Skip to content
2000
image of Oxidative Stress in Cardiovascular Diseases: Mechanisms and Exploring Advanced Therapies

Abstract

The recognition of oxidative stress as a factor influencing the development and progression of cardiovascular diseases (CVDs) is growing. By producing such reactive oxygen species (ROS) in diverse areas within cells, including mitochondria and Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH)-oxidases, they end up causing damage through the oxidation of lipids, proteins, and DNA. ROS indicates the beginning of inflammatory responses and endothelial dysfunction, which are necessary to produce obstructions in blood vessels and decreased blood vessel function. The fact that oxidative stress plays a significant role in CVD development draws more attention to the need for novel therapies that aim to correct redox imbalances. Therefore, natural polyphenols and antioxidants like vitamin C or E have shown their efficacy in lowering levels of ROS and protecting against the damage caused by oxidative stress. Anyone attempting to cure CVDs should focus on improving the safety and efficacy of antioxidant treatments and identifying which patients will benefit from them the most. This paper discusses not only advanced treatments but also the role played by oxidative stress in such CVD as high blood pressure, hypercholesterolemia, and ischemic heart disease.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257344485250207074727
2025-02-26
2025-05-02
Loading full text...

Full text loading...

References

  1. Roth G.A. Mensah G.A. Johnson C.O. Addolorato G. Ammirati E. Baddour L.M. Barengo N.C. Beaton A.Z. Benjamin E.J. Benziger C.P. Bonny A. Brauer M. Brodmann M. Cahill T.J. Carapetis J. Catapano A.L. Chugh S.S. Cooper L.T. Coresh J. Criqui M. DeCleene N. Eagle K.A. Bell E.S. Feigin V.L. Solà F.J. Fowkes G. Gakidou E. Grundy S.M. He F.J. Howard G. Hu F. Inker L. Karthikeyan G. Kassebaum N. Koroshetz W. Lavie C. Jones L.D. Lu H.S. Mirijello A. Temesgen A.M. Mokdad A. Moran A.E. Muntner P. Narula J. Neal B. Ntsekhe M. Moraes de Oliveira G. Otto C. Owolabi M. Pratt M. Rajagopalan S. Reitsma M. Ribeiro A.L.P. Rigotti N. Rodgers A. Sable C. Shakil S. Hahnle S.K. Stark B. Sundström J. Timpel P. Tleyjeh I.M. Valgimigli M. Vos T. Whelton P.K. Yacoub M. Zuhlke L. Murray C. Fuster V. Roth G.A. Mensah G.A. Johnson C.O. Addolorato G. Ammirati E. Baddour L.M. Barengo N.C. Beaton A. Benjamin E.J. Benziger C.P. Bonny A. Brauer M. Brodmann M. Cahill T.J. Carapetis J.R. Catapano A.L. Chugh S. Cooper L.T. Coresh J. Criqui M.H. DeCleene N.K. Eagle K.A. Bell E.S. Feigin V.L. Sola F.J. Fowkes F.G.R. Gakidou E. Grundy S.M. He F.J. Howard G. Hu F. Inker L. Karthikeyan G. Kassebaum N.J. Koroshetz W.J. Lavie C. Jones L.D. Lu H.S. Mirijello A. Misganaw A.T. Mokdad A.H. Moran A.E. Muntner P. Narula J. Neal B. Ntsekhe M. Oliveira G.M.M. Otto C.M. Owolabi M.O. Pratt M. Rajagopalan S. Reitsma M.B. Ribeiro A.L.P. Rigotti N.A. Rodgers A. Sable C.A. Shakil S.S. Sliwa K. Stark B.A. Sundström J. Timpel P. Tleyjeh I.I. Valgimigli M. Vos T. Whelton P.K. Yacoub M. Zuhlke L.J. Kangevari A.M. Abdi A. Abedi A. Aboyans V. Abrha W.A. Gharbieh A.E. Abushouk A.I. Acharya D. Adair T. Adebayo O.M. Ademi Z. Advani S.M. Afshari K. Afshin A. Agarwal G. Agasthi P. Ahmad S. Ahmadi S. Ahmed M.B. Aji B. Akalu Y. Sholabi A.W. Aklilu A. Akunna C.J. Alahdab F. Eyadhy A.A. Alhabib K.F. Alif S.M. Alipour V. Aljunid S.M. Alla F. Hashiani A.A. Almustanyir S. Raddadi A.R.M. Amegah A.K. Amini S. Aminorroaya A. Amu H. Amugsi D.A. Ancuceanu R. Anderlini D. Andrei T. Andrei C.L. Moghaddam A.A. Anteneh Z.A. Antonazzo I.C. Antony B. Anwer R. Appiah L.T. Arabloo J. Ärnlöv J. Artanti K.D. Ataro Z. Ausloos M. Burgos A.L. Awan A.T. Awoke M.A. Ayele H.T. Ayza M.A. Azari S. B D.B. Baheiraei N. Baig A.A. Bakhtiari A. Banach M. Banik P.C. Baptista E.A. Barboza M.A. Barua L. Basu S. Bedi N. Béjot Y. Bennett D.A. Bensenor I.M. Berman A.E. Bezabih Y.M. Bhagavathula A.S. Bhaskar S. Bhattacharyya K. Bijani A. Bikbov B. Birhanu M.M. Boloor A. Brant L.C. Brenner H. Briko N.I. Butt Z.A. Caetano dos Santos F.L. Cahill L.E. Hurtado C.L. Cámera L.A. Nonato C.I.R. Brito C.C. Car J. Carrero J.J. Carvalho F. Orjuela C.C.A. López C.F. Cerin E. Charan J. Chattu V.K. Chen S. Chin K.L. Choi J-Y.J. Chu D-T. Chung S-C. Cirillo M. Coffey S. Conti S. Costa V.M. Cundiff D.K. Dadras O. Dagnew B. Dai X. Damasceno A.A.M. Dandona L. Dandona R. Davletov K. De la Cruz-Góngora V. De la Hoz F.P. Neve D.J-W. Gutiérrez D.E. Molla D.M. Derseh B.T. Desai R. Deuschl G. Dharmaratne S.D. Dhimal M. Dhungana R.R. Dianatinasab M. Diaz D. Djalalinia S. Dokova K. Douiri A. Duncan B.B. Duraes A.R. Eagan A.W. Ebtehaj S. Eftekhari A. Eftekharzadeh S. Ekholuenetale M. Nahas E.N. Elgendy I.Y. Elhadi M. Jaafary E.S.I. Esteghamati S. Etisso A.E. Eyawo O. Fadhil I. Faraon E.J.A. Faris P.S. Farwati M. Farzadfar F. Fernandes E. Prendes F.C. Ferrara P. Filip I. Fischer F. Flood D. Fukumoto T. Gad M.M. Gaidhane S. Ganji M. Garg J. Gebre A.K. Gebregiorgis B.G. Gebregzabiher K.Z. Gebremeskel G.G. Getacher L. Obsa A.G. Ghajar A. Ghashghaee A. Ghith N. Giampaoli S. Gilani S.A. Gill P.S. Gillum R.F. Glushkova E.V. Gnedovskaya E.V. Golechha M. Gonfa K.B. Goudarzian A.H. Goulart A.C. Guadamuz J.S. Guha A. Guo Y. Gupta R. Hachinski V. Nejad H.N. Haile T.G. Hamadeh R.R. Hamidi S. Hankey G.J. Hargono A. Hartono R.K. Hashemian M. Hashi A. Hassan S. Hassen H.Y. Havmoeller R.J. Hay S.I. Hayat K. Heidari G. Herteliu C. Holla R. Hosseini M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Househ M. Huang J. Humayun A. Iavicoli I. Ibeneme C.U. Ibitoye S.E. Ilesanmi O.S. Ilic I.M. Ilic M.D. Iqbal U. Irvani S.S.N. Islam S.M.S. Islam R.M. Iso H. Iwagami M. Jain V. Javaheri T. Jayapal S.K. Jayaram S. Jayawardena R. Jeemon P. Jha R.P. Jonas J.B. Jonnagaddala J. Joukar F. Jozwiak J.J. Jürisson M. Kabir A. Kahlon T. Kalani R. Kalhor R. Kamath A. Kamel I. Kandel H. Kandel A. Karch A. Kasa A.S. Katoto P.D.M.C. Kayode G.A. Khader Y.S. Khammarnia M. Khan M.S. Khan M.N. Khan M. Khan E.A. Khatab K. Kibria G.M.A. Kim Y.J. Kim G.R. Kimokoti R.W. Kisa S. Kisa A. Kivimäki M. Kolte D. Koolivand A. Korshunov V.A. Laxminarayana K.S.L. Koyanagi A. Krishan K. Krishnamoorthy V. Defo K.B. Bicer K.B. Kulkarni V. Kumar G.A. Kumar N. Kurmi O.P. Kusuma D. Kwan G.F. Vecchia L.C. Lacey B. Lallukka T. Lan Q. Lasrado S. Lassi Z.S. Lauriola P. Lawrence W.R. Laxmaiah A. LeGrand K.E. Li M-C. Li B. Li S. Lim S.S. Lim L-L. Lin H. Lin Z. Lin R-T. Liu X. Lopez A.D. Lorkowski S. Lotufo P.A. Lugo A. M N.K. Madotto F. Mahmoudi M. Majeed A. Malekzadeh R. Malik A.A. Mamun A.A. Manafi N. Mansournia M.A. Mantovani L.G. Martini S. Mathur M.R. Mazzaglia G. Mehata S. Mehndiratta M.M. Meier T. Menezes R.G. Meretoja A. Mestrovic T. Miazgowski B. Miazgowski T. Michalek I.M. Miller T.R. Mirrakhimov E.M. Mirzaei H. Moazen B. Moghadaszadeh M. Mohammad Y. Mohammad D.K. Mohammed S. Mohammed M.A. Mokhayeri Y. Molokhia M. Montasir A.A. Moradi G. Moradzadeh R. Moraga P. Morawska L. Velásquez M.I. Morze J. Mubarik S. Muruet W. Musa K.I. Nagarajan A.J. Nalini M. Nangia V. Naqvi A.A. Swamy N.S. Nascimento B.R. Nayak V.C. Nazari J. Nazarzadeh M. Negoi R.I. Kandel N.S. Nguyen H.L.T. Nixon M.R. Norrving B. Noubiap J.J. Nouthe B.E. Nowak C. Odukoya O.O. Ogbo F.A. Olagunju A.T. Orru H. Ortiz A. Ostroff S.M. Padubidri J.R. Palladino R. Pana A. Jonas P.S. Parekh U. Park E-C. Parvizi M. Kan P.F. Patel U.K. Pathak M. Paudel R. Pepito V.C.F. Perianayagam A. Perico N. Pham H.Q. Pilgrim T. Piradov M.A. Pishgar F. Podder V. Polibin R.V. Pourshams A. Pribadi D.R.A. Rabiee N. Rabiee M. Radfar A. Rafiei A. Rahim F. Movaghar R.V. Rahman U.M.H. Rahman M.A. Rahmani A.M. Rakovac I. Ram P. Ramalingam S. Rana J. Ranasinghe P. Rao S.J. Rathi P. Rawal L. Rawasia W.F. Rawassizadeh R. Remuzzi G. Renzaho A.M.N. Rezapour A. Riahi S.M. Thomson R.R.L. Roever L. Rohloff P. Romoli M. Roshandel G. Rwegerera G.M. Saadatagah S. Ayad S.M.M. Sabour S. Sacco S. Sadeghi M. Moghaddam S.S. Safari S. Sahebkar A. Salehi S. Salimzadeh H. Samaei M. Samy A.M. Santos I.S. Milicevic S.M.M. Sarrafzadegan N. Sarveazad A. Sathish T. Sawhney M. Saylan M. Schmidt M.I. Schutte A.E. Senthilkumaran S. Sepanlou S.G. Sha F. Shahabi S. Shahid I. Shaikh M.A. Shamali M. Shamsizadeh M. Shawon M.S.R. Sheikh A. Shigematsu M. Shin M-J. Shin J.I. Shiri R. Shiue I. Shuval K. Siabani S. Siddiqi T.J. Silva D.A.S. Singh J.A. Mtech A.S. Skryabin V.Y. Skryabina A.A. Soheili A. Spurlock E.E. Stockfelt L. Stortecky S. Stranges S. Abdulkader S.R. Tadbiri H. Tadesse E.G. Tadesse D.B. Tajdini M. Tariqujjaman M. Teklehaimanot B.F. Temsah M-H. Tesema A.K. Thakur B. Thankappan K.R. Thapar R. Thrift A.G. Timalsina B. Tonelli M. Touvier M. Palone T.M.R. Tripathi A. Tripathy J.P. Truelsen T.C. Tsegay G.M. Tsegaye G.W. Tsilimparis N. Tusa B.S. Tyrovolas S. Umapathi K.K. Unim B. Unnikrishnan B. Usman M.S. Vaduganathan M. Valdez P.R. Vasankari T.J. Velazquez D.Z. Venketasubramanian N. Vu G.T. Vujcic I.S. Waheed Y. Wang Y. Wang F. Wei J. Weintraub R.G. Weldemariam A.H. Westerman R. Winkler A.S. Wiysonge C.S. Wolfe C.D.A. Wubishet B.L. Xu G. Yadollahpour A. Yamagishi K. Yan L.L. Yandrapalli S. Yano Y. Yatsuya H. Yeheyis T.Y. Yeshaw Y. Yilgwan C.S. Yonemoto N. Yu C. Yusefzadeh H. Zachariah G. Zaman S.B. Zaman M.S. Zamanian M. Zand R. Zandifar A. Zarghi A. Zastrozhin M.S. Zastrozhina A. Zhang Z-J. Zhang Y. Zhang W. Zhong C. Zou Z. Zuniga Y.M.H. Murray C.J.L. Fuster V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 2020 76 25 2982 3021 10.1016/j.jacc.2020.11.010 33309175
    [Google Scholar]
  2. Song H. Fang F. Arnberg F.K. Cols M.D. de la Cruz F.L. Almqvist C. Fall K. Lichtenstein P. Thorgeirsson G. Valdimarsdóttir U.A. Stress related disorders and risk of cardiovascular disease: Population based, sibling controlled cohort study. BMJ 2019 365 l1255 10.1136/bmj.l1255 30971390
    [Google Scholar]
  3. Frąk W. Wojtasińska A. Lisińska W. Młynarska E. Franczyk B. Rysz J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines 2022 10 8 1938 10.3390/biomedicines10081938 36009488
    [Google Scholar]
  4. Deruy D.E. Peugnet V. Turkieh A. Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants 2020 9 9 864 10.3390/antiox9090864 32937950
    [Google Scholar]
  5. Koene R.J. Prizment A.E. Blaes A. Konety S.H. Shared risk factors in cardiovascular disease and cancer. Circulation 2016 133 11 1104 1114 10.1161/CIRCULATIONAHA.115.020406 26976915
    [Google Scholar]
  6. Daiber A. Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic. Biol. Med. 2020 157 February 15 37 10.1016/j.freeradbiomed.2020.02.026 32131026
    [Google Scholar]
  7. Agostini F. Bisaglia M. Plotegher N. Linking ROS levels to autophagy: The key role of AMPK. Antioxidants 2023 12 7 1406 10.3390/antiox12071406 37507945
    [Google Scholar]
  8. Shaito A Aramouni K Assaf R Parenti A Orekhov A Yazbi A El Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. Front. Biosci. 2022 27 3 105 10.31083/j.fbl2703105
    [Google Scholar]
  9. Liu W. Liang X. Shi Y. Effects of hirudin on high glucose-induced oxidative stress and inflammatory pathway in rat dorsal root ganglion neurons. Chin. J. Integr. Med. 2020 26 3 197 204 10.1007/s11655‑019‑2712‑8 32180149
    [Google Scholar]
  10. Chang C. Worley B.L. Phaëton R. Hempel N. Extracellular glutathione peroxidase GPx3 and its role in cancer. Cancers 2020 12 8 2197 10.3390/cancers12082197 32781581
    [Google Scholar]
  11. Magoulas A. Mitochondrial DNA. Stock Identif Methods Appl Fish Sci. 2004 554 311 330
    [Google Scholar]
  12. Sies H. Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020 21 7 363 383 10.1038/s41580‑020‑0230‑3 32231263
    [Google Scholar]
  13. Nakamura H. Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021 112 10 3945 3952 10.1111/cas.15068 34286881
    [Google Scholar]
  14. Wang W. Kang P.M. Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants 2020 9 12 1292 10.3390/antiox9121292 33348578
    [Google Scholar]
  15. Camici G.G. Maack C. Bonetti N.R. Fuster V. Kovacic J.C. Zena T. HHS Public Access. 2018 70 2 212 229
    [Google Scholar]
  16. Hagaman D.E. Damasco J.A. Perez J.V.D. Rojo R.D. Melancon M.P. Recent advances in nanomedicine for the diagnosis and treatment of prostate cancer bone metastasis. Molecules 2021 26 2 384 10.3390/molecules26020384 33450939
    [Google Scholar]
  17. Galasso M. Gambino S. Romanelli M.G. Donadelli M. Scupoli M.T. Browsing the oldest antioxidant enzyme: Catalase and its multiple regulation in cancer. Free Radic. Biol. Med. 2021 172 March 264 272 10.1016/j.freeradbiomed.2021.06.010 34129927
    [Google Scholar]
  18. Phaniendra A. Jestadi D.B. Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015 30 1 11 26 10.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  19. Rivera A.A.K. Gregorio C.A. Hernández A.Y.L. Cruz H.E.Y. Chaverri P.J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022 2 4 437 478 10.3390/oxygen2040030
    [Google Scholar]
  20. Shiraiwa M. Ueda K. Pozzer A. Lammel G. Kampf C.J. Fushimi A. Enami S. Arangio A.M. Nowoisky F.J. Fujitani Y. Furuyama A. Lakey P.S.J. Lelieveld J. Lucas K. Morino Y. Pöschl U. Takahama S. Takami A. Tong H. Weber B. Yoshino A. Sato K. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017 51 23 13545 13567 10.1021/acs.est.7b04417 29111690
    [Google Scholar]
  21. Otero S.M.G. Martínez P.I. Chi T.D.M. Aguilera A.A. Methods of physical control of pathogenic microorganisms in hospital areas. ECORFAN 2021 10.35429/H.2021.14.59.77
    [Google Scholar]
  22. Mach F. Baigent C. Catapano A.L. Koskinas K.C. Casula M. Badimon L. Chapman M.J. Backer D.G.G. Delgado V. Ference B.A. Graham I.M. Halliday A. Landmesser U. Mihaylova B. Pedersen T.R. Riccardi G. Richter D.J. Sabatine M.S. Taskinen M.R. Tokgozoglu L. Wiklund O. Mueller C. Drexel H. Aboyans V. Corsini A. Doehner W. Farnier M. Gigante B. Kayikcioglu M. Krstacic G. Lambrinou E. Lewis B.S. Masip J. Moulin P. Petersen S. Petronio A.S. Piepoli M.F. Pintó X. Räber L. Ray K.K. Reiner Ž. Riesen W.F. Roffi M. Schmid J-P. Shlyakhto E. Simpson I.A. Stroes E. Sudano I. Tselepis A.D. Viigimaa M. Vindis C. Vonbank A. Vrablik M. Vrsalovic M. Zamorano J.L. Collet J-P. Koskinas K.C. Casula M. Badimon L. Chapman J.M. Backer D.G.G. Delgado V. Ference B.A. Graham I.M. Halliday A. Landmesser U. Mihaylova B. Pedersen T.R. Riccardi G. Richter D.J. Sabatine M.S. Taskinen M-R. Tokgozoglu L. Wiklund O. Windecker S. Aboyans V. Baigent C. Collet J-P. Dean V. Delgado V. Fitzsimons D. Gale C.P. Grobbee D. Halvorsen S. Hindricks G. Iung B. Jüni P. Katus H.A. Landmesser U. Leclercq C. Lettino M. Lewis B.S. Merkely B. Mueller C. Petersen S. Petronio A.S. Richter D.J. Roffi M. Shlyakhto E. Simpson I.A. Uva S.M. Touyz R.M. Nibouche D. Zelveian P.H. Siostrzonek P. Najafov R. van de Borne P. Pojskic B. Postadzhiyan A. Kypris L. Špinar J. Larsen M.L. Eldin H.S. Viigimaa M. Strandberg T.E. Ferrières J. Agladze R. Laufs U. Rallidis L. Bajnok L. Gudjónsson T. Maher V. Henkin Y. Gulizia M.M. Mussagaliyeva A. Bajraktari G. Kerimkulova A. Latkovskis G. Hamoui O. Slapikas R. Visser L. Dingli P. Ivanov V. Boskovic A. Nazzi M. Visseren F. Mitevska I. Retterstøl K. Jankowski P. Carvalho F.R. Gaita D. Ezhov M. Foscoli M. Giga V. Pella D. Fras Z. Isla D.L.P. Hagström E. Lehmann R. Abid L. Ozdogan O. Mitchenko O. Patel R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020 41 1 111 188 10.1093/eurheartj/ehz455 31504418
    [Google Scholar]
  23. Langseth M.S. Opstad T.B. Bratseth V. Solheim S. Arnesen H. Pettersen A.Å. Seljeflot I. Helseth R. Markers of neutrophil extracellular traps are associated with adverse clinical outcome in stable coronary artery disease. Eur. J. Prev. Cardiol. 2018 25 7 762 769 10.1177/2047487318760618 29473463
    [Google Scholar]
  24. Huang Y. Guo X. Wu Y. Chen X. Feng L. Xie N. Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 34 10.1038/s41392‑024‑01745‑z 38378653
    [Google Scholar]
  25. Ayoka T. O. Ezema B. O. Eze C. N. Nnadi C. O. Antioxidants for the prevention and treatment of non-communicable diseases. J. Explor. Res. Pharmacol. 2022 7 3 179 189
    [Google Scholar]
  26. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  27. Agarwal A Sharma R Gupta S Harlev A Ahmad G Plessis D.SS Oxidative stress in human reproduction shedding light on a complicated phenomenon Springer 2017 10.1007/978‑3‑319‑48427‑3
    [Google Scholar]
  28. Tsutsui H Kinugawa S Matsushima S Oxidative stress and heart failure. American J. Physiol. Heart Circul. Physiol. 2011 301 6 H2181 H2190 10.1152/ajpheart.00554.2011
    [Google Scholar]
  29. Tsutsui H. Kinugawa S. Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc. Res. 2008 81 3 449 456 10.1093/cvr/cvn280 18854381
    [Google Scholar]
  30. Sack M.N. Fyhrquist F.Y. Saijonmaa O.J. Fuster V. Kovacic J.C. Basic biology of oxidative stress and the cardiovascular system. J. Am. Coll. Cardiol. 2017 70 2 196 211 10.1016/j.jacc.2017.05.034 28683968
    [Google Scholar]
  31. Burgoyne J.R. Din M.H. Eaton P. Shah A.M. Redox signaling in cardiac physiology and pathology. Circ. Res. 2012 111 8 1091 1106 10.1161/CIRCRESAHA.111.255216 23023511
    [Google Scholar]
  32. Moris D. Spartalis M. Spartalis E. Karachaliou G.S. Karaolanis G.I. Tsourouflis G. Tsilimigras D.I. Tzatzaki E. Theocharis S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med. 2017 5 16 326 10.21037/atm.2017.06.27 28861423
    [Google Scholar]
  33. Lismont C. Revenco I. Fransen M. Peroxisomal hydrogen peroxide metabolism and signaling in health and disease. Int. J. Mol. Sci. 2019 20 15 3673 10.3390/ijms20153673 31357514
    [Google Scholar]
  34. Chen J. Lu Y. Cheng Y. Ma R. Zou J. Zheng H. Wang R. Zhu Z. Li F. Novel strategy of gene delivery system based on dendrimer loaded recombinant hirudine plasmid for thrombus targeting therapy. Mol. Pharm. 2019 16 4 1648 1657 10.1021/acs.molpharmaceut.8b01325 30802064
    [Google Scholar]
  35. Kasai S. Shimizu S. Tatara Y. Mimura J. Itoh K. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 2020 10 2 320 10.3390/biom10020320 32079324
    [Google Scholar]
  36. Loyer X. Heymes C. Samuel J.L. Constitutive nitric oxide synthases in the heart from hypertrophy to failure. Clin. Exp. Pharmacol. Physiol. 2008 35 4 483 488 10.1111/j.1440‑1681.2008.04901.x 18307746
    [Google Scholar]
  37. Hammond J. Balligand J.L. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: From contractility to remodeling. J. Mol. Cell. Cardiol. 2012 52 2 330 340 10.1016/j.yjmcc.2011.07.029 21843527
    [Google Scholar]
  38. Aleksandr E. Vendrov1; Kimberly C. Molnar2; Alberto Smith3; Jinling Yuan1; Arihiro Sumida1; Jacques Robidoux4; Marschall S. Runge1 ; and Nageswara R. Madamanchi1. 1999 734 1 76
    [Google Scholar]
  39. Guzik T.J. Chen W. Gongora M.C. Guzik B. Lob H.E. Mangalat D. Hoch N. Dikalov S. Rudzinski P. Kapelak B. Sadowski J. Harrison D.G. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J. Am. Coll. Cardiol. 2008 52 22 1803 1809 10.1016/j.jacc.2008.07.063 19022160
    [Google Scholar]
  40. Ramachandra C.J.A. Cong S. Chan X. Yap E.P. Yu F. Hausenloy D.J. Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets. Free Radic. Biol. Med. 2021 166 March 297 312 10.1016/j.freeradbiomed.2021.02.040 33675957
    [Google Scholar]
  41. Peoples J.N. Saraf A. Ghazal N. Pham T.T. Kwong J.Q. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 2019 51 12 1 13 10.1038/s12276‑019‑0355‑7 31857574
    [Google Scholar]
  42. Zhao G.J. Zhao C.L. Ouyang S. Deng K.Q. Zhu L. Montezano A.C. Zhang C. Hu F. Zhu X.Y. Tian S. Liu X. Ji Y.X. Zhang P. Zhang X.J. She Z.G. Touyz R.M. Li H. Ca 2+ -dependent NOX5 (NADPH Oxidase 5) exaggerates cardiac hypertrophy through reactive oxygen species production. Hypertension 2020 76 3 827 838 10.1161/HYPERTENSIONAHA.120.15558 32683902
    [Google Scholar]
  43. Osto E. Cosentino F. The role of oxidative stress in endothelial dysfunction and vascular inflammation. Nitric Oxide 2nd Ed. Elsevier Inc. 2010 705 754 10.1016/B978‑0‑12‑373866‑0.00022‑8
    [Google Scholar]
  44. Incalza M.A. D’Oria R. Natalicchio A. Perrini S. Laviola L. Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018 100 1 19 10.1016/j.vph.2017.05.005 28579545
    [Google Scholar]
  45. Sharma R. Davidoff M.N. Oxidative stress and endothelial dysfunction in heart failure. Congest. Heart Fail. 2002 8 3 165 172 10.1111/j.1527‑5299.2002.00714.x 12045385
    [Google Scholar]
  46. Poredoš P. Endothelial dysfunction and cardiovascular disease. Pathophysiol. Haemost. Thromb. 2002 32 5-6 274 277 10.1159/000073580 13679656
    [Google Scholar]
  47. Alfatni A Riou M Peripheral blood mononuclear cells and platelets mitochondrial dysfunction, oxidative stress, and circulating mtDNA in cardiovascular diseases. J. Clin. Med. 2020 9 2 311
    [Google Scholar]
  48. Handy DE Loscalzo J Redox regulation of mitochondrial function. Antioxid. Redox Signal. 2012 16 11 1323 1367 10.1089/ars.2011.4123
    [Google Scholar]
  49. Brand M.D. The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 2010 45 7-8 466 472 10.1016/j.exger.2010.01.003 20064600
    [Google Scholar]
  50. Zhang Z. Dalan R. Hu Z. Wang J.W. Chew N.W.S. Poh K.K. Tan R.S. Soong T.W. Dai Y. Ye L. Chen X. Reactive oxygen species scavenging nanomedicine for the treatment of ischemic heart disease. Adv. Mater. 2022 34 35 2202169 10.1002/adma.202202169 35470476
    [Google Scholar]
  51. Wohlgemuth S.E. Calvani R. Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J. Mol. Cell. Cardiol. 2014 71 62 70 10.1016/j.yjmcc.2014.03.007 24650874
    [Google Scholar]
  52. Muller F.L. Liu Y. Remmen V.H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 2004 279 47 49064 49073
    [Google Scholar]
  53. Li X. Lee Y.J. Kim Y.C. Jeong G.S. Cui H.Z. Kim H.Y. Kang D.G. Lee H.S. Bakuchicin induces vascular relaxation via endothelium‐dependent NO‐ cGMP signaling. Phytother. Res. 2011 25 10 1574 1578 10.1002/ptr.3478 21442677
    [Google Scholar]
  54. Birben E. Sahiner U.M. Sackesen C. Erzurum S. Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012 5 1 9 19 10.1097/WOX.0b013e3182439613 23268465
    [Google Scholar]
  55. Wang Y. Branicky R. Noë A. Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018 217 6 1915 1928 10.1083/jcb.201708007 29669742
    [Google Scholar]
  56. Ighodaro O.M. Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018 54 4 287 293 10.1016/j.ajme.2017.09.001
    [Google Scholar]
  57. Jasiecka J.A. Płoska A. Wierońska J.M. Dobrucki L.W. Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: Molecular mechanisms as potential therapeutic targets. Cell. Mol. Biol. Lett. 2023 28 1 21 10.1186/s11658‑023‑00423‑2 36890458
    [Google Scholar]
  58. Nandi A Yan LJ Jana CK Das N Role of catalase in oxidative stress‐and age‐associated degenerative diseases. Oxid. Med. Cell. Long. 2019 2019 9613090
    [Google Scholar]
  59. Rasheed Z. Therapeutic potentials of catalase: Mechanisms, applications, and future perspectives. Int. J. Health Sci. 2024 18 2 1
    [Google Scholar]
  60. Dutta R.K. Lee J.N. Maharjan Y. Park C. Choe S.K. Ho Y.S. Park R. Catalase deficiency facilitates the shuttling of free fatty acid to brown adipose tissue through lipolysis mediated by ROS during sustained fasting. Cell Biosci. 2021 11 1 201 10.1186/s13578‑021‑00710‑5 34876210
    [Google Scholar]
  61. Stancill J.S. Corbett J.A. The role of thioredoxin/peroxiredoxin in the β-cell defense against oxidative damage. Front. Endocrinol. 2021 12 September 718235 10.3389/fendo.2021.718235 34557160
    [Google Scholar]
  62. Martins D. English A.M. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biol. 2014 2 1 308 313 10.1016/j.redox.2013.12.019 24563848
    [Google Scholar]
  63. Zhao M.X. Wen J.L. Wang L. Wang X.P. Chen T.S. Intracellular catalase activity instead of glutathione level dominates the resistance of cells to reactive oxygen species. Cell Stress Chaper. 2019 24 3 609 619 10.1007/s12192‑019‑00993‑1 30989612
    [Google Scholar]
  64. Flohé B.R. Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 5 3289 3303 10.1016/j.bbagen.2012.11.020 23201771
    [Google Scholar]
  65. Bhowmick D. Mugesh G. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Org. Biomol. Chem. 2015 13 41 10262 10272 10.1039/C5OB01665G 26372527
    [Google Scholar]
  66. Akram N.A. Shafiq F. Ashraf M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci. 2017 8 April 613 10.3389/fpls.2017.00613 28491070
    [Google Scholar]
  67. Ahmad P. Jaleel C.A. Azooz M.M. Nabi G. Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot. Res. Int. 2009 2 1 11 20
    [Google Scholar]
  68. Traber M.G. Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007 43 1 4 15 10.1016/j.freeradbiomed.2007.03.024 17561088
    [Google Scholar]
  69. Bratovcic A. Antioxidant enzymes and their role in preventing cell damage. Acta Sci. Nutr. Health 2020 4 01 07 10.31080/ASNH.2020.04.0659
    [Google Scholar]
  70. Soares C. Carvalho M.E.A. Azevedo R.A. Fidalgo F. Plants facing oxidative challenges—A little help from the antioxidant networks. Environ. Exp. Bot. 2019 161 4 25 10.1016/j.envexpbot.2018.12.009
    [Google Scholar]
  71. Augustin L.S.A. Kendall C.W.C. Jenkins D.J.A. Willett W.C. Astrup A. Barclay A.W. Björck I. Miller B.J.C. Brighenti F. Buyken A.E. Ceriello A. Vecchia L.C. Livesey G. Liu S. Riccardi G. Rizkalla S.W. Sievenpiper J.L. Trichopoulou A. Wolever T.M.S. Sinnott B.S. Poli A. Glycemic index, glycemic load and glycemic response: An international scientific consensus summit from the international carbohydrate quality consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015 25 9 795 815 10.1016/j.numecd.2015.05.005 26160327
    [Google Scholar]
  72. Das K. Das S. Biradar M.S. Bobbarala V. Tata S.S. Free radical medicine and biology. BoD–Books on Demand 2019 10.5772/intechopen.77829
    [Google Scholar]
  73. Sun C. Zhao C. Guven E.C. Paoli P. Gandara S.J. Ramkumar K.M. Wang S. Buleu F. Pah A. Turi V. Damian G. Dragan S. Tomas M. Khan W. Wang M. Delmas D. Portillo M.P. Dar P. Chen L. Xiao J. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Front. 2020 1 1 18 44 10.1002/fft2.15
    [Google Scholar]
  74. Aprotosoaie A.C. Luca S.V. Miron A. Flavor chemistry of cocoa and cocoa products—An overview. Compr. Rev. Food Sci. Food Saf. 2016 15 1 73 91 10.1111/1541‑4337.12180 33371573
    [Google Scholar]
  75. Sarian M.N. Ahmed Q.U. Mat So’ad S.Z. Alhassan A.M. Murugesu S. Perumal V. Mohamad S.S.N.A. Khatib A. Latip J. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Res. Int. 2017 2017 1 14 10.1155/2017/8386065 29318154
    [Google Scholar]
  76. Maria A.G. Graziano R. Nicolantonio D.O. Carotenoids: Potential allies of cardiovascular health? Food Nutr. Res. 2015 59 1 26762 10.3402/fnr.v59.26762 25660385
    [Google Scholar]
  77. Kim K.S. Song C.G. Kang P.M. Targeting oxidative stress using nanoparticles as a theranostic strategy for cardiovascular diseases. Antioxid. Redox Signal. 2019 30 5 733 746 10.1089/ars.2017.7428 29228781
    [Google Scholar]
  78. Casas O.B. Martínez G.A. Flores G.J. Ibañez B.A. Panda K.P. Santana G. de la Vega H.A. Suar M. Rodelo G.C. Kaushik A. Mishra K.Y. Dutt A. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Mater. Today 2021 50 533 569 10.1016/j.mattod.2021.07.025
    [Google Scholar]
  79. Thakur A. Kaya S. Kumar A. Recent trends in the characterization and application progress of nano-modified coatings in corrosion mitigation of metals and alloys. Appl. Sci. 2023 13 2 730 10.3390/app13020730
    [Google Scholar]
  80. Mittal D. Kaur G. Singh P. Yadav K. Ali S.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front. Nanotechnol. 2020 2 579954
    [Google Scholar]
  81. Sidhu A. K. Verma N. Kaushal P. Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential. Front. Nanotechnol. 2022 3 801620
    [Google Scholar]
  82. Londoño M.O. Tancredi P. Muraca D. Zélis M.P. Coral D. van Raap F.M.B. Wolff U. Neu V. Damm C. Oliveira D.C.L.P. Pirota K.R. Knobel M. Socolovsky L.M. Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems. J. Magn. Magn. Mater. 2017 428 105 118 10.1016/j.jmmm.2016.12.019
    [Google Scholar]
  83. Li X. Xu H. Zhao X. Li Y. Lv S. Zhou W. Wang J. Sun Z. Li Y. Guo C. Ferroptosis contributing to cardiomyocyte injury induced by silica nanoparticles via miR-125b-2-3p/HO-1 signaling. Part. Fibre Toxicol. 2024 21 1 17 10.1186/s12989‑024‑00579‑5 38561847
    [Google Scholar]
  84. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  85. Tripathi A. Saraf S. Saraf S. Carbon nanotropes: A contemporary paradigm in drug delivery. Materials 2015 8 6 3068 3100 10.3390/ma8063068
    [Google Scholar]
  86. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  87. Geraldes C.F.G.C. Castro M.M.C.A. Peters J.A. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy. Coord. Chem. Rev. 2021 445 214069 10.1016/j.ccr.2021.214069
    [Google Scholar]
  88. Mauricio MD Ojeda G.S Marchio P Valles SL Aldasoro M Lopez E.I Nanoparticles in medicine: A focus on vascular oxidative stress. Oxid. Med. Cell. Long. 2018 2018 6231482 10.1155/2018/6231482
    [Google Scholar]
  89. Borm P.J.A. Robbins D. Haubold S. Kuhlbusch T. Fissan H. Donaldson K. The potential risks of nanomaterials: A review carried out for ECETOC. Parti Fibre Toxicol. 2006 3 1 35
    [Google Scholar]
  90. Stapleton P.A. Nurkiewicz T.R. Vascular distribution of nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014 6 4 338 348 10.1002/wnan.1271 24777845
    [Google Scholar]
  91. Pala R. Anju V.T. Dyavaiah M. Busi S. Nauli S.M. Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int. J. Nanomedicine 2020 15 3741 3769 10.2147/IJN.S250872 32547026
    [Google Scholar]
  92. Gao C. Huang Q. Liu C. Kwong C.H.T. Yue L. Wan J.B. Lee S.M.Y. Wang R. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 2020 11 1 2622 10.1038/s41467‑020‑16439‑7 32457361
    [Google Scholar]
  93. Rasmussen S.T. Andersen J.T. Nielsen T.K. Cejvanovic V. Petersen K.M. Henriksen T. Weimann A. Lykkesfeldt J. Poulsen H.E. Simvastatin and oxidative stress in humans: A randomized, double-blinded, placebo-controlled clinical trial. Redox Biol. 2016 9 32 38 10.1016/j.redox.2016.05.007 27281490
    [Google Scholar]
  94. Sabri A.M.H. Ammar N. Korzh S. Alsehli A.M. Hosseini K. Fredriksson R. Mwinyi J. Williams M.J. Boukhatmi H. Schiöth H.B. Fluvastatin-induced myofibrillar damage is associated with elevated ROS, and impaired fatty acid oxidation, and is preceded by mitochondrial morphological changes. Sci. Rep. 2024 14 1 3338 10.1038/s41598‑024‑53446‑w 38336990
    [Google Scholar]
  95. Dymkowska D. Wrzosek A. Zabłocki K. Atorvastatin and pravastatin stimulate nitric oxide and reactive oxygen species generation, affect mitochondrial network architecture and elevate nicotinamide N‐methyltransferase level in endothelial cells. J. Appl. Toxicol. 2021 41 7 1076 1088 10.1002/jat.4094 33073877
    [Google Scholar]
  96. Nasser MI Zhu S Chen C Zhao M Huang H Zhu P A comprehensive review on schisandrin B and its biological properties. Oxid. Med. Cell. Long. 2020 2020 2172740
    [Google Scholar]
  97. Rousselot B.D. Resveratrol and cardiovascular diseases. Nutrients 2016 8 5 250 10.3390/nu8050250 27144581
    [Google Scholar]
  98. Nassif R.M. Chalhoub E. Chedid P. Nedelec H.M. Raya E. Dang P.M.C. Marie J.C. Benna E.J. Metformin inhibits ROS production by human M2 macrophages via the activation of AMPK. Biomedicines 2022 10 2 319 10.3390/biomedicines10020319 35203528
    [Google Scholar]
  99. Tao Q. Zhang Z.D. Qin Z. Liu X.W. Li S.H. Bai L.X. Ge W.B. Li J.Y. Yang Y.J. Aspirin eugenol ester alleviates lipopolysaccharide-induced acute lung injury in rats while stabilizing serum metabolites levels. Front. Immunol. 2022 13 July 939106 10.3389/fimmu.2022.939106 35967416
    [Google Scholar]
  100. Ma Z. Liu X. Zhang Q. Yu Z. Gao D. Carvedilol suppresses malignant proliferation of mammary epithelial cells through inhibition of the ROS‑mediated PI3K/AKT signaling pathway. Oncol. Rep. 2019 41 2 811 818 30483797
    [Google Scholar]
  101. Florido J. Santana R.C. Ruiz M.L. Rodríguez L.A. Castroviejo A.D. Rusanova I. Escames G. Understanding the mechanism of action of melatonin, which induces ROS production in cancer cells. Antioxidants 2022 11 8 1621 10.3390/antiox11081621 36009340
    [Google Scholar]
  102. Marques P. Domingo E. Rubio A. Hervás M.S. Ascaso J.F. Piqueras L. Beneficial effects of PCSK9 inhibition with alirocumab in familial hypercholesterolemia involve modulation of new immune players. Biomed. Pharmacother. 2021 2022 145 34864314
    [Google Scholar]
  103. Yang P. Ren J. Yang L. Nanoparticles in the New Era of cardiovascular therapeutics: Challenges and opportunities. Int. J. Mol. Sci. 2023 24 6 5205 10.3390/ijms24065205 36982284
    [Google Scholar]
  104. Han H.S. Koo S.Y. Choi K.Y. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact. Mater. 2021 14 14 182 205 35310344
    [Google Scholar]
  105. Bae S. Park M. Kang C. Dilmen S. Kang T.H. Kang D.G. Ke Q. Lee S.U. Lee D. Kang P.M. Hydrogen peroxide‐responsive nanoparticle reduces myocardial ischemia/reperfusion injury. J. Am. Heart Assoc. 2016 5 11 e003697 10.1161/JAHA.116.003697 27930351
    [Google Scholar]
  106. Far JG Molina VM Carrasco RA Zepeda AB Letelier P Castillo RL Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients 2017 9 9 966
    [Google Scholar]
  107. Myung S.K. Ju W. Cho B. Oh S.W. Park S.M. Koo B.K. Park B.J. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: Systematic review and meta-analysis of randomised controlled trials. BMJ 2013 346 jan18 1 f10 10.1136/bmj.f10 23335472
    [Google Scholar]
  108. Shastak Y. Gordillo A. Pelletier W. The relationship between vitamin A status and oxidative stress in animal production. J. Appl. Anim. Res. 2023 51 1 546 553 10.1080/09712119.2023.2239319
    [Google Scholar]
  109. Petiz L.L. Girardi C.S. Bortolin R.C. Kunzler A. Gasparotto J. Rabelo T.K. Matté C. Moreira J.C.F. Gelain D.P. Vitamin A oral supplementation induces oxidative stress and suppresses IL‐10 and HSP70 in skeletal muscle of trained rats. Nutrients 2017 9 4 353 10.3390/nu9040353 28368329
    [Google Scholar]
  110. van de Lagemaat E.E. Groot D.L.C.P.G.M. van den Heuvel E.G.H.M. Vitamin B12 in relation to oxidative stress: A systematic review. Nutrients 2019 11 2 482 10.3390/nu11020482 30823595
    [Google Scholar]
  111. Bito T. Misaki T. Yabuta Y. Ishikawa T. Kawano T. Watanabe F. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biol. 2017 11 11 21 29 10.1016/j.redox.2016.10.013 27840283
    [Google Scholar]
  112. Chakraborty A. Jana N.R. Vitamin C-conjugated nanoparticle protects cells from oxidative stress at low doses but induces oxidative stress and cell death at high doses. ACS Appl. Mater. Interfaces 2017 9 48 41807 41817 10.1021/acsami.7b16055 29135217
    [Google Scholar]
  113. Kawashima A. Sekizawa A. Koide K. Hasegawa J. Satoh K. Arakaki T. Takenaka S. Matsuoka R. Vitamin C induces the reduction of oxidative stress and paradoxically stimulates the apoptotic gene expression in extravillous trophoblasts derived from first-trimester tissue. Reprod. Sci. 2015 22 7 783 790 10.1177/1933719114561561 25519716
    [Google Scholar]
  114. Wimalawansa SJ Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging. Biology 2019 8 2 30 10.3390/biology8020030
    [Google Scholar]
  115. Motamed S. Nikooyeh B. Anari R. Motamed S. Mokhtari Z. Neyestani T. The effect of vitamin D supplementation on oxidative stress and inflammatory biomarkers in pregnant women: A systematic review and meta-analysis of clinical trials. BMC Pregnancy Childbirth 2022 22 1 816 10.1186/s12884‑022‑05132‑w 36335311
    [Google Scholar]
  116. Vijayaraghavan R. Suribabu C.S. Sekar B. Oommen P.K. Kavithalakshmi S.N. Madhusudhanan N. Panneerselvam C. Protective role of vitamin E on the oxidative stress in Hansen’s disease (Leprosy) patients. Eur. J. Clin. Nutr. 2005 59 10 1121 1128 10.1038/sj.ejcn.1602221 16015260
    [Google Scholar]
  117. Generoso G. Bittencourt M.S. Vitamin A. Vitamin A: An enhanced vision of the relationship between apolipoproteins and cardiovascular risk? Atherosclerosis 2017 265 256 257 10.1016/j.atherosclerosis.2017.08.020 28864203
    [Google Scholar]
  118. Panth N. Paudel K.R. Parajuli K. Reactive oxygen species: A key hallmark of cardiovascular disease. Adv. Med. 2016 2016 1 12 10.1155/2016/9152732 27774507
    [Google Scholar]
  119. Chen X. Touyz R.M. Park J.B. Schiffrin E.L. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 2001 38 3 606 611 10.1161/hy09t1.094005 11566940
    [Google Scholar]
  120. Ciumarnean LMVM Runcan O Vesa SC Rachis AL Negrean V Perné MG The effects of flavonoids in cardiovascular diseases. Molecules 2020 25 18 4320 10.3390/molecules25184320
    [Google Scholar]
  121. Beattie C.J. Fulton R.L. Higgins P. Padmanabhan S. McCallum L. Walters M.R. Dominiczak A.F. Touyz R.M. Dawson J. Allopurinol initiation and change in blood pressure in older adults with hypertension. Hypertension 2014 64 5 1102 1107 10.1161/HYPERTENSIONAHA.114.03953 25135183
    [Google Scholar]
  122. Wu H. Li H. Liu Y. Liang J. Liu Q. Xu Z. Chen Z. Zhang X. Zhang K. Xu C. Blockading a new NSCLC immunosuppressive target by pluripotent autologous tumor vaccines magnifies sequential immunotherapy. Bioact. Mater. 2021 13 13 223 238 35224304
    [Google Scholar]
  123. Pereira C. Souza A. Vasconcelos A. Prado P. Name J. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int. J. Mol. Med. 2020 47 1 37 48 10.3892/ijmm.2020.4783 33155666
    [Google Scholar]
  124. Casas AI Maghzal GJ Seredenina T Kaludercic N anton R.N Lisa F Di Pharmacology and clinical drug candidates in redox medicine. Antioxid. Redox Signal. 2015 23 14 1113 1129
    [Google Scholar]
  125. Linker RA Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011 134 3 678 692
    [Google Scholar]
  126. Varna K Jucaite A Svenningsson P Rinne JO Csele Z Amini N Effect of the myeloperoxidase inhibitor AZD3241 on microglia: A PET study in Parkinson’s disease. Brain 2015 138 9 2687 2700
    [Google Scholar]
  127. Stielow C Catar RA Muller G Wingler K Scheurer P Schmidt HHHW Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem. Biophys. Res. Commun. 2006 344 200 205 10.1016/j.bbrc.2006.03.114
    [Google Scholar]
  128. Wenzel P Schulz E Oelze M Müller J Schuhmacher S Alhamdani MSS AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats. Free Rad. Biol. Med. 2008 45 5 619 626
    [Google Scholar]
  129. Fischbach M.A. Bluestone J.A. Lim W.A. Cell-based therapeutics: The next pillar of medicine. Sci. Transl. Med. 2013 5 179 179ps7 10.1126/scitranslmed.3005568 23552369
    [Google Scholar]
  130. Kim H Yun J Therapeutic strategies for oxidative stress‐related cardiovascular diseases: Removal of Excess Reactive oxygen species in adult stem cells. Oxid. Med. Cell. Long. 2016 2016 2483163
    [Google Scholar]
  131. Cuadrado A. Manda G. Hassan A. Alcaraz M.J. Barbas C. Daiber A. Ghezzi P. León R. López M.G. Oliva B. Pajares M. Rojo A.I. Antón R.N. Valverde A.M. Guney E. Schmidt H.H.H.W. Transcription factor NRF2 as a therapeutic target for chronic diseases: A systems medicine approach. Pharmacol. Rev. 2018 70 2 348 383 10.1124/pr.117.014753 29507103
    [Google Scholar]
  132. Donoso A. Durán G.J. Muñoz A.A. González P.A. Muñoz A.C. “Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials”. Pharmacol. Res. 2021 166 January 105479 10.1016/j.phrs.2021.105479 33549728
    [Google Scholar]
  133. Murray K.O. Maciel B.M. Darvish S. Coppock M.E. You Z. Chonchol M. Seals D.R. Rossman M.J. Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans: A study protocol. Front. Physiol. 2022 13 September 980783 10.3389/fphys.2022.980783 36187760
    [Google Scholar]
  134. Butz M.S. Niermann T. Kan F.E. Barbosa V. Butz N. John D. Brink M. Buser P.T. Zaugg C.E. Dimethyl fumarate, a small molecule drug for psoriasis, inhibits Nuclear Factor-κB and reduces myocardial infarct size in rats. Eur. J. Pharmacol. 2008 586 1-3 251 258 10.1016/j.ejphar.2008.02.038 18405893
    [Google Scholar]
  135. Luo M. Sun Q. Zhao H. Tao J. Yan D. The effects of dimethyl fumarate on atherosclerosis in the apolipoprotein E-deficient mouse model with streptozotocin-induced hyperglycemia mediated by the nuclear factor erythroid 2-related factor 2/Antioxidant response element (Nrf2/ARE) signaling pathway. Med. Sci. Monit. 2019 25 7966 7975 10.12659/MSM.918951 31645538
    [Google Scholar]
  136. Agarwal V. Hans N. Messerli F.H. Effect of allopurinol on blood pressure: A systematic review and meta-analysis. J. Clin. Hypertens. 2013 15 6 435 442 10.1111/j.1751‑7176.2012.00701.x 23730993
    [Google Scholar]
  137. Okafor O.N. Farrington K. Gorog D.A. Allopurinol as a therapeutic option in cardiovascular disease. Pharmacol. Ther. 2017 172 139 150 10.1016/j.pharmthera.2016.12.004 27916655
    [Google Scholar]
  138. Altenhöfer S. Radermacher K.A. Kleikers P.W.M. Wingler K. Schmidt H.H.H.W. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid. Redox Signal. 2015 23 5 406 427 10.1089/ars.2013.5814 24383718
    [Google Scholar]
  139. Flach R.R.J. Su C. Bollinger E. Cortes C. Robertson A.W. Opsahl A.C. Coskran T.M. Maresca K.P. Keliher E.J. Yates P.D. Kim A.M. Kalgutkar A.S. Buckbinder L. Myeloperoxidase inhibition in mice alters atherosclerotic lesion composition. PLoS One 2019 14 3 e0214150 10.1371/journal.pone.0214150 30889221
    [Google Scholar]
  140. Efavirenz versus rilpivirine on vascular function, inflammation, and oxidative stress. Available from: https://clinicaltrials.gov/study/NCT01585038 2015
  141. Local antioxidant therapy vasoconstriction effects in different races. Available from: https://clinicaltrials.gov/study/NCT03684213 2024
  142. The effect of endothelin and l-arginine on racial differences in vasoconstriction. Available from: https://clinicaltrials.gov/study/NCT03679780 2024
  143. Sympathetic-vascular dysfunction in obesity and insulin resistance (Vitamin C Study). Available from: https://clinicaltrials.gov/study/NCT04715022 2023
  144. Effects of prolonged delivery of nitric oxide gas on plasma reduction-oxidation reactions in cardiac surgical patients. Available from: https://clinicaltrials.gov/study/NCT04022161 2022
  145. Effect of rosuvastatin on endothelial function. Available from: https://clinicaltrials.gov/study/NCT00986999 2015
  146. Examining the effects of mitochondrial oxidative stress in DCM (MitoDCM). Available from: https://clinicaltrials.gov/study/NCT05410873 2022
  147. Oxidative stress lowering effect of simvastatin and atorvastatin. (SOS) Available from: https://clinicaltrials.gov/study/NCT00404599 2008
  148. The effects of acetylcysteine on alleviating damage of oxidative stress in hemodialysis patients. Available from: https://clinicaltrials.gov/study/NCT00247507 2006
  149. Ramipril treatment of claudication: Oxidative damage and muscle fibrosis. Available from: https://clinicaltrials.gov/study/NCT02842424 2024
  150. Discontinuation of postmenopausal hormone therapy: Impact on the cardiovascular system and quality of life. Available from: https://clinicaltrials.gov/study/NCT04050592 2021
  151. Impact of Nrf2 activation on macrovascular, microvascular & leg function & walking capacity in peripheral artery disease. Available from: https://clinicaltrials.gov/study/NCT06319339 2024
  152. Pilot study of lovaza (omega 3 fatty acids) to improve cardiac antioxidant/anti-inflammatory profile before cardiac surgery. Available from: https://clinicaltrials.gov/study/NCT01046604 2013
  153. Nicotinamide riboside supplementation for treating arterial stiffness and elevated systolic blood pressure in patients with moderate to severe CKD. Available from: https://clinicaltrials.gov/study/NCT04040959 2024
  154. Magenta A. Greco S. Gaetano C. Martelli F. Oxidative stress and microRNAs in vascular diseases. Int. J. Mol. Sci. 2013 14 9 17319 17346 10.3390/ijms140917319 23975169
    [Google Scholar]
  155. Kura B. Bacova S.B. Kalocayova B. Sykora M. Slezak J. Oxidative stress-responsive microRNAs in heart injury. Int. J. Mol. Sci. 2020 21 1 358 10.3390/ijms21010358 31948131
    [Google Scholar]
  156. Climent M. Viggiani G. Chen Y.W. Coulis G. Castaldi A. Microrna and ros crosstalk in cardiac and pulmonary diseases. Int. J. Mol. Sci. 2020 21 12 4370 10.3390/ijms21124370 32575472
    [Google Scholar]
  157. Zampetaki A. Dudek K. Mayr M. Oxidative stress in atherosclerosis: The role of microRNAs in arterial remodeling. Free Radic. Biol. Med. 2013 64 69 77 10.1016/j.freeradbiomed.2013.06.025 23797034
    [Google Scholar]
  158. Ding R. Huang L. Yan K. Sun Z. Duan J. New insight into air pollution-related cardiovascular disease: An adverse outcome pathway framework of PM2.5-associated vascular calcification. Cardiovasc. Res. 2024 120 7 699 707 10.1093/cvr/cvae082 38636937
    [Google Scholar]
  159. Murphy E. Liu J.C. Mitochondrial calcium and reactive oxygen species in cardiovascular disease. Cardiovasc. Res. 2023 119 5 1105 1116 10.1093/cvr/cvac134 35986915
    [Google Scholar]
  160. Fang X. Ardehali H. Min J. Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. 2023 20 1 7 23 10.1038/s41569‑022‑00735‑4 35788564
    [Google Scholar]
  161. Rotariu D. Babes E.E. Tit D.M. Moisi M. Bustea C. Stoicescu M. Radu A.F. Vesa C.M. Behl T. Bungau A.F. Bungau S.G. Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother. 2022 152 113238 10.1016/j.biopha.2022.113238 35687909
    [Google Scholar]
  162. Sharma A. Liaw K. Sharma R. Zhang Z. Kannan S. Kannan R.M. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics 2018 8 20 5529 5547 10.7150/thno.29039 30555562
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257344485250207074727
Loading
/content/journals/chamc/10.2174/0118715257344485250207074727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test