Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Hypothermia and autophagy are critical regulators of cell homeostasis by regulating intra and intercellular cell communication. Myocardiocyte cryotherapy poses multiple cellular and subcellular effects on the injured cell, including upregulation of autophagy. Autophagy plays a crucial role in modifying cell metabolism by regulating downregulation, reducing reactive oxygen species production, and improving the natural cellular antioxidant defense system. Reduction of reactive oxygen species production and improving natural cellular antioxidant defense system. Therapeutic hypothermia ranges from 32-34°C in terms of local myocardiocyte cooling. Hypothermia induces autophagy by phosphorylating the Akt signaling pathway. Hypothermia has a more therapeutic effect when applied at the beginning of reperfusion rather than in the beginning of ischemia. Moderate hypothermia with 33°C poses most therapeutic effect by viability maintaining and reduction of reactive oxygen species release. Application of local hypothermia to myocardiocytes can be applied to infarcted myocardiocytes, anginal and to the cardiomyopathies.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/1871525721666230803102554
2024-06-01
2024-11-22
Loading full text...

Full text loading...

References

  1. TsaoC.W. AdayA.W. AlmarzooqZ.I. AlonsoA. BeatonA.Z. BittencourtM.S. BoehmeA.K. BuxtonA.E. CarsonA.P. Commodore-MensahY. ElkindM.S.V. EvensonK.R. Eze-NliamC. FergusonJ.F. GenerosoG. HoJ.E. KalaniR. KhanS.S. KisselaB.M. KnutsonK.L. LevineD.A. LewisT.T. LiuJ. LoopM.S. MaJ. MussolinoM.E. NavaneethanS.D. PerakA.M. PoudelR. Rezk-HannaM. RothG.A. SchroederE.B. ShahS.H. ThackerE.L. VanWagnerL.B. ViraniS.S. VoecksJ.H. WangN.Y. YaffeK. MartinS.S. Heart disease and stroke statistics-2022 Update: A report from the american heart association.Circulation20221458e153e63910.1161/CIR.000000000000105235078371
    [Google Scholar]
  2. MarzoogB.A. VlasovaT.I. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy.Egypt. J. Med. Hum. Genet.20222314110.1186/s43042‑022‑00250‑8
    [Google Scholar]
  3. MarzoogB.A. Transcription factors - the essence of heart regeneration: A potential novel therapeutic strategy.Curr. Mol. Med.202323323223810.2174/156652402266622021612365035170408
    [Google Scholar]
  4. O’GaraP.T. KushnerF.G. AscheimD.D. CaseyD.E.Jr ChungM.K. de LemosJ.A. EttingerS.M. FangJ.C. FesmireF.M. FranklinB.A. GrangerC.B. KrumholzH.M. LinderbaumJ.A. MorrowD.A. NewbyL.K. OrnatoJ.P. OuN. RadfordM.J. Tamis-HollandJ.E. TommasoJ.E. TracyC.M. WooY.J. ZhaoD.X. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: Executive summary: A report of the american college of cardiology foundation/american heart association task force on practice guidelines.Circulation2013127452955510.1161/CIR.0b013e3182742c8423247303
    [Google Scholar]
  5. NeumannJ.T. GoßlingA. SörensenN.A. BlankenbergS. MagnussenC. WestermannD. Temporal trends in incidence and outcome of acute coronary syndrome.Clin. Res. Cardiol.202010991186119210.1007/s00392‑020‑01612‑132034482
    [Google Scholar]
  6. NeumannF.J. Sousa-UvaM. AhlssonA. AlfonsoF. BanningA.P. BenedettoU. ByrneR.A. ColletJ.P. FalkV. HeadS.J. JüniP. KastratiA. KollerA. KristensenS.D. NiebauerJ. RichterD.J. SeferovićP.M. SibbingD. StefaniniG.G. WindeckerS. YadavR. ZembalaM.O. WijnsW. GlineurD. AboyansV. AchenbachS. AgewallS. AndreottiF. BarbatoE. BaumbachA. BrophyJ. BuenoH. CalvertP.A. CapodannoD. DavierwalaP.M. DelgadoV. DudekD. FreemantleN. Funck-BrentanoC. GaemperliO. GielenS. GilardM. GorenekB. HaasenritterJ. HaudeM. IbanezB. IungB. JeppssonA. KatritsisD. KnuutiJ. KolhP. Leite-MoreiraA. LundL.H. MaisanoF. MehilliJ. MetzlerB. MontalescotG. PaganoD. PetronioA.S. PiepoliM.F. PopescuB.A. SádabaR. ShlyakhtoE. SilberS. SimpsonI.A. SparvD. TavillaG. ThieleH. TousekP. Van BelleE. VranckxP. WitkowskiA. ZamoranoJ.L. RoffiM. WindeckerS. AboyansV. AgewallS. BarbatoE. BuenoH. CocaA. ColletJ-P. ComanI.M. DeanV. DelgadoV. FitzsimonsD. GaemperliO. HindricksG. IungB. JüniP. KatusH.A. KnuutiJ. LancellottiP. LeclercqC. McDonaghT.A. PiepoliM.F. PonikowskiP. RichterD.J. RoffiM. ShlyakhtoE. Sousa-UvaM. SimpsonI.A. ZamoranoJ.L. PaganoD. FreemantleN. Sousa-UvaM. ChettibiM. SisakianH. MetzlerB. İbrahimovF. StelmashokV.I. PostadzhiyanA. SkoricB. EftychiouC. KalaP. TerkelsenC.J. MagdyA. EhaJ. NiemeläM. KedevS. MotreffP. AladashviliA. MehilliJ. KanakakisI-G. BeckerD. GudnasonT. PeaceA. RomeoF. BajraktariG. KerimkulovaA. RudzītisA. GhazzalZ. KibarskisA. PereiraB. XuerebR.G. HofmaS.H. SteigenT.K. WitkowskiA. de OliveiraE.I. MotS. DuplyakovD. ZavattaM. BeleslinB. KovarF. BuncM. OjedaS. WittN. JegerR. AddadF. AkdemirR. ParkhomenkoA. HendersonR. 2018 ESC/EACTS Guidelines on myocardial revascularization.Eur. Heart J.20194028716510.1093/eurheartj/ehy39430165437
    [Google Scholar]
  7. HausenloyD.J. YellonD.M. Myocardial ischemia-reperfusion injury: A neglected therapeutic target.J. Clin. Invest.201312319210010.1172/JCI6287423281415
    [Google Scholar]
  8. MaruyamaT. NodaN.N. Autophagy-regulating protease Atg4: Structure, function, regulation and inhibition.J. Antibiot.2018711727810.1038/ja.2017.10428901328
    [Google Scholar]
  9. El FarissiM. KeulardsD.C.J. ZelisJ.M. van ’t VeerM. ZimmermannF.M. PijlsN.H.J. OtterspoorL.C. Hypothermia for reduction of myocardial reperfusion injury in acute myocardial infarction: Closing the translational gap.Circ. Cardiovasc. Interv.2021148e01032610.1161/CIRCINTERVENTIONS.120.01032634266310
    [Google Scholar]
  10. HaleS.L. KlonerR.A. Mild hypothermia as a cardioprotective approach for acute myocardial infarction: Laboratory to clinical application.J. Cardiovasc. Pharmacol. Ther.201116213113910.1177/107424841038728021149829
    [Google Scholar]
  11. ErlingeD. GötbergM. GrinesC. DixonS. BaranK. KandzariD. OlivecronaG.K. A pooled analysis of the effect of endovascular cooling on infarct size in patients with ST-elevation myocardial infarction.EuroIntervention20138121435144010.4244/EIJV8I12A21723164721
    [Google Scholar]
  12. MarzoogB.A. VlasovaT.I. Systemic and local hypothermia in the context of cell regeneration.Cryo Lett.2022432667310.54680/fr2221011011236626147
    [Google Scholar]
  13. MarzoogB.A. The metabolic syndrome puzzles; Possible pathogenesis and management.Curr. Diabetes Rev.2023194e29042220425810.2174/157339981866622042910041135507784
    [Google Scholar]
  14. HeC. KlionskyD.J. Regulation mechanisms and signaling pathways of autophagy.Annu. Rev. Genet.2009431679310.1146/annurev‑genet‑102808‑11491019653858
    [Google Scholar]
  15. ParzychK.R. KlionskyD.J. An overview of autophagy: Morphology, mechanism, and regulation.Antioxid. Redox Signal.201420346047310.1089/ars.2013.537123725295
    [Google Scholar]
  16. YinZ. PascualC. KlionskyD. Autophagy: Machinery and regulation.Microb. Cell201631258859610.15698/mic2016.12.54628357331
    [Google Scholar]
  17. ShaoZ.H. SharpW.W. WojcikK.R. LiC.Q. HanM. ChangW.T. RamachandranS. LiJ. HamannK.J. Vanden HoekT.L. Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants.Am. J. Physiol. Heart Circ. Physiol.20102986H2164H217310.1152/ajpheart.00994.200920382860
    [Google Scholar]
  18. RenJ. YangL. ZhuL. XuX. CeylanA.F. GuoW. YangJ. ZhangY. Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: Role of Sirt1-mediated autophagy regulation.Aging Cell201716597698710.1111/acel.1261628681509
    [Google Scholar]
  19. ChenJ. BianX. LiY. XiaoX. YinY. DuX. WangC. LiL. BaiY. LiuX. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes.Mol. Med. Rep.20202242617262610.3892/mmr.2020.1137432945433
    [Google Scholar]
  20. ChengB.C. HuangH.S. ChaoC.M. HsuC.C. ChenC.Y. ChangC.P. Hypothermia may attenuate ischemia/reperfusion-induced cardiomyocyte death by reducing autophagy.Int. J. Cardiol.201316832064206910.1016/j.ijcard.2013.01.16223453869
    [Google Scholar]
  21. DaiW. HerringM.J. HaleS.L. KlonerR.A. Rapid surface cooling by thermosuit system dramatically reduces scar size, prevents post‐infarction adverse left ventricular remodeling, and improves cardiac function in rats.J. Am. Heart Assoc.201547e00226510.1161/JAHA.115.00226526116692
    [Google Scholar]
  22. ErlingeD. GötbergM. NocM. LangI. HolzerM. ClemmensenP. JensenU. MetzlerB. JamesS. BøtkerH.E. OmerovicE. KoulS. EngblomH. CarlssonM. ArhedenH. ÖstlundO. WallentinL. KlosB. HarnekJ. OlivecronaG.K. Therapeutic hypothermia for the treatment of acute myocardial infarction-combined analysis of the RAPID MI-ICE and the CHILL-MI trials.Ther. Hypothermia Temp. Manag.201552778410.1089/ther.2015.000925985169
    [Google Scholar]
  23. Vásquez-TrincadoC. García-CarvajalI. PennanenC. ParraV. HillJ.A. RothermelB.A. LavanderoS. Mitochondrial dynamics, mitophagy and cardiovascular disease.J. Physiol.2016594350952510.1113/JP27130126537557
    [Google Scholar]
  24. Marek-IannucciS. ThomasA. HouJ. CrupiA. SinJ. TaylorD.J. CzerL.S. EsmailianF. MentzerR.M.Jr AndresA.M. GottliebR.A. Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury.Sci. Rep.2019911000110.1038/s41598‑019‑46452‑w31292486
    [Google Scholar]
  25. MorrisonL.J. ThomaB. Translating targeted temperature management trials into postarrest care.N. Engl. J. Med.2021384242344234510.1056/NEJMe210696934133865
    [Google Scholar]
  26. YangD. GuoS. ZhangT. LiH. Hypothermia attenuates ischemia/reperfusion-induced endothelial cell apoptosis via alterations in apoptotic pathways and JNK signaling.FEBS Lett.2009583152500250610.1016/j.febslet.2009.07.00619596001
    [Google Scholar]
  27. KanekoT. KibayashiK. Mild hypothermia facilitates the expression of cold-inducible RNA-binding protein and heat shock protein 70.1 in mouse brain.Brain Res.2012146612813610.1016/j.brainres.2012.05.00122609236
    [Google Scholar]
  28. PhysiologyC. YangD. ZengY. TianC. LiuJ. GuoS-B. ZhengY-H. LiH-H. LiH. ZhengY. Transcriptomic analysis of mild hypothermia-dependent alterations during endothelial reperfusion injury.Cell. Physiol. Biochem.201025660561410.1159/00031507920511705
    [Google Scholar]
  29. FrinkM. FlohéS. van GriensvenM. MommsenP. HildebrandF. Facts and fiction: The impact of hypothermia on molecular mechanisms following major challenge.Mediators Inflamm.2012201211310.1155/2012/76284022481864
    [Google Scholar]
  30. ChipS. ZelmerA. OgunsholaO.O. Felderhoff-MueserU. NitschC. BührerC. WellmannS. The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection.Neurobiol. Dis.201143238839610.1016/j.nbd.2011.04.01021527344
    [Google Scholar]
  31. MarzoogB.A. Autophagy behavior in post-myocardial infarction injury.Cardiovasc. Hematol. Disord. Drug Targets20232310.2174/1871529X2366623050312361237138481
    [Google Scholar]
  32. ErlingeD. GötbergM. LangI. HolzerM. NocM. ClemmensenP. JensenU. MetzlerB. JamesS. BötkerH.E. OmerovicE. EngblomH. CarlssonM. ArhedenH. ÖstlundO. WallentinL. HarnekJ. OlivecronaG.K. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: A randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction.J. Am. Coll. Cardiol.201463181857186510.1016/j.jacc.2013.12.02724509284
    [Google Scholar]
  33. NicholG. StricklandW. ShavelleD. MaeharaA. Ben-YehudaO. GenereuxP. DresslerO. ParvataneniR. NicholsM. McPhersonJ. BarbeauG. LadduA. ElrodJ.A. TullyG.W. IvanhoeR. StoneG.W. Prospective, multicenter, randomized, controlled pilot trial of peritoneal hypothermia in patients with ST-segment- elevation myocardial infarction.Circ. Cardiovasc. Interv.201583e00196510.1161/CIRCINTERVENTIONS.114.00196525699687
    [Google Scholar]
  34. SchachamY.N. CohenB. BajracharyaG.R. WaltersM. ZimmermanN. MaoG. TaniosM.A. SesslerD.I. Mild perioperative hypothermia and myocardial injury.Anesth. Analg.201812761335134110.1213/ANE.000000000000384030300173
    [Google Scholar]
  35. OtterspoorL.C. van NunenL.X. RosalinaT.T. VeerM.V. TuijlS.V. StijnenM. RuttenM.C.M. van de VosseF.N. PijlsN.H.J. Intracoronary hypothermia for acute myocardial infarction in the isolated beating pig heart.Am. J. Transl. Res.20179255856828337283
    [Google Scholar]
  36. AlushiB. NdrepepaG. LautenA. LahmannA.L. BongiovanniD. KufnerS. XhepaE. LaugwitzK.L. JonerM. LandmesserU. ThieleH. KastratiA. CasseseS. Hypothermia in patients with acute myocardial infarction: A meta-analysis of randomized trials.Clin. Res. Cardiol.20211101849210.1007/s00392‑020‑01652‑732303830
    [Google Scholar]
  37. DashR. MitsutakeY. PyunW.B. DawoudF. LyonsJ. TachibanaA. YahagiK. MatsuuraY. KolodgieF.D. VirmaniR. McConnellM.V. IllindalaU. IkenoF. YeungA. Dose-dependent cardioprotection of moderate (32°C) Versus Mild (35°C) therapeutic hypothermia in porcine acute myocardial infarction.JACC Cardiovasc. Interv.201811219520510.1016/j.jcin.2017.08.05629348013
    [Google Scholar]
  38. KangI.S. FumiakiI. PyunW.B. Therapeutic hypothermia for cardioprotection in acute myocardial infarction.Yonsei Med. J.201657229129710.3349/ymj.2016.57.2.29126847278
    [Google Scholar]
  39. KohlhauerM. PellV.R. BurgerN. SpiroskiA.M. GruszczykA. MulveyJ.F. MottahedinA. CostaA.S.H. FrezzaC. GhalehB. MurphyM.P. TissierR. KriegT. Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive.Basic Res. Cardiol.201911431810.1007/s00395‑019‑0727‑030877396
    [Google Scholar]
  40. WoodallB.P. GustafssonÅ.B. Autophagy-A key pathway for cardiac health and longevity.Acta Physiol.20182234e1307410.1111/apha.1307429660243
    [Google Scholar]
  41. DaiD.F. KarunadharmaP.P. ChiaoY.A. BasistyN. CrispinD. HsiehE.J. ChenT. GuH. DjukovicD. RafteryD. BeyerR.P. MacCossM.J. RabinovitchP.S. Altered proteome turnover and remodeling by short‐term caloric restriction or rapamycin rejuvenate the aging heart.Aging Cell201413352953910.1111/acel.1220324612461
    [Google Scholar]
  42. LeeI.H. CaoL. MostoslavskyR. LombardD.B. LiuJ. BrunsN.E. TsokosM. AltF.W. FinkelT. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy.Proc. Natl. Acad. Sci.200810593374337910.1073/pnas.071214510518296641
    [Google Scholar]
  43. HaigisM.C. SinclairD.A. Mammalian sirtuins: Biological insights and disease relevance.Annu. Rev. Pathol.20105125329510.1146/annurev.pathol.4.110807.09225020078221
    [Google Scholar]
  44. HariharanN. MaejimaY. NakaeJ. PaikJ. DePinhoR.A. SadoshimaJ. Deacetylation of foxo by sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes.Circ. Res.2010107121470148210.1161/CIRCRESAHA.110.22737120947830
    [Google Scholar]
  45. BargerJ.L. KayoT. VannJ.M. AriasE.B. WangJ. HackerT.A. WangY. RaederstorffD. MorrowJ.D. LeeuwenburghC. AllisonD.B. SaupeK.W. CarteeG.D. WeindruchR. ProllaT.A. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice.PLoS One200836e226410.1371/journal.pone.000226418523577
    [Google Scholar]
  46. YamamotoT. ByunJ. ZhaiP. IkedaY. OkaS. SadoshimaJ. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion.PLoS One201496e9897210.1371/journal.pone.009897224905194
    [Google Scholar]
  47. OnkenB. DriscollM. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1.PLoS One201051e875810.1371/journal.pone.000875820090912
    [Google Scholar]
  48. HsuC.P. OkaS. ShaoD. HariharanN. SadoshimaJ. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes.Circ. Res.2009105548149110.1161/CIRCRESAHA.109.20370319661458
    [Google Scholar]
  49. GalluzziL. Bravo-San PedroJ.M. LevineB. GreenD.R. KroemerG. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles.Nat. Rev. Drug Discov.201716748751110.1038/nrd.2017.2228529316
    [Google Scholar]
  50. CohenH.Y. MillerC. BittermanK.J. WallN.R. HekkingB. KesslerB. HowitzK.T. GorospeM. de CaboR. SinclairD.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase.Science2004305568239039210.1126/science.109919615205477
    [Google Scholar]
  51. MorselliE. MaiuriM.C. MarkakiM. MegalouE. PasparakiA. PalikarasK. CriolloA. GalluzziL. MalikS.A. VitaleI. MichaudM. MadeoF. TavernarakisN. KroemerG. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy.Cell Death Dis.201011e1010.1038/cddis.2009.821364612
    [Google Scholar]
  52. FryerL.G.D. Parbu-PatelA. CarlingD. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways.J. Biol. Chem.200227728252262523210.1074/jbc.M20248920011994296
    [Google Scholar]
  53. CalvertJ.W. GundewarS. JhaS. GreerJ.J.M. BestermannW.H. TianR. LeferD.J. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling.Diabetes200857369670510.2337/db07‑109818083782
    [Google Scholar]
  54. SunD. YangF. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism.Biochem. Biophys. Res. Commun.2017486232933510.1016/j.bbrc.2017.03.03628302481
    [Google Scholar]
  55. AlversA.L. WoodM.S. HuD. KaywellA.C. DunnW.A.Jr ArisJ.P. Autophagy is required for extension of yeast chronological life span by rapamycin.Autophagy20095684784910.4161/auto.882419458476
    [Google Scholar]
  56. WuX. LiuZ. YuX.Y. XuS. LuoJ. Autophagy and cardiac diseases: Therapeutic potential of natural products.Med. Res. Rev.202141131434110.1002/med.2173332969064
    [Google Scholar]
  57. Abdullah MarzoogB. Pathophysiology of cardiac cell injury in post-Covid-19 syndrome.Emir. Med. J.2023410.2174/0250688204666230428120808
    [Google Scholar]
  58. MarzoogB.A. Autophagy behavior in endothelial cell regeneration.Curr. Mol. Med.2022
    [Google Scholar]
  59. MarzoogB. Lipid behavior in metabolic syndrome pathophysiology.Curr. Diabetes Rev.2022186e15092119649710.2174/157339981766621091510132134525924
    [Google Scholar]
  60. MarzoogB.A. VlasovaT.I. Membrane lipids under norm and pathology.Eur. J. Clini. Experimen. Med.2021191597510.15584/ejcem.2021.1.9
    [Google Scholar]
  61. MarzoogB.A. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime!Anat. Cell Biol.202356216617810.5115/acb.22.19036879408
    [Google Scholar]
  62. MizushimaN. LevineB. CuervoA.M. KlionskyD.J. Autophagy fights disease through cellular self-digestion.Nature200845171821069107510.1038/nature0663918305538
    [Google Scholar]
  63. WirawanE. BergheT.V. LippensS. AgostinisP. VandenabeeleP. Autophagy: For better or for worse.Cell Res.2012221436110.1038/cr.2011.15221912435
    [Google Scholar]
/content/journals/chamc/10.2174/1871525721666230803102554
Loading
/content/journals/chamc/10.2174/1871525721666230803102554
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test