910.1038/cddis.2013.556 24481443
    [Google Scholar]
  11. CoppéJ.P. DesprezP.Y. KrtolicaA. CampisiJ. The senescence-associated secretory phenotype: The dark side of tumor suppression.Annu. Rev. Pathol.2010519911810.1146/annurev‑pathol‑121808‑102144 20078217
    [Google Scholar]
  12. KatsuumiG. Vascular senescence in cardiovascular and metabolic diseases.Front. Cardiovasc. Med.2018518
    [Google Scholar]
  13. SunY. WangX. LiuT. ZhuX. PanX. The multifaceted role of the SASP in atherosclerosis: From mechanisms to therapeutic opportunities.Cell Biosci.20221217410.1186/s13578‑022‑00815‑5 35642067
    [Google Scholar]
  14. LaRoccaT.J. HensonG.D. ThorburnA. SindlerA.L. PierceG.L. SealsD.R. Translational evidence that impaired autophagy contributes to arterial ageing.J. Physiol.2012590143305331610.1113/jphysiol.2012.229690 22570377
    [Google Scholar]
  15. RodierF. MuñozD.P. TeachenorR. ChuV. LeO. BhaumikD. CoppéJ.P. CampeauE. BeauséjourC.M. KimS.H. DavalosA.R. CampisiJ. DNA-SCARS: Distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion.J. Cell Sci.20111241688110.1242/jcs.071340 21118958
    [Google Scholar]
  16. LabergeR.M. SunY. OrjaloA.V. PatilC.K. FreundA. ZhouL. CurranS.C. DavalosA.R. Wilson-EdellK.A. LiuS. LimbadC. DemariaM. LiP. HubbardG.B. IkenoY. JavorsM. DesprezP.Y. BenzC.C. KapahiP. NelsonP.S. CampisiJ. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation.Nat. Cell Biol.20151781049106110.1038/ncb3195 26147250
    [Google Scholar]
  17. FreundA. PatilC.K. CampisiJ. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype.EMBO J.20113081536154810.1038/emboj.2011.69 21399611
    [Google Scholar]
  18. NacarelliT. LauL. FukumotoT. ZundellJ. FatkhutdinovN. WuS. AirdK.M. IwasakiO. KossenkovA.V. SchultzD. NomaK. BaurJ.A. SchugZ. TangH.Y. SpeicherD.W. DavidG. ZhangR. NAD+ metabolism governs the proinflammatory senescence-associated secretome.Nat. Cell Biol.201921339740710.1038/s41556‑019‑0287‑4 30778219
    [Google Scholar]
  19. ChiniC. HoganK.A. WarnerG.M. TarragóM.G. PeclatT.R. TchkoniaT. KirklandJ.L. ChiniE. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline.Biochem. Biophys. Res. Commun.2019513248649310.1016/j.bbrc.2019.03.199 30975470
    [Google Scholar]
  20. WileyC.D. VelardeM.C. LecotP. LiuS. SarnoskiE.A. FreundA. ShirakawaK. LimH.W. DavisS.S. RamanathanA. GerencserA.A. VerdinE. CampisiJ. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype.Cell Metab.201623230331410.1016/j.cmet.2015.11.011 26686024
    [Google Scholar]
  21. ChenD. BrunoJ. EaslonE. LinS.J. ChengH.L. AltF.W. GuarenteL. Tissue-specific regulation of SIRT1 by calorie restriction.Genes Dev.200822131753175710.1101/gad.1650608 18550784
    [Google Scholar]
  22. NadtochiyS.M. SIRT1-mediated acute cardioprotection.Am. J. Physiol. Heart Circ. Physiol.20113014H1506H1512
    [Google Scholar]
  23. YamakuchiM. HashiguchiT. Endothelial cell aging: How miRNAs contribute?J. Clin. Med.20187717010.3390/jcm7070170 29996516
    [Google Scholar]
  24. YazdanyarA. NewmanA.B. The burden of cardiovascular disease in the elderly: Morbidity, mortality, and costs.Clin. Geriatr. Med.2009254563577[vii].10.1016/j.cger.2009.07.00719944261
    [Google Scholar]
  25. LapierreL.R. KumstaC. SandriM. BallabioA. HansenM. Transcriptional and epigenetic regulation of autophagy in aging.Autophagy201511686788010.1080/15548627.2015.1034410 25836756
    [Google Scholar]
  26. JiangF. Autophagy in vascular endothelial cells.Clin. Exp. Pharmacol. Physiol.201643111021102810.1111/1440‑1681.12649 27558982
    [Google Scholar]
  27. MaiS. BrehmN. AuburgerG. Bereiter-HahnJ. JendrachM. Age-related dysfunction of the autophago-lysosomal pathway in human endothelial cells.Pflugers Arch.201947181065107810.1007/s00424‑019‑02288‑x 31222491
    [Google Scholar]
  28. SalemkourY. LenoirO. Endothelial autophagy dysregulation in diabetes.Cells202312694710.3390/cells12060947 36980288
    [Google Scholar]
  29. SachdevU. LotzeM.T. Perpetual change: Autophagy, the endothelium, and response to vascular injury.J. Leukoc. Biol.2017102222123510.1189/jlb.3RU1116‑484RR 28626046
    [Google Scholar]
  30. LinJ.R. ShenW.L. YanC. GaoP.J. Downregulation of dynamin-related protein 1 contributes to impaired autophagic flux and angiogenic function in senescent endothelial cells.Arterioscler. Thromb. Vasc. Biol.20153561413142210.1161/ATVBAHA.115.305706 25908761
    [Google Scholar]
  31. MarzoogB. Endothelial dysfunction under the scope of arterial hypertension, coronary heart disease, and diabetes mellitus using the angioscan.Cardiovasc. Hematol. Agents Med. Chem.202310.2174/0118715257246589231018053646
    [Google Scholar]
  32. MarzoogB.A. Autophagy behavior in endothelial cell regeneration.Curr. Mol. Med.2022
    [Google Scholar]
  33. MarzoogB.A. VlasovaT.I. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target.Obes. Metab.202218446547010.14341/omet12778
    [Google Scholar]
  34. MarzoogB.A. Systemic and local hypothermia in the context of cell regeneration.Cryo Lett.2022432667310.54680/fr22210110112 36626147
    [Google Scholar]
  35. MarzoogB.A. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime!Anat. Cell Biol.202356216617810.5115/acb.22.190 36879408
    [Google Scholar]
  36. MarzoogB.A. Endothelial cell autophagy in the context of disease development.Anat. Cell Biol.2023561162410.5115/acb.22.098 36267005
    [Google Scholar]
  37. AbdullahM.B. Autophagy as an anti-senescent in aging neurocytes.Curr. Mol. Med.202323 36683318
    [Google Scholar]
  38. MarzoogB. Lipid behavior in metabolic syndrome pathophysiology.Curr. Diabetes Rev.2022186e15092119649710.2174/1573399817666210915101321 34525924
    [Google Scholar]
  39. MarzoogB.A. Local lung fibroblast autophagy in the context of lung fibrosis pathogenesis.Curr. Respir. Med. Rev.202319161110.2174/1573398X19666221130141600
    [Google Scholar]
  40. MarzoogB.A. Autophagy in cancer cell transformation: A potential novel therapeutic strategy.Curr. Cancer Drug Targets202222974975610.2174/1568009622666220428102741 36062863
    [Google Scholar]
  41. MarzoogB.A. VlasovaT.I. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy.Egypt. J. Med. Hum. Genet.202223141
    [Google Scholar]
  42. MarzoogB.A. Recent advances in molecular biology of metabolic syndrome pathophysiology: Endothelial dysfunction as a potential therapeutic target.J. Diabetes Metab. Disord.20222121903191110.1007/s40200‑022‑01088‑y 36065330
    [Google Scholar]
  43. AbdullahM.B. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females.New Emirates Med. J.202341
    [Google Scholar]
  44. MarzoogB.A. The metabolic syndrome puzzles; Possible pathogenesis and management.Curr. Diabetes Rev.2023194e29042220425810.2174/1573399818666220429100411 35507784
    [Google Scholar]
  45. MarzoogB.A. VlasovaT.I. Transcription factors in deriving β cell regeneration: A potential novel therapeutic target.Curr. Mol. Med.202222542143010.2174/1566524021666210712144638 34931980
    [Google Scholar]
  46. MarzoogB.A. Transcription factors – the essence of heart regeneration: A potential novel therapeutic strategy.Curr. Mol. Med.202323323223810.2174/1566524022666220216123650 35170408
    [Google Scholar]
  47. MarzoogB.A. VlasovaT.I. Membrane lipids under norm and pathology.Eur J Clin Exp Med2021191597510.15584/ejcem.2021.1.9
    [Google Scholar]
  48. CarracedoJ. Endothelial cell senescence in the pathogenesis of endothelial dysfunction.Endothelial Dysfunction.IntechOpen2018
    [Google Scholar]
  49. DonatoA.J. Cellular and molecular biology of aging endothelial cells.J. Mol. Cell. Cardiol.201589122
    [Google Scholar]
  50. HarrisJ. HartmanM. RocheC. ZengS.G. O’SheaA. SharpF.A. LambeE.M. CreaghE.M. GolenbockD.T. TschoppJ. KornfeldH. FitzgeraldK.A. LavelleE.C. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation.J. Biol. Chem.2011286119587959710.1074/jbc.M110.202911 21228274
    [Google Scholar]
  51. DembicZ. The cytokines of the immune system: the role of cytokines in disease related to immune response.Academic Press2015
    [Google Scholar]
  52. Guixé-MuntetS. de MesquitaF.C. VilaS. Hernández-GeaV. PeraltaC. García-PagánJ.C. BoschJ. Gracia-SanchoJ. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury.J. Hepatol.2017661869410.1016/j.jhep.2016.07.051 27545498
    [Google Scholar]
  53. LiuJ. BiX. ChenT. ZhangQ. WangS-X. ChiuJ-J. LiuG-S. ZhangY. BuP. JiangF. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression.Cell Death Dis.201567e182710.1038/cddis.2015.193 26181207
    [Google Scholar]
  54. HuaY. ZhangJ. LiuQ. SuJ. ZhaoY. ZhengG. YangZ. ZhuoD. MaC. FanG. The induction of endothelial autophagy and its role in the development of atherosclerosis.Front. Cardiovasc. Med.2022983184710.3389/fcvm.2022.831847 35402552
    [Google Scholar]
  55. Sánchez-MartínP. SaitoT. KomatsuM. p62/SQSTM 1: ‘Jack of all trades’ in health and cancer.FEBS J.2019286182310.1111/febs.14712 30499183
    [Google Scholar]
  56. LuY. BrommerB. TianX. KrishnanA. MeerM. WangC. VeraD.L. ZengQ. YuD. BonkowskiM.S. YangJ.H. ZhouS. HoffmannE.M. KargM.M. SchultzM.B. KaneA.E. DavidsohnN. KorobkinaE. ChwalekK. RajmanL.A. ChurchG.M. HochedlingerK. GladyshevV.N. HorvathS. LevineM.E. Gregory-KsanderM.S. KsanderB.R. HeZ. SinclairD.A. Reprogramming to recover youthful epigenetic information and restore vision.Nature2020588783612412910.1038/s41586‑020‑2975‑4 33268865
    [Google Scholar]
  57. DonatoA.J. GanoL.B. EskurzaI. SilverA.E. GatesP.E. JablonskiK. SealsD.R. Vascular endothelial dysfunction with aging: Endothelin-1 and endothelial nitric oxide synthase.Am. J. Physiol. Heart Circ. Physiol.20092971H425H43210.1152/ajpheart.00689.2008 19465546
    [Google Scholar]
  58. TingK.K. ColemanP. ZhaoY. VadasM.A. GambleJ.R. The aging endothelium.Vascular Biology202131R35R4710.1530/VB‑20‑0013 33880430
    [Google Scholar]
  59. SinclairD. RinaldiC. SIRT1 activating compounds.US Patent App. 17/2846912021
  60. González-MoroA. NLRP3 inflammasome in vascular disease: A recurrent villain to combat pharmacologically.Antioxidants2022112
    [Google Scholar]
  61. SchwefelK. SpieglerS. MuchC.D. FelborU. RathM. CRISPR/Cas9-mediated generation of human endothelial cell knockout models of CCM disease.Methods Mol. Biol.2020215216917710.1007/978‑1‑0716‑0640‑7_13 32524552
    [Google Scholar]
  62. AbdullahM.B. Cell physiological behavior in the context of local hypothermia.New Emirates Med. J20235
    [Google Scholar]
  63. MarzoogB.A. Autophagy behavior in post-myocardial infarction injury.Cardiovasc. Hematol. Disord. Drug Targets202323121010.2174/1871529X23666230503123612 37138481
    [Google Scholar]
  64. MarzoogB.A. Autophagy behavior in endothelial cell dysfunction.New Emir. Med. J20235
    [Google Scholar]
  65. SuzukiK. OhkumaM. SomeyaA. MitaT. NagaokaI. Human cathelicidin peptide LL-37 induces cell death in autophagy-dysfunctional endothelial cells.J. Immunol.202220892163217210.4049/jimmunol.2100050 35387840
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257275690231129101408
Loading
/content/journals/chamc/10.2174/0118715257275690231129101408
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Aging; autophagy; endothelial cell; longevity; pathogenesis; senolytics; sirtuin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test