Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Background

Post-myocardial infarction (MI) changes have been frequently reported in the literature and are associated with determining the prognosis.

Aims

The aim of this study is to find a prognosis marker for the favorability of determination of the medium-term outcomes in patients with acute MI.

Objectives

MI patients’ prognosis is poorly understood and requires further elaboration.

Materials and Methods

A single center, cross-sectional cohort study involved 211 patients’ medical history with acute MI, for the period 2014-2019, had been evaluated retrospectively for 76 parameters. The data was collected from the Republic Rehabilitation Mordovian Hospital. The described measurement units were used in the local laboratories to describe the values. The descriptive values were expressed in the mean average and standard deviation. For statistical analysis, descriptive statistics, t-test independent by groups and dependent by numerical variables for repeated analysis for the same patients, multinomial logistic regression, Pearson’s correlation coefficient, ROC analysis, and for clarification purposes, diagrams and bar figures were used. For performing the statistical analysis, the SPSS program, version 28 was used.

Results

Descriptive statistics showed a proportion of men to females 7:3. The mean age of the MI patients was 61.50 years (Std. Dev. ± 10.68), and the mean height of the sample was 171.00 cm (Std. Dev. ± 7.20). The mean body weight of the sample is 83.62 kg (Std. Dev. ± 12.35), and the body mass index (BMI) is 29.02 kg/m2 (Std. Dev. ± 5.07). The total hospitalization days are 14.79 (Std. Dev. ± 3.41). The mean heart rate (HR) beat per minute (bpm) was 79.03 (Std. Dev. ± 15.63), and the mean blood pressure was 138.53/84.09 mmHg (Std. Dev. ± 28.66/12.79). On the complete blood count (CBC), the mean level of the hemoglobin (Hb) 136.33 g/l (Std. Dev. ± 15.29), the mean level of the leukocytes (WBC) 8.76 /µl (Std. Dev. ± 2.77), the mean level of the red blood cells (RBC) 4.55 /µl (Std. Dev. ± 0.52), the mean level of the relative value of the lymphocytes 24.46% (Std. Dev. ± 9.015), and the mean level of the thrombocytes 207.87 /µl (Std. Dev. ± 64.035). The mean erythrocytes segmentation rate (ESR) is 18.99 mm/hr (Std. Dev. ± 12.16). The regression analysis demonstrated that the dependent variable, complication, in particular, pericarditis, and the independent factor, concomitant disease, in particular, chronic heart failure, has a significant regression coefficient of 29.101 at <0.05. Furthermore, the dependent variable, complication, in particular, pneumonitis, and the independent factor, concomitant disease, particularly, arrhythmia, have a significant regression coefficient of 21.937 at <0.05.

Conclusion

An elevated level of CPK-MB/LDH/Troponin I is linked to the development of arrhythmia. Patients with other medical conditions experience high diastolic blood pressure and an enlargement of the right ventricle. The early complication observed after MI is the formation of a left ventricular aneurysm. Complications arise due to low levels of potassium and calcium. Chronic Kidney Disease (CKD) contributes to the End-Diastolic Size (EDS) of the Left Ventricle (LV), Troponin I, and creatine phosphokinase-MB (CPK-MB). Advanced CKD patients have a hypertrophic left ventricle and persistently elevated post-myocardial Infarction (MI) cardiac biomarkers (CPK-MB/LDH/Troponin I) due to impaired kidney detoxification. Therefore, prolonged elevation of MI biomarkers can be an indicative of severe MI or kidney function impairment due to the chronic mild elevation in the MI biomarkers. Pericarditis development is related to the pre-existence of chronic heart failure. Moreover, pneumonitis development is related to the pre-existence of arrhythmia.

Others

Hypertensive patients do not exhibit a significant increase in calcium levels, indicating that it is not a reliable biomarker in this patient population. Additionally, gender plays a crucial role in the development of ischemic heart disease, including myocardial infarction.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257281715240108092557
2024-01-26
2025-04-12
Loading full text...

Full text loading...

References

  1. GordanR. GwathmeyJ.K. XieL.H. Autonomic and endocrine control of cardiovascular function.World J. Cardiol.20157420421410.4330/wjc.v7.i4.20425914789
    [Google Scholar]
  2. ClericoA RecchiaFA PassinoC EmdinM Cardiac endocrine function is an essential component of the homeostatic regulation network: Physiological and clinical implications.Am J Physiol - Hear Circ Physiol.20062901
    [Google Scholar]
  3. NesterovV.P. BurdyginA.I. IvanovK.B. KorotkovS.M. SobolK.V. SorokoS.I. ShemarovaI.V. On the possibility to noninvasively study the peripheral mechanisms of autonomic regulation of the human cardiovascular system.Biophysics202368112112810.1134/S0006350923010141
    [Google Scholar]
  4. SataY. HeadG.A. DentonK. MayC.N. SchlaichM.P. Role of the sympathetic nervous system and its modulation in renal hypertension.Front. Med.20185MAR8210.3389/fmed.2018.0008229651418
    [Google Scholar]
  5. TsaoC.W. AdayA.W. AlmarzooqZ.I. AndersonC.A.M. AroraP. AveryC.L. Baker-SmithC.M. BeatonA.Z. BoehmeA.K. BuxtonA.E. Commodore-MensahY. ElkindM.S.V. EvensonK.R. Eze-NliamC. FugarS. GenerosoG. HeardD.G. HiremathS. HoJ.E. KalaniR. KaziD.S. KoD. LevineD.A. LiuJ. MaJ. MagnaniJ.W. MichosE.D. MussolinoM.E. NavaneethanS.D. ParikhN.I. PoudelR. Rezk-HannaM. RothG.A. ShahN.S. St-OngeM.P. ThackerE.L. ViraniS.S. VoeksJ.H. WangN.Y. WongN.D. WongS.S. YaffeK. MartinS.S. Heart disease and stroke statistics—2023 update: A report from the american heart association.Circulation20231478e93e62110.1161/CIR.000000000000112336695182
    [Google Scholar]
  6. AbdullahM.B. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females.New Emirates Med J20234110.2174/04666221128110145
    [Google Scholar]
  7. MarzoogB.A. Tree of life: endothelial cell in norm and disease, the good guy is a partner in crime!Anat. Cell Biol.202356216617810.5115/acb.22.19036879408
    [Google Scholar]
  8. MarzoogBA AlexandrovichKO NikolaevichTM VladimirovichKS Post-coronary artery bypass graft complications; Potential causes and risk factors.New Emir. Med. J.20235
    [Google Scholar]
  9. ThygesenK. AlpertJ.S. JaffeA.S. ChaitmanB.R. BaxJ.J. MorrowD.A. WhiteH.D. Fourth universal definition of myocardial infarction (2018).J. Am. Coll. Cardiol.201872182231226410.1016/j.jacc.2018.08.103830153967
    [Google Scholar]
  10. NeumannJ.T. WeimannJ. SörensenN.A. HartikainenT.S. HallerP.M. LehmacherJ. BrocksC. TenhaeffS. KarakasM. RennéT. BlankenbergS. ZellerT. WestermannD. A biomarker model to distinguish types of myocardial infarction and injury.J. Am. Coll. Cardiol.202178878179010.1016/j.jacc.2021.06.02734412811
    [Google Scholar]
  11. BoyetteL.C. MannaB. Physiology, myocardial oxygen demand.StatPearls.Treasure Island, (FL)StatPearls Publishing2022
    [Google Scholar]
  12. Vásquez-TrincadoC. García-CarvajalI. PennanenC. ParraV. HillJ.A. RothermelB.A. LavanderoS. Mitochondrial dynamics, mitophagy and cardiovascular disease.J. Physiol.2016594350952510.1113/JP27130126537557
    [Google Scholar]
  13. MarzoogB.A. AlexandrovichK.O. NikolaevichT.M. VladimirovichK.S. Post-coronary artery bypass graft complications; Potential causes and risk factors.medRxiv20232022.12.29.22284005
    [Google Scholar]
  14. MarzoogB.A. Autophagy behavior in post-myocardial infarction injury.Cardiovasc. Hematol. Disord. Drug Targets202323121010.2174/1871529X2366623050312361237138481
    [Google Scholar]
  15. MarzoogB.A. Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target.J. Diabetes Metab. Disord.20222121903191110.1007/s40200‑022‑01088‑y36065330
    [Google Scholar]
  16. MarzoogB.A. VlasovaT.I. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy.Egypt. J. Med. Hum. Genet.20222314110.1186/s43042‑022‑00250‑8
    [Google Scholar]
  17. MarzoogB.A. The metabolic syndrome puzzles; possible pathogenesis and management.Curr. Diabetes Rev.2023194e29042220425810.2174/157339981866622042910041135507784
    [Google Scholar]
  18. MarzoogB. Lipid behavior in metabolic syndrome pathophysiology.Curr. Diabetes Rev.2022186e15092119649710.2174/157339981766621091510132134525924
    [Google Scholar]
  19. Abdullah MarzoogB. Pathophysiology of cardiac cell injury in post-covid-19 syndrome.New Emirates Med J202342
    [Google Scholar]
  20. MarzoogB.A. Endothelial cell autophagy in the context of disease development.Anat. Cell Biol.2023561162410.5115/acb.22.09836267005
    [Google Scholar]
  21. MarzoogB.A. Transcription factors – the essence of heart regeneration: a potential novel therapeutic strategy.Curr. Mol. Med.202323323223810.2174/156652402266622021612365035170408
    [Google Scholar]
  22. MarzoogB.A. Systemic and local hypothermia in the context of cell regeneration.Cryo Lett.2022432667310.54680/fr2221011011236626147
    [Google Scholar]
  23. MarzoogB.A. BloshkinaN.I. GromovaV.S. GorshininaE.I. Myocardial infarction; Early prognostic instrumental & laboratory markers: single cross-sectional analysis.medRxiv2023
    [Google Scholar]
  24. MarzoogB.A. VlasovaT.I. Membrane lipids under norm and pathology.Eur J Clin Exp Med2021191597510.15584/ejcem.2021.1.9
    [Google Scholar]
  25. Powell-WileyT.M. PoirierP. BurkeL.E. DesprésJ.P. Gordon-LarsenP. LavieC.J. LearS.A. NdumeleC.E. NeelandI.J. SandersP. St-OngeM.P. Obesity and cardiovascular disease: A scientific statement from the american heart association.Circulation202114321e984e101010.1161/CIR.000000000000097333882682
    [Google Scholar]
  26. JastreboffA.M. KotzC.M. KahanS. KellyA.S. HeymsfieldS.B. Obesity as a Disease: The obesity society 2018 position statement.Obesity20192717910.1002/oby.2237830569641
    [Google Scholar]
  27. GarciaM. MulvaghS.L. Bairey MerzC.N. BuringJ.E. MansonJ.E. Cardiovascular disease in women.Circ. Res.201611881273129310.1161/CIRCRESAHA.116.30754727081110
    [Google Scholar]
  28. DąbrowskiM. TadeuszD. AleksandraU. Zozulinska-ziolkiewiczD. 209-LB: Is the abdominal aorta diameter a novel marker of diabetes risk in elderly women?Diabetes201968S1209[-LB.]
    [Google Scholar]
  29. KohnJ.C. LampiM.C. Reinhart-KingC.A. Age-related vascular stiffening: Causes and consequences.Front. Genet.20156MAR11225926844
    [Google Scholar]
  30. RoderburgC. LoosenS.H. LueddeT. KostevK. LueddeM. Diabetes mellitus is associated with an increased incidence of aortic valve stenosis.Diab. Vasc. Dis. Res.20211851479164121103381910.1177/14791641211033819
    [Google Scholar]
  31. AmerM. OmarO. RedaR. RahmanT. RasheedyD. Abdominal aortic diameter and the risk for asymptomatic peripheral arterial disease in patients with type 2 diabetes.Int. J. Angiol.201424211312010.1055/s‑0034‑137631826060382
    [Google Scholar]
  32. OhG.C. ChoH.J. Blood pressure and heart failure.Clin. Hypertens.2020261110.1186/s40885‑019‑0132‑x31908841
    [Google Scholar]
  33. PengA. QinL. WuT. DengB. SunY. HuD. MohanC. ZhouX.J. PengA. Elevated cardiac markers in chronic kidney disease as a consequence of hyperphosphatemia-induced cardiac myocyte injury.Med. Sci. Monit.2014202043205310.12659/MSM.89090925344353
    [Google Scholar]
  34. Di LulloL. GoriniA. RussoD. SantoboniA. RoncoC. Left ventricular hypertrophy in chronic kidney disease patients: from pathophysiology to treatment.Cardiorenal Med.20155425426610.1159/00043583826648942
    [Google Scholar]
  35. KolbT.M. HassounP.M. Right ventricular dysfunction in chronic lung disease.Cardiol. Clin.201230224325610.1016/j.ccl.2012.03.00522548815
    [Google Scholar]
  36. HedayatniaM. AsadiZ. Zare-FeyzabadiR. Yaghooti-KhorasaniM. GhazizadehH. Ghaffarian-ZirakR. Nosrati-TirkaniA. Mohammadi-BajgiranM. RohbanM. SadabadiF. RahimiH.R. GhalandariM. GhaffariM.S. YousefiA. PouresmaeiliE. BesharatlouM.R. MoohebatiM. FernsG.A. EsmailyH. Ghayour-MobarhanM. Dyslipidemia and cardiovascular disease risk among the MASHAD study population.Lipids Health Dis.20201914210.1186/s12944‑020‑01204‑y32178672
    [Google Scholar]
  37. LimE. LeeM.J. Optimal cut-off value of high-sensitivity troponin I in diagnosing myocardial infarction in patients with end-stage renal disease.Medicine2020995e1858010.1097/MD.000000000001858032000364
    [Google Scholar]
  38. BansalN. ZelnickL. GoA. AndersonA. ChristensonR. DeoR. DefilippiC. LashJ. HeJ. KyB. SeligerS. SolimanE. ShlipakM. AppelL.J. FeldmanH.I. RaoP.S. Cardiac biomarkers and risk of incident heart failure in chronic kidney disease: The CRIC (Chronic Renal Insufficiency Cohort) study.J. Am. Heart Assoc.2019821e01233610.1161/JAHA.119.01233631645163
    [Google Scholar]
  39. GrauM. BarrR.G. LimaJ.A. HoffmanE.A. BluemkeD.A. CarrJ.J. ChahalH. EnrightP.L. JainA. PrinceM.R. KawutS.M. Percent emphysema and right ventricular structure and function.Chest2013144113614410.1378/chest.12‑177923450302
    [Google Scholar]
  40. AhmedS.M. ClasenM.E. DonnellyJ.E. Management of dyslipidemia in adults.Am. Fam. Physician199857921922204, 2207-22089606309
    [Google Scholar]
  41. JankowskiJ. FloegeJ. FliserD. BöhmM. MarxN. Cardiovascular disease in chronic kidney disease.Circulation2021143111157117210.1161/CIRCULATIONAHA.120.05068633720773
    [Google Scholar]
  42. ChenY.J. ChenC.C. ErT.K. Cardiac markers and cardiovascular disease in chronic kidney disease.Adv. Clin. Chem.2023115638010.1016/bs.acc.2023.03.001
    [Google Scholar]
  43. HarB. J. Cardiology.Approach to Internal Medicine.ChamSpringer International Publishing2016277610.1007/978‑3‑319‑11821‑5_2
    [Google Scholar]
  44. RittooD. JonesA. LeckyB. NeithercutD. Elevation of cardiac troponin T, but not cardiac troponin I, in patients with neuromuscular diseases: Implications for the diagnosis of myocardial infarction.J. Am. Coll. Cardiol.201463222411242010.1016/j.jacc.2014.03.02724747102
    [Google Scholar]
  45. Abdullah MarzoogB. Autophagy behavior under local hypothermia in myocardiocytes injury.Cardiovasc. Hematol. Agents Med. Chem.20232137534483
    [Google Scholar]
  46. FrantzS. HundertmarkM.J. Schulz-MengerJ. BengelF.M. BauersachsJ. Left ventricular remodelling post-myocardial infarction: Pathophysiology, imaging, and novel therapies.Eur. Heart J.202243272549256110.1093/eurheartj/ehac22335511857
    [Google Scholar]
  47. Al AhmadY. AliM.T. Al AhmadY. AliM.T. Non-ST elevation myocardial infarction: Diagnosis and management.Myocardial Infarction.IntechOpen2019
    [Google Scholar]
  48. JeffreyS.B. LaineE. DianneG. MatthewR. Sex differences in mortality following acute coronary syndromes.J Am Med Assoc.2009302874882
    [Google Scholar]
  49. GheisariF EmamiM RaeisiS.H. SamipourS NematollahiP. The role of gender in the importance of risk factors for coronary artery disease.Cardiol. Res. Pract.202010.1155/2020/6527820
    [Google Scholar]
  50. MarzoogBA Autophagy behavior in endothelial cell dysfunction.New Emir. Med. J.2023510.2174/0250688204666230714110857
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257281715240108092557
Loading
/content/journals/chamc/10.2174/0118715257281715240108092557
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): angiogenesis; IHD; Myocardial infarction; myocardiocyte; regeneration; retrospective; statistics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test