Skip to content
2000
image of The Effect of CD31 on Coronary Collateral Development

Abstract

Background

Coronary collaterals are the feeding bridges between the main epicardial arteries, and research has shown that this collateral development plays a crucial role in myocardial performance, especially in patients with coronary artery disease. However, the evolution of these collaterals has not been fully explained.

Objective

In this study, we aimed to reveal the effect of CD31 on coronary collateral development.

Methods: As a result of coronary angiography performed in our clinic, 89 patients with coronary artery disease and 90 patients with normal coronary arteries were included in the study. Collateral development degrees were recorded from the angiographic images of the subjects. CD31 values were compared between the group with coronary artery disease and the control group. In addition, the coronary artery disease group was divided into subgroups according to the collateral development in terms of good collateral development and poor collateral development, and the factors that may affect the collateral development were tried to be determined.

Results

CD31 levels were significantly higher in the group with coronary artery disease compared to the control group ( <0.001). In addition, CD31 levels in the subgroup with good collateral were significantly higher than in the group with weak collateral ( <0.001). In the correlation analysis, a significant positive correlation was found between serum CD31 level and SYNTAX score, age, glucose, and rentrop grade. Multivariate logistic regression analysis showed CD31 to be an independent predictor of good coronary collateral development.

Conclusion

CD31, a marker of angiogenesis, may be involved in coronary collateral development.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257300068240819071920
2024-08-28
2024-11-22
Loading full text...

Full text loading...

References

  1. Elayda M.A. Mathur V.S. Hall R.J. Massumi G.A. Garcia E. de Castro C.M. Collateral circulation in coronary artery disease. Am. J. Cardiol. 1985 55 1 58 60 10.1016/0002‑9149(85)90299‑1 3966400
    [Google Scholar]
  2. Meier P. Hemingway H. Lansky A.J. Knapp G. Pitt B. Seiler C. The impact of the coronary collateral circulation on mortality: A meta-analysis. Eur. Heart J. 2012 33 5 614 621 10.1093/eurheartj/ehr308 21969521
    [Google Scholar]
  3. Hennekens C.H. Increasing burden of cardiovascular disease: Current knowledge and future directions for research on risk factors. Circulation 1998 97 11 1095 1102 10.1161/01.CIR.97.11.1095 9531257
    [Google Scholar]
  4. Meininger C.J. Schelling M.E. Granger H.J. Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am. J. Physiol. 1988 255 3 Pt 2 H554 H562 3414822
    [Google Scholar]
  5. Schaper W. Angiogenesis in the adult heart. Basic Res. Cardiol. 1991 86 Suppl. 2 51 56 1719953
    [Google Scholar]
  6. Newman P.J. Berndt M.C. Gorski J. White G.C. II Lyman S. Paddock C. Muller W.A. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 1990 247 4947 1219 1222 10.1126/science.1690453 1690453
    [Google Scholar]
  7. DeLisser H.M. Christofidou-Solomidou M. Strieter R.M. Burdick M.D. Robinson C.S. Wexler R.S. Kerr J.S. Garlanda C. Merwin J.R. Madri J.A. Albelda S.M. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am. J. Pathol. 1997 151 3 671 677 9284815
    [Google Scholar]
  8. Peter Rentrop K. Cohen M. Blanke H. Phillips R.A. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J. Am. Coll. Cardiol. 1985 5 3 587 592 10.1016/S0735‑1097(85)80380‑6 3156171
    [Google Scholar]
  9. Farooq V. Brugaletta S. Serruys P.W. The SYNTAX score and SYNTAX-based clinical risk scores. Semin. Thorac. Cardiovasc. Surg. 2011 23 2 99 105 10.1053/j.semtcvs.2011.08.001 22041038
    [Google Scholar]
  10. Schiller N.B. Acquatella H. Ports T.A. Drew D. Goerke J. Ringertz H. Silverman N.H. Brundage B. Botvinick E.H. Boswell R. Carlsson E. Parmley W.W. Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation 1979 60 3 547 555 10.1161/01.CIR.60.3.547 455617
    [Google Scholar]
  11. Tepper O.M. Capla J.M. Galiano R.D. Ceradini D.J. Callaghan M.J. Kleinman M.E. Gurtner G.C. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow–derived cells. Blood 2005 105 3 1068 1077 10.1182/blood‑2004‑03‑1051 15388583
    [Google Scholar]
  12. Hansen J.F. Coronary collateral circulation: Clinical significance and influence on survival in patients with coronary artery occlusion. Am. Heart J. 1989 117 2 290 295 10.1016/0002‑8703(89)90771‑0 2916404
    [Google Scholar]
  13. Koerselman J. van der Graaf Y. de Jaegere P.P.T. Grobbee D.E. Coronary collaterals. Circulation 2003 107 19 2507 2511 10.1161/01.CIR.0000065118.99409.5F 12756191
    [Google Scholar]
  14. Wustmann K. Zbinden S. Windecker S. Meier B. Seiler C. Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation 2003 107 17 2213 2220 10.1161/01.CIR.0000066321.03474.DA 12707241
    [Google Scholar]
  15. Fulton W.F.M. The time factor in the enlargement of anastomoses in coronary artery disease. Scott. Med. J. 1964 9 1 18 23 10.1177/003693306400900104 14103801
    [Google Scholar]
  16. Kurmus O. Aslan T. Ekici B. Baglan Uzunget S. Karaarslan S. Tanindi A. Erkan A.F. Akgul Ercan E. Kervancıoglu C. Impact of admission blood glucose on coronary collateral flow in patients with ST-elevation myocardial infarction. Cardiol. Res. Pract. 2018 2018 1 5 10.1155/2018/4059542 29721336
    [Google Scholar]
  17. Kadi H. Ceyhan K. Karayakali M. Celik A. Ozturk A. Koc F. Onalan O. Effects of prediabetes on coronary collateral circulation in patients with coronary artery disease. Coron. Artery Dis. 2011 22 4 233 237 10.1097/MCA.0b013e328345241b 21358541
    [Google Scholar]
  18. Yetkin E. Topal E. Erguzel N. Senen K. Heper G. Waltenberger J. Diabetes mellitus and female gender are the strongest predictors of poor collateral vessel development in patients with severe coronary artery stenosis. Angiogenesis 2015 18 2 201 207 10.1007/s10456‑015‑9460‑y 25680403
    [Google Scholar]
  19. Yaylalı Y.T. Kaftan A. Influence of clinical characteristics on coronary collaterals. Pamukkale Med. J. 2012 5 2 57 62
    [Google Scholar]
  20. Tascanov M.B. Tanriverdi Z. Gungoren F. Besli F. Erkus M.E. Gonel A. Koyuncu I. Demirbag R. Association between the no-reflow phenomenon and soluble CD40 ligand level in patients with acute ST-segment elevation myocardial infarction. Medicina 2019 55 7 376 10.3390/medicina55070376 31311177
    [Google Scholar]
  21. Matsumura T. Wolff K. Petzelbauer P. Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J. Immunol. 1997 158 7 3408 3416 10.4049/jimmunol.158.7.3408 9120301
    [Google Scholar]
  22. Yang S. Graham J. Kahn J.W. Schwartz E.A. Gerritsen M.E. Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am. J. Pathol. 1999 155 3 887 895 10.1016/S0002‑9440(10)65188‑7 10487846
    [Google Scholar]
  23. Newman P.J. Newman D.K. Signal transduction pathways mediated by PECAM-1: New roles for an old molecule in platelet and vascular cell biology. Arterioscler. Thromb. Vasc. Biol. 2003 23 6 953 964 10.1161/01.ATV.0000071347.69358.D9 12689916
    [Google Scholar]
  24. Toprak K. Yılmaz R. Kaplangoray M. Memioğlu T. İnanır M. Akyol S. Özen K. Biçer A. Demirbağ R. Comparison of the effect of uric acid/albumin ratio on coronary colleteral circulation with other inflammation-based markers in stable coronary artery disease patients. Perfusion 2023 02676591231202105 10.1177/02676591231202105 37674333
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257300068240819071920
Loading
/content/journals/chamc/10.2174/0118715257300068240819071920
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: CD31 ; coronary artery disease ; coronary collateral ; Angiogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test