Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

The genus has long been used in phytomedicine. The studied parts of species are used as antirheumatic, diuretic, antidotes against poison, anti-erosion, anti-ulcer, and antidiabetic agents, as well as against headache and skin diseases. The objective of the present review was to summarize the phytochemical and pharmacological aspects related to the genus . The results of this literature analysis show that among all the species of the () family, , , and showed antibacterial activity; and have antioxidant activity, and have antidiabetic activity, has cytotoxic activity and , , and exhibit anti-inflammatory activity. The genus contains saponins, and alkaloids, such as anabasine, anabasamine, lupinine, jaxartinine, and triterpenic sapogenins. The study of 15 plants has identified 70 compounds with an array of pharmacological activities especially antibacterial, antioxidant, antidiabetic, cytotoxic, and anti-inflammatory activities. However, there is a need for further studies on plants before they can be fully used clinically as a potential drug.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257276051240111060414
2024-01-22
2025-04-18
Loading full text...

Full text loading...

References

  1. KadereitG. BorschT. WeisingK. FreitagH. Phylogeny of amaranthaceae and chenopodiaceae and the evolution of C4 photosynthesis.Int. J. Plant Sci.2003164695998610.1086/378649
    [Google Scholar]
  2. ChaseM.W. RevealJ.L. FayM.F. A subfamilial classification for the expanded asparagalean families amaryllidaceae, asparagaceae and xanthorrhoeaceae.Bot. J. Linn. Soc.2009161213213610.1111/j.1095‑8339.2009.00999.x
    [Google Scholar]
  3. KühnU. BittrichV. CarolinR. FreitagH. HedgeI.C. UotilaP. WilsonP.G. Chenopodiaceae.Flowering Plants· Dicotyledons.Berlin, HeidelbergSpringer199325328110.1007/978‑3‑662‑02899‑5_26
    [Google Scholar]
  4. PyankovV.I. ArtyushevaE.G. EdwardsG.E. BlackC.C.Jr SoltisP.S. Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: Implications for the evolution of photosynthesis types.Am. J. Bot.20018871189119810.2307/355832911454618
    [Google Scholar]
  5. AkhaniH. EdwardsG. RoalsonE.H. Diversification of the old world Salsoleae sl (Chenopodiaceae): Molecular phylogenetic analysis of nuclear and chloroplast data sets and a revised classification.Int. J. Plant Sci.2007168693195610.1086/518263
    [Google Scholar]
  6. SukhorukovA.P. Fruit anatomy of the genus Anabasis (Salsoloideae, Chenopodiaceae).Aust. Syst. Bot.200821643144210.1071/SB08013
    [Google Scholar]
  7. ChopraR.N. NayarS.L. ChopraI.C. Glossary of Indian medicinal plants.The Quarterly Review of Biology1956332330
    [Google Scholar]
  8. El-HilalyJ. HmammouchiM. LyoussiB. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco).J. Ethnopharmacol.2003862-314915810.1016/S0378‑8741(03)00012‑612738079
    [Google Scholar]
  9. EddouksM. MaghraniM. LemhadriA. OuahidiM.L. JouadH. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet).J. Ethnopharmacol.2002822-39710310.1016/S0378‑8741(02)00164‑212241983
    [Google Scholar]
  10. EddouksM. AjebliM. HebiM. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco.J. Ethnopharmacol.201719851653010.1016/j.jep.2016.12.01728003130
    [Google Scholar]
  11. BellakhdarJ. ClaisseR. FleurentinJ. YounosC. Repertory of standard herbal drugs in the Moroccan pharmacopoea.J. Ethnopharmacol.199135212314310.1016/0378‑8741(91)90064‑K1809818
    [Google Scholar]
  12. TahraouiA. El-HilalyJ. IsrailiZ.H. LyoussiB. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province).J. Ethnopharmacol.2007110110511710.1016/j.jep.2006.09.01117052873
    [Google Scholar]
  13. JamilaF. MostafaE. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments.J. Ethnopharmacol.20141541768710.1016/j.jep.2014.03.01624685583
    [Google Scholar]
  14. BerraniA. LrhorfiA. OuahidiL. ZouarhiM. LellaA. BoufellousM. Ethnobotanical study of two medicinal plants: Vitex agnus castus and Anabasis aretioïdes.J. Adv. Biol.2017920172026
    [Google Scholar]
  15. BrutkoL.I. MassagetovP.S. UtkinL.M. Amount of isomers of anabasine in various samples of Anabasis aphylla.Rast. Res.19684334336
    [Google Scholar]
  16. SandbergF. Some recent research work in the field of saponin drugs.Pak. J. Sci. Ind. Res.19614258
    [Google Scholar]
  17. SandbergF. MichelK.H. Phytochemische studien uber die flora Agyptens. 6. uber die saponine und prosapogenine von Anabasis articulata.Lloydia1962253142
    [Google Scholar]
  18. SegalR. Goldzweig-MiloI. ZaitschekD.V. The sapogenin content of Anabasis articulata.Phytochemistry19698252110.1016/S0031‑9422(00)85463‑1
    [Google Scholar]
  19. SandbergF. ShalabyA.F. Phytochemical studies on the flora of Egypt. IV. The saponins of Anabasis articulata. (Forsk). Moq.-Tand. in DC. and Anabasis setifera Moq.-.Tand. Sven. Farm. Tidskr.19606467769013746123
    [Google Scholar]
  20. SenhajiS. LamchouriF. ToufikH. Phytochemical content, antibacterial and antioxidant potential of endemic plant anabasis aretioïdes Coss. & Moq. (Chenopodiaceae).BioMed Res. Int.2020202011610.1155/2020/615293232076611
    [Google Scholar]
  21. MetwallyN.S. MohamedA.M. ELSharabasy, F.S. Chemical constituents of the egyptian plant anabasis articulata (Forssk) Moq and its antidiabetic effects on rats with streptozotocin-induced diabetic hepatopathy.J. Appl. Pharm. Sci.20122454
    [Google Scholar]
  22. MaatalahM.B. BouzidiN.K. BellahouelS. MerahB. FortasZ. SoulimaniR. DerdourA. Antimicrobial activity of the alkaloids and saponin extracts of Anabasis articulate.J. Biotechnol. Pharm. Res.2012335457
    [Google Scholar]
  23. El MansouriL. EnnabiliA. BoustaD. Socioeconomic interest and valorization of medicinal plants from the Rissani oasis (SE of Morocco).Bol. Latinoam. Caribe Plantas Med. Aromat.20111013045
    [Google Scholar]
  24. ZoharyM. Feinbrun-DothanN. Flora Palaestina.JerusalemIsrael Academy of Sciences and Humanities1966
    [Google Scholar]
  25. LauterbachM. Veranso-LibalahM.C. SukhorukovA.P. KadereitG. Biogeography of the xerophytic genus Anabasis L. (Chenopodiaceae).Ecol. Evol.2019963539355210.1002/ece3.498730962909
    [Google Scholar]
  26. KhafagiA. MareiA. MohamedS. Morphological and anatomical variations of anabasis articulata ecotypes in Egypt.Magallat Itihad al-Gami’at al-'Arabiyyat Lil-Dirasat Wa-al-Buhut al-Zira’iyyat200513223324810.21608/ajs.2005.15350
    [Google Scholar]
  27. Lev-YadunS. Ne’EmanG. When may green plants be aposematic?Biol. J. Linn. Soc. Lond.200481341341610.1111/j.1095‑8312.2004.00307.x
    [Google Scholar]
  28. BerraniA. MarmouziI. KharbachM. BouyahyaA. El HamdaniM. El JemliM. LrhorfiA. BenassaouiH. ZouarhiM. My LarbiO. El Abbes FaouziM. BengueddourR. Anabasis aretioides Coss. & Moq. phenolic compounds exhibit in vitro hypoglycemic, antioxidant and antipathogenic properties.J. Basic Clin. Physiol. Pharmacol.201930225125710.1515/jbcpp‑2018‑015430864419
    [Google Scholar]
  29. FaridO. KhalloukiF. AkdadM. BreuerA. OwenR.W. EddouksM. Phytochemical characterization of polyphenolic compounds with HPLC–DAD–ESI–MS and evaluation of lipid-lowering capacity of aqueous extracts from Saharan plant Anabasis aretioides (Coss & Moq.) in normal and streptozotocin-induced diabetic rats.J. Integr. Med.201816318519110.1016/j.joim.2018.03.00329631911
    [Google Scholar]
  30. ChuG. WangM. ZhangS. Spatial patterns and associations of dominant woody species in desert–oasis ecotone of south junggar basin, NW China.J. Plant Interact.20149173874410.1080/17429145.2014.918663
    [Google Scholar]
  31. HasslerM. World plants: Synonymic checklists of the vascular plants of the world.Species 2000 & ITIS Catalogue of Life, 2019 Annual ChecklistRoskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., Nieukerken E. van, Zarucchi J., Penev L.2019
    [Google Scholar]
  32. BrayS.R. KitajimaK. MackM.C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate.Soil Biol. Biochem.201249303710.1016/j.soilbio.2012.02.009
    [Google Scholar]
  33. FengY. ZhangM. ZhuoL. ChenM. Micromorphology of anabasis from China with reference to their ecological significance.Xibei Zhiwu Xuebao2011313462467
    [Google Scholar]
  34. PengM. ChangY. ChuG. WangM. Low-temperature tolerance and transcriptome analyses during seed germination of Anabasis aphylla.J. Plant Interact.201914125426410.1080/17429145.2019.1616840
    [Google Scholar]
  35. CuiJ. LiY. WangC. KimK.S. WangT. LiuS. Characteristics of the rhizosphere bacterial community across different cultivation years in saline–alkaline paddy soils of Songnen Plain of China.Can. J. Microbiol.2018641292593610.1139/cjm‑2017‑075230114373
    [Google Scholar]
  36. YANG Yang LIU Bingru, Distribution of soil nutrient and microbial biomass in rhizosphere versus non-rhizosphere area of different plant species in desertified steppe.Acta Ecol. Sin.2015352210.5846/stxb201403130440
    [Google Scholar]
  37. PeiY. YangZ.D. ShengJ. Chemical constituents of Anabasis salsa.Chem. Nat. Compd.201450595795810.1007/s10600‑014‑1132‑4
    [Google Scholar]
  38. BotschantzevV.P. Conspectus specierum sectionis coccosalsola fenzl generis Salsola L.Nov. Sist. Vyssh. Rast.19761374102
    [Google Scholar]
  39. WenZ. ZhangM. Anatomical types of leaves and assimilating shoots and carbon 13C/12C isotope fractionation in chinese representatives of salsoleae sl (Chenopodiaceae). Flora-morphology, distribution.Funct. Ecol. Plants2011206872073010.1016/j.flora.2010.11.015
    [Google Scholar]
  40. AkhaniH. KhoshraveshR. MalekmohammadiM. Taxonomic novelties from Irano-Turanian region and NE Iran: Oreosalsola, a new segregate from Salsola s.l., two new species in anabasis and salvia, and two new combinations in caroxylon and seseli.Phytotaxa2016249115918010.11646/phytotaxa.249.1.7
    [Google Scholar]
  41. MumtazH. BokhariM.H. On Anatomy, Adaptations To Xerophytism And Taxonomy of Anabasis Inclusive Esfandiaria.Chenopodiaceae1978
    [Google Scholar]
  42. MohammadiM. AlaeiM. BajalanI. Phytochemical screening, total phenolic and flavonoid contents and antioxidant activity of Anabasis setifera and Salsola tomentosa extracted with different extraction methods and solvents.Orient. Pharm. Exp. Med.2016161313510.1007/s13596‑016‑0220‑3
    [Google Scholar]
  43. AbdouA.M. AbdallahH.M. MohamedM.A. FawzyG.A. Abdel-NaimA.B. A new anti-inflammatory triterpene saponin isolated from Anabasis setifera.Arch. Pharm. Res.201336671572210.1007/s12272‑013‑0075‑923471562
    [Google Scholar]
  44. KamboucheN. MerahB. DerdourA. BellahouelS. BouayedJ. DickoA. SoulimaniR. Hypoglycemic and antihyperglycemic effects of Anabasis articulata (Forssk) Moq (Chenopodiaceae), an Algerian medicinal plant.Afr. J. Biotechnol.200982055895594
    [Google Scholar]
  45. BenhammouN. GhambazaN. BenabdelkaderS. Atik-BekkaraF. PanovskaF.K. Phytochemicals and antioxidant properties of extracts from the root and stems of Anabasis articulata.Int. Food Res. J.20132052057
    [Google Scholar]
  46. HammicheV. MaizaK. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer.J. Ethnopharmacol.2006105335836710.1016/j.jep.2005.11.02816414225
    [Google Scholar]
  47. ZoharyM. Vegetal landscapes of Israel.Tel Aviv, IsraelAm Oved1980
    [Google Scholar]
  48. Feinbrun-DothanN. DaninA. PlitmanU. Analytical flora of Eretz-Israel.Jerusalem1991
    [Google Scholar]
  49. ChenH. HajiaA. YangZ.D. LiY.C. Isolation and structure identification of chemical constituents from Anabasis brevifolia.Yao Xue Xue Bao200540324825115952597
    [Google Scholar]
  50. El-HaciI.A. BekkaraF.A. MazariW. GheribM. Phenolics content and antioxidant activity of some organic extracts of endemic medicinal plant Anabasis aretioides Coss. & Moq. from Algerian Sahara.Pharmacogn. J.20135310811210.1016/j.phcgj.2013.05.004
    [Google Scholar]
  51. FreezeP.D. ParkerL.D. Bibliography of Temperature Measurement.Wachington, USAInstitute for Applied Technology, National Bureau of Standards1972
    [Google Scholar]
  52. DuH. WangY. YanC. ZhouL.G. HaoX.J. Alkaloids from Anabasis aphylla L.J. Asian Nat. Prod. Res.200810111093109510.1080/1028602080231896619031252
    [Google Scholar]
  53. AumeeruddyM.Z. MahomoodallyM.F. Traditional herbal therapies for hypertension: A systematic review of global ethnobotanical field studies.S. Afr. J. Bot.202013545146410.1016/j.sajb.2020.09.008
    [Google Scholar]
  54. DuH. WangY. HaoX. LiC. PengY. WangJ. LiuH. ZhouL. Antimicrobial phenolic compounds from Anabasis aphylla L.Nat. Prod. Commun.2009431934578X090040010.1177/1934578X090040031419413118
    [Google Scholar]
  55. ZacchinoS.A. ButassiE. LibertoM.D. RaimondiM. PostigoA. SortinoM. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs.Phytomedicine201737274810.1016/j.phymed.2017.10.01829174958
    [Google Scholar]
  56. BurtS. Essential oils: Their antibacterial properties and potential applications in foods—a review.Int. J. Food Microbiol.200494322325310.1016/j.ijfoodmicro.2004.03.02215246235
    [Google Scholar]
  57. El-haciI.A. Phytochemical study and biological activities of some endemic medicinal plants of the Sude of Algeria: Ammodaucus leucotrichus Coss. & Dur., Anabasis aretioides Moq. Coss. and Limoniastrum feei (Girard) Batt [Doctoral thesis in BiochemistryFaculty of Natural and Life Sciences and Earth and Universe Sciences., Abou-bekr-belkaid Tlemcen University2014164
    [Google Scholar]
  58. CowanM.M. Plant products as antimicrobial agents.Clin. Microbiol. Rev.199912456458210.1128/CMR.12.4.56410515903
    [Google Scholar]
  59. HerreraR.M. PérezM. Martín-HerreraD.A. López-GarcíaR. RabanalR.M. AriasA. Antimicrobial activity of extracts from plants endemic to the Canary Islands.Phytother. Res.199610436436610.1002/(SICI)1099‑1573(199606)10:4<364::AID‑PTR846>3.0.CO;2‑B
    [Google Scholar]
  60. MengJ.C. ZhuQ.X. TanR.X. New antimicrobial mono- and sesquiterpenes from Soroseris hookeriana subsp. erysimoides.Planta Med.200066654154410.1055/s‑2000‑860710985081
    [Google Scholar]
  61. SrinivasanD. NathanS. SureshT. Lakshmana PerumalsamyP. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine.J. Ethnopharmacol.200174321722010.1016/S0378‑8741(00)00345‑711274820
    [Google Scholar]
  62. KamboucheN. MerahB. DerdourA. BellahouelS. YounosC. SoulimaniR. Activité antihyperglycémiante d’un stérol β-sitoglucoside isolé de la plante Anabasis articulata (Forssk) Moq.Phytotherapie2011912610.1007/s10298‑010‑0603‑4
    [Google Scholar]
  63. MouraR.M.X. PereiraP.S. JanuárioA.H. FrançaS.C. DiasD.A. Antimicrobial screening and quantitative determination of benzoic acid derivative of Gomphrena celosioides by TLC-densitometry.Chem. Pharm. Bull.200452111342134410.1248/cpb.52.134215516759
    [Google Scholar]
  64. JiaoY. ChuG. YangZ. WangY. WangM. Bacterial diversity in the rhizosphere of anabasis aphylla in the Gurbantunggut desert, China.Curr. Microbiol.202077113750375910.1007/s00284‑020‑02177‑y32939639
    [Google Scholar]
  65. HemalathaS. KumarM. PrasadS.K. A current update on the phytopharmacological aspects of Houttuynia cordata Thunb.Pharmacogn. Rev.2014815223510.4103/0973‑7847.12552524600193
    [Google Scholar]
  66. FallehH. KsouriR. ChaiebK. Karray-BouraouiN. TrabelsiN. BoulaabaM. AbdellyC. Phenolic composition of Cynara cardunculus L. organs, and their biological activities.C. R. Biol.2008331537237910.1016/j.crvi.2008.02.00818472083
    [Google Scholar]
  67. NegroC. TommasiL. MiceliA. Phenolic compounds and antioxidant activity from red grape marc extracts.Bioresour. Technol.2003871414410.1016/S0960‑8524(02)00202‑X12733573
    [Google Scholar]
  68. LuoX.D. BasileM.J. KennellyE.J. Polyphenolic antioxidants from the fruits of Chrysophyllum cainito L. (Star Apple).J. Agric. Food Chem.20025061379138210.1021/jf011178n11879006
    [Google Scholar]
  69. BourgouS. KsouriR. BellilaA. SkandraniI. FallehH. MarzoukB. Phenolic composition and biological activities of tunisian nigella sativa L. shoots and roots.C. R. Biol.20083311485510.1016/j.crvi.2007.11.00118187122
    [Google Scholar]
  70. FrankelE.N. WaterhouseA.L. TeissedreP.L. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins.J. Agric. Food Chem.199543489089410.1021/jf00052a008
    [Google Scholar]
  71. GhembazaN. Belyagoubi-BenhammouN. Atik BekkaraF. Separation and identification of bioactive compounds in Anabasis articulata (Forsk) Moq. roots.Nat. Prod. Res.201630785785910.1080/14786419.2015.106549026263238
    [Google Scholar]
  72. GranatoD. ShahidiF. WrolstadR. KilmartinP. MeltonL.D. HidalgoF.J. MiyashitaK. CampJ. AlasalvarC. IsmailA.B. ElmoreS. BirchG.G. CharalampopoulosD. AstleyS.B. PeggR. ZhouP. FinglasP. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods?Food Chem.201826447147510.1016/j.foodchem.2018.04.01229853403
    [Google Scholar]
  73. PangY. AhmedS. XuY. BetaT. ZhuZ. ShaoY. BaoJ. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice.Food Chem.201824021222110.1016/j.foodchem.2017.07.09528946264
    [Google Scholar]
  74. DjeridaneA. YousfiM. NadjemiB. BoutassounaD. StockerP. VidalN. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds.Food Chem.200697465466010.1016/j.foodchem.2005.04.028
    [Google Scholar]
  75. Santana-GálvezJ. Cisneros-ZevallosL. Jacobo-VelázquezD. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome.Molecules201722335810.3390/molecules2203035828245635
    [Google Scholar]
  76. HanM.H. ParkC. LeeD.S. HongS.H. ChoiI.W. KimG.Y. ChoiS.H. ShimJ.H. ChaeJ.I. YooY.H. ChoiY.H. Cytoprotective effects of esculetin against oxidative stress are associated with the upregulation of Nrf2-mediated NQO1 expression via the activation of the ERK pathway.Int. J. Mol. Med.201739238038610.3892/ijmm.2016.283428000844
    [Google Scholar]
  77. MaatoukM. MustaphaN. Mokdad-BzeouichI. ChaabanH. AbedB. IaonnouI. GhediraK. GhoulM. GhediraL.C. Thermal treatment of luteolin-7-O-β-glucoside improves its immunomodulatory and antioxidant potencies.Cell Stress Chaperones201722677578510.1007/s12192‑017‑0808‑728578499
    [Google Scholar]
  78. ZaabatN. HayA.E. MichaletS. DarbourN. BayetC. SkandraniI. Chekir-GhediraL. AkkalS. Dijoux-FrancaM.G. Antioxidant and antigenotoxic properties of compounds isolated from Marrubium deserti de Noé.Food Chem. Toxicol.201149123328333510.1016/j.fct.2011.08.02621924316
    [Google Scholar]
  79. AtmaniD. ChaherN. BerbouchaM. AyouniK. LounisH. BoudaoudH. DebbacheN. AtmaniD. Antioxidant capacity and phenol content of selected Algerian medicinal plants.Food Chem.2009112230330910.1016/j.foodchem.2008.05.077
    [Google Scholar]
  80. KrishnaiahD. SarbatlyR. NithyanandamR. A review of the antioxidant potential of medicinal plant species.Food Bioprod. Process.201189321723310.1016/j.fbp.2010.04.008
    [Google Scholar]
  81. GardeliC. VassilikiP. AthanasiosM. KibourisT. KomaitisM. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts.Food Chem.200810731120113010.1016/j.foodchem.2007.09.036
    [Google Scholar]
  82. BahmaniM. SakiK. Rafieian-KopaeiM. KaramatiS.A. EftekhariZ. JelodariM. The most common herbal medicines affecting Sarcomastigophora branches: A review study.Asian. Pac. J. Trop. Med.20147S1S14S2110.1016/S1995‑7645(14)60198‑X
    [Google Scholar]
  83. NasriH. Rafieian-KopaeiM. Protective effects of herbal antioxidants on diabetic kidney disease.J. Res. Med. Sci.2014191828324672573
    [Google Scholar]
  84. Kafash-FarkhadN. Asadi-SamaniM. Rafieian-KopaeiM. A review on phytochemistry and pharmacological effects of Prangos ferulacea (L.).Lindl. Life Sci. J.201310360367
    [Google Scholar]
  85. ChaleshtoriR.S. ChaleshtoriF.S. RafieianM. Biological characterization of Iranian walnut (Juglans regia) leaves.Turk. J. Biol.201135563563910.3906/biy‑1005‑1
    [Google Scholar]
  86. AhmedD. KumarV. VermaA. ShuklaG.S. SharmaM. Antidiabetic, antioxidant, antihyperlipidemic effect of extract of Euryale ferox salisb. with enhanced histopathology of pancreas, liver and kidney in streptozotocin induced diabetic rats.Springerplus20154131510.1186/s40064‑015‑1059‑726155454
    [Google Scholar]
  87. BahmaniM. GolshahiH. SakiK. Rafieian-KopaeiM. DelfanB. MohammadiT. Medicinal plants and secondary metabolites for diabetes mellitus control.Asian Pac. J. Trop. Dis.20144S687S69210.1016/S2222‑1808(14)60708‑8
    [Google Scholar]
  88. Salah El DineR. AbdallahH. KandilZ. ZakiA. KhanS. KhanI. PPARα and γ activation effects of new nor-triterpenoidal saponins from the aerial parts of Anabasis articulata.Planta Med.201985427428110.1055/a‑0762‑088530360001
    [Google Scholar]
  89. HuX.Q. WangY.M. WangJ.F. XueY. LiZ.J. NagaoK. YanagitaT. XueC.H. Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARα and SREBP-1c signaling.Lipids Health Dis.2010912510.1186/1476‑511X‑9‑2520211032
    [Google Scholar]
  90. BhavsarS.K. FöllerM. GuS. VirS. ShahM.B. BhutaniK.K. SantaniD.D. LangF. Involvement of the PI3K/AKT pathway in the hypoglycemic effects of saponins from Helicteres isora.J. Ethnopharmacol.2009126338639610.1016/j.jep.2009.09.02719781620
    [Google Scholar]
  91. ElekofehintiO.O. KamdemJ.P. KadeI.J. RochaJ.B.T. AdanlawoI.G. Hypoglycemic, antiperoxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam. fruits in alloxan-induced diabetic rats.S. Afr. J. Bot.201388566110.1016/j.sajb.2013.04.010
    [Google Scholar]
  92. ElekofehintiO.O. Saponins: Anti-diabetic principles from medicinal plants – A review.Pathophysiology20152229510310.1016/j.pathophys.2015.02.00125753168
    [Google Scholar]
  93. UemuraT. GotoT. KangM.S. MizoguchiN. HiraiS. LeeJ.Y. NakanoY. ShonoJ. HoshinoS. TaketaniK. TsugeN. NarukamiT. MakishimaM. TakahashiN. KawadaT. Diosgenin, the main aglycon of fenugreek, inhibits LXRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice.J. Nutr.20111411172310.3945/jn.110.12559121106928
    [Google Scholar]
  94. DengY. HeK. YeX. ChenX. HuangJ. LiX. YuanL. JinY. JinQ. LiP. Saponin rich fractions from Polygonatum odoratum (Mill.) Druce with more potential hypoglycemic effects.J. Ethnopharmacol.2012141122823310.1016/j.jep.2012.02.02322366676
    [Google Scholar]
  95. KloubS.M. BanihaniS.A. AtroozO.M. HananehW.M. The effect of alcoholic extract of anabasis syriaca iljin on biochemical and histological parameters in rats.J. Toxicol202210.1155/2022/6945745
    [Google Scholar]
  96. DjeridaneA. HamdiA. BensaniaW. CheifaK. LakhdariI. YousfiM. The in vitro evaluation of antioxidative activity, α-glucosidase and α-amylase enzyme inhibitory of natural phenolic extracts.Diabetes Metab. Syndr.20159432433110.1016/j.dsx.2013.10.00725470628
    [Google Scholar]
  97. ZouK. ZhaoY. TuG. CuiJ. JiaZ. ZhangR. Two diastereomeric saponins with cytotoxic activity from Albizia julibrissin.Carbohydr. Res.2000324318218810.1016/S0008‑6215(99)00294‑310724532
    [Google Scholar]
  98. HeislerI. SutherlandM. BachranC. HebestreitP. SchnitgerA. MelzigM.F. FuchsH. Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells.J. Control. Release20051061-212313710.1016/j.jconrel.2005.04.00615935506
    [Google Scholar]
  99. GamalG. Abo-El-SeoudK.A. AttiaG. Triterpenoids from the aerial parts of Anabasis articulata (Forssk) Moq: Gastroprotective effect in vivo with in silico studies, cytotoxic and antimicrobial activities.Nat. Prod. Res.20211934380340
    [Google Scholar]
  100. ChiowK.H. PhoonM.C. PuttiT. TanB.K.H. ChowV.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection.Asian Pac. J. Trop. Med.2016911710.1016/j.apjtm.2015.12.00226851778
    [Google Scholar]
  101. AmtaghriS. AkdadM. SlaouiM. EddouksM. Traditional uses, pharmacological, and phytochemical studies of Euphorbia: A review.Curr. Top. Med. Chem.202222191553157010.2174/156802662266622071314343635838213
    [Google Scholar]
  102. AbdallahaH.M. Abdel-NaimcA.B. AshourdO.M. ShehataaI.A. Abdel-SattarbE.A. Anti-inflammatory activity of selected plants from Saudi Arabia.Z. Naturforsch. C J. Biosci.201469c1-21910.5560/ZNC.2012‑016824772817
    [Google Scholar]
  103. WuZ. DengX. HuQ. XiaoX. JiangJ. MaX. WuM. Houttuynia cordata Thunb: An ethnopharmacological review.Front. Pharmacol.20211271469410.3389/fphar.2021.71469434539401
    [Google Scholar]
  104. ShingnaisuiK. DeyT. MannaP. KalitaJ. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review.J. Ethnopharmacol.2018220354310.1016/j.jep.2018.03.03829605674
    [Google Scholar]
  105. del Carmen RecioM. GinerR. MáñezS. GuehoJ. JulienH. HostettmannK. RíosJ. Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas.Planta Med.199561191210.1055/s‑2006‑9579887701004
    [Google Scholar]
  106. ZhongS.M. WatermanP.G. JeffreysJ.A.D. Naphthoquinones and triterpenes from african Diospyros species.Phytochemistry19842351067107210.1016/S0031‑9422(00)82610‑2
    [Google Scholar]
  107. Abdel-ZaherA.O. SalimS.Y. AssafM.H. Abdel-HadyR.H. Antidiabetic activity and toxicity of Zizyphus spina-christi leaves.J. Ethnopharmacol.20051011-312913810.1016/j.jep.2005.04.00716009520
    [Google Scholar]
  108. ZhengL. ZhengJ. ZhaoY. WangB. WuL. LiangH. Three anti-tumor saponins from Albizia julibrissin.Bioorg. Med. Chem. Lett.200616102765276810.1016/j.bmcl.2006.02.00916504508
    [Google Scholar]
  109. Belyagoubi-BenhammouN. BelyagoubiL. BekkaraF.A. Phenolic contents and antioxidant activities in vitro of some selected Algerian plants.J. Med. Plants Res.201484011981207
    [Google Scholar]
  110. LiuH. WeiW. SunW. LiX. Protective effects of astragaloside IV on porcine-serum-induced hepatic fibrosis in rats and in vitro effects on hepatic stellate cells.J. Ethnopharmacol.2009122350250810.1016/j.jep.2009.01.03519429320
    [Google Scholar]
  111. MahmoodF.M. AbdulsahibW.K. Acute toxicity of methanolic extract of anabasis articulata stems.Int. J. Sci. Res.201523197064
    [Google Scholar]
  112. RH, A.S. A study of Apennine content of anabasis stiffer moq.Growing in Egypt1998
    [Google Scholar]
  113. NavarroP. GinerR.M. RecioM.C. MáñezS. Cerdá-NicolásM. RíosJ.L. In vivo anti-inflammatory activity of saponins from Bupleurum rotundifolium.Life Sci.200168101199120610.1016/S0024‑3205(00)01019‑511228104
    [Google Scholar]
  114. LiuX.Q. ChangS.Y. ParkS.Y. NoharaT. YookC.S. A new lupane-triterpene glycoside from the leaves ofAcanthopanax gracilistylus.Arch. Pharm. Res.200225683183610.1007/BF0297700012510834
    [Google Scholar]
  115. WanasA.S. MatsunamiK. OtsukaH. DesoukeyS.Y. FouadM.A. KamelM.S. Triterpene glycosides and glucosyl esters, and a triterpene from the leaves of Schefflera actinophylla.Chem. Pharm. Bull.201058121596160110.1248/cpb.58.159621139261
    [Google Scholar]
  116. AbudalsahibW. AbdA. JumaaB. Antiangiogenic activity of iraqi anabasis articulata stems in vivo study.Int. J. Sci. Res.201659
    [Google Scholar]
  117. XieY. PanH. SunH. LiD. A promising balanced Th1 and Th2 directing immunological adjuvant, saponins from the root of Platycodon grandiflorum.Vaccine200826313937394510.1016/j.vaccine.2008.01.06118547688
    [Google Scholar]
  118. GengJ. PengW. HuangY. FanH. LiS. Ginsenoside-Rg1 from Panax notoginseng prevents hepatic fibrosis induced by thioacetamide in rats.Eur. J. Pharmacol.20106341-316216910.1016/j.ejphar.2010.02.02220184879
    [Google Scholar]
  119. MohamedM.R.M. Evaluation of some plantderived antioxidants in treatment of liver fibrosis in rats. (Doctoral dissertation, M. Sc. Thesis)2011
    [Google Scholar]
  120. TackholmV. BoulosL. Students’ Flora of Egypt.(2nd Edition.)1974888
    [Google Scholar]
  121. BasahiM.A. Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia.Botany2018961064365110.1139/cjb‑2018‑0053
    [Google Scholar]
  122. Al-MaririA. SafiM. In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria.Iran. J. Med. Sci.2014391364324453392
    [Google Scholar]
  123. IgnaciukR. LeeJ.A. The germination of four annual strand line species.New Phytol.198084458159110.1111/j.1469‑8137.1980.tb04772.x
    [Google Scholar]
  124. JaliliB. BagheriH. AzadiS. SoltaniJ. Identification and salt tolerance evaluation of endophyte fungi isolates from halophyte plants.Int. J. Environ. Sci. Technol.20201773459346610.1007/s13762‑020‑02626‑y
    [Google Scholar]
  125. AssadiM. HamdiS.M.M. FajaniF. Palynological studies on some species of <i>Anabasis</i> L. (Amaranthaceae) from Iran.Bangladesh J. Plant Taxon.201623224725310.3329/bjpt.v23i2.30859
    [Google Scholar]
  126. LiuB.B. WangH.F. LiQ.L. ZhouX.K. ZhangY.G. XiaoM. LiQ.Q. ZhangW. LiW.J. Aurantimonas endophytica sp. nov., a novel endophytic bacterium isolated from roots of Anabasis elatior (C. A. Mey.).Schischk. Int. J. Syst. Evol. Microbiol.201666104112411710.1099/ijsem.0.00132027453213
    [Google Scholar]
  127. HanJ.X. WeiY. YAN, C. Influences of wings and salinity on the germination of the seeds of anabasis elatior.Xinjiang Nongye Daxue Xuebao2011141254264[J]
    [Google Scholar]
  128. MiddletonE.Jr KandaswamiC. TheoharidesT.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer.Pharmacol. Rev.200052467375111121513
    [Google Scholar]
  129. KsouriR. MegdicheW. DebezA. FallehH. GrignonC. AbdellyC. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima.Plant Physiol. Biochem.2007453-424424910.1016/j.plaphy.2007.02.00117408958
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257276051240111060414
Loading
/content/journals/chamc/10.2174/0118715257276051240111060414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test