Skip to content
2000
image of Emerging Biomarkers for Assessing Thrombotic Risk in Patients Receiving Direct Oral Anticoagulants (DOACs)

Abstract

Direct Oral Anticoagulants (DOACs) have transformed the management of thrombotic disorders, offering a more convenient and effective alternative to traditional vitamin K antagonists (VKAs). However, assessing thrombotic risk in patients treated with DOACS remains crucial due to the potential for recurrent events. Current clinical risk scores have limitations in predicting and monitoring venous thromboembolism (VTE) risk in specific DOAC populations. Several emerging biomarkers show promise in assessing thrombotic risk in patients treated with DOACS. Genetic factors like VKORC1 and CYP2C9 variants are well-established determinants of warfarin response, but the genetic landscape for DOAC outcomes appears more complex. Rare variants and polygenic approaches may play a role in personalizing anticoagulation therapy. Elevated factor VIII levels are associated with increased VTE recurrence risk after anticoagulation withdrawal in cancer-associated thrombosis (CAT) patients. In contrast, the circulating tissue factor is not useful for predicting VTE in this setting. Soluble P-selectin has emerged as a good marker of VTE recurrence, and its inclusion in the Vienna CATS risk model improves VTE prediction in cancer patients. While these biomarkers hold promise, larger studies are needed to validate their utility and establish standardized assays. Caution is warranted in patients at high bleeding risk. Integrating clinical factors, genetics, and circulating biomarkers will likely optimize thrombotic risk assessment in patients treated with DOACS. Continued research is crucial to develop personalized anticoagulation strategies to balance thrombosis and bleeding risks.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257335790241203061748
2024-12-16
2025-02-19
Loading full text...

Full text loading...

References

  1. Otero R. Solier-López A. Sánchez-López V. Oto J. Arellano E. Marín S. Jara-Palomares L. Elías T. Asencio M.I. Blasco-Esquivias I. Rodríguez de la Borbolla M. Sánchez-Díaz J.M. Real-Domínguez M. García-Cabrera E. Rodríguez-Martorell F.J. Medina P. Biomarkers of venous thromboembolism recurrence after discontinuation of low molecular weight heparin treatment for cancer-associated thrombosis (hispalis-study). Cancers (Basel) 2022 14 11 2771 2771 10.3390/cancers14112771 35681751
    [Google Scholar]
  2. Blom J.W. Doggen C.J. Osanto S. Rosendaal F.R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005 293 6 715 722 10.1001/jama.293.6.715 15701913
    [Google Scholar]
  3. Koretsune Y. Yamashita T. Akao M. Atarashi H. Ikeda T. Okumura K. Shimizu W. Suzuki S. Tsutsui H. Toyoda K. Hirayama A. Yasaka M. Yamaguchi T. Teramukai S. Kimura T. Morishima Y. Takita A. Inoue H. Coagulation biomarkers and clinical outcomes in elderly patients with nonvalvular atrial fibrillation. JACC Asia 2023 3 4 595 607 10.1016/j.jacasi.2023.06.004 37614535
    [Google Scholar]
  4. Roberti R. Iannone L.F. Palleria C. Curcio A. Rossi M. Sciacqua A. Armentaro G. Vero A. Manti A. Cassano V. Russo E. De Sarro G. Citraro R. Direct oral anticoagulants: From randomized clinical trials to real-world clinical practice. Front. Pharmacol. 2021 12 684638 10.3389/fphar.2021.684638 34122113
    [Google Scholar]
  5. Mosarla R.C. Vaduganathan M. Qamar A. Moslehi J. Piazza G. Giugliano R.P. Anticoagulation strategies in patients with cancer. J. Am. Coll. Cardiol. 2019 73 11 1336 1349 10.1016/j.jacc.2019.01.017 30898209
    [Google Scholar]
  6. Chen A. Stecker E. A Warden B. Direct oral anticoagulant use: A practical guide to common clinical challenges. J. Am. Heart Assoc. 2020 9 13 e017559 10.1161/jaha.120.017559 32538234
    [Google Scholar]
  7. Pfrepper C. Metze M. Siegemund A. Klöter T. Siegemund T. Petros S. Direct oral anticoagulant plasma levels and thrombin generation on st genesia system. Res. Pract. Thromb. Haemost. 2020 4 4 619 627 10.1002/rth2.12340 32548561
    [Google Scholar]
  8. Elsebaie M.A.T. van Es N. Langston A. Büller H.R. Gaddh M. Direct oral anticoagulants in patients with venous thromboembolism and thrombophilia: A systematic review and meta‐analysis. J. Thromb. Haemost. 2019 17 4 645 656 10.1111/jth.14398 30690830
    [Google Scholar]
  9. Khorana A.A. Kuderer N.M. Culakova E. Lyman G.H. Francis C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008 111 10 4902 4907 10.1182/blood‑2007‑10‑116327 18216292
    [Google Scholar]
  10. Gribsholt S.B. Pedersen L. Richelsen B. Thomsen R.W. Validity of icd-10 diagnoses of overweight and obesity in danish hospitals. Clin. Epidemiol. 2019 11 845 854 10.2147/clep.s214909 31572015
    [Google Scholar]
  11. Arendt J.F.H. Hansen A.T. Ladefoged S.A. Sørensen H.T. Pedersen L. Adelborg K. Existing data sources in clinical epidemiology: Laboratory information system databases in denmark. Clin. Epidemiol. 2020 12 469 475 10.2147/clep.s245060 32547238
    [Google Scholar]
  12. Frere C. Crichi B. Wahl C. Lesteven E. Connault J. Durant C. Rueda-Camino J.A. Yannoutos A. Bensaoula O. Le Maignan C. Marjanovic Z. Farge D. The ottawa score performs poorly to identify cancer patients at high risk of recurrent venous thromboembolism: Insights from the tropique study and updated meta-analysis. J. Clin. Med. 2022 11 13 3729 10.3390/jcm11133729 35807014
    [Google Scholar]
  13. Pfaundler N. Limacher A. Stalder O. Méan M. Rodondi N. Baumgartner C. Aujesky D. Prognosis in patients with cancer‐associated venous thromboembolism: Comparison of the riete‐vte and modified ottawa score. J. Thromb. Haemost. 2020 18 5 1154 1161 10.1111/jth.14783 32124545
    [Google Scholar]
  14. Moik F. Englisch C. Pabinger I. Ay C. Risk assessment models of cancer-associated thrombosis - potentials and perspectives. Thromb. Update 2021 5 100075 10.1016/j.tru.2021.100075
    [Google Scholar]
  15. Prandoni Paolo Personalized bleeding risk assessment for atrial fibrillation patients on direct oral anticoagulants: the DOAC score. Bleed. Thrombo. Vascu. Biol. 2023 2 3 97 10.4081/btvb.2023.97
    [Google Scholar]
  16. Aggarwal R. Ruff C.T. Virdone S. Perreault S. Kakkar A.K. Palazzolo M.G. Dorais M. Kayani G. Singer D.E. Secemsky E. Piccini J. Tahir U.A. Shen C. Yeh R.W. Development and validation of the doac score: A novel bleeding risk prediction tool for patients with atrial fibrillation on direct-acting oral anticoagulants. Circulation 2023 148 12 936 946 10.1161/circulationaha.123.064556 37621213
    [Google Scholar]
  17. Ahuja T. Raco V. Bhardwaj S. Green D. To measure or not to measure: Direct oral anticoagulant laboratory assay monitoring in clinical practice. Adv. Hematol. 2023 7 9511499 10.1155/2023/9511499 36875183
    [Google Scholar]
  18. Topkara V.K. Knotts R.J. Jennings D.L. Garan A.R. Levin A.P. Breskin A. Castagna F. Cagliostro B. Yuzefpolskaya M. Takeda K. Takayama H. Uriel N. Mancini D.M. Eisenberger A. Naka Y. Colombo P.C. Jorde U.P. Effect of CYP2C9 and VKORC1 gene variants on warfarin response in patients with continuous-flow left ventricular assist devices. ASAIO J. 2016 62 5 558 564 10.1097/mat.0000000000000390 27258224
    [Google Scholar]
  19. Sconce E.A. Khan T.I. Wynne H.A. Avery P. Monkhouse L. King B.P. Wood P. Kesteven P. Daly A.K. Kamali F. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: Proposal for a new dosing regimen. Blood 2005 106 7 2329 2333 10.1182/blood‑2005‑03‑1108 15947090
    [Google Scholar]
  20. Henderson L.M. Robinson R.F. Ray L. Khan B.A. Li T. Dillard D.A. Schilling B.D. Mosley M. Janssen P.L. Fohner A.E. Rettie A.E. Thummel K.E. Thornton T.A. Veenstra D.L. VKORC 1 and novelCYP 2c9 variation predict warfarin response in alaska native and american indian people. Clin. Transl. Sci. 2019 12 3 312 320 10.1111/cts.12611 30821933
    [Google Scholar]
  21. Flockhart D.A. O’Kane D. Williams M.S. Watson M.S. Flockhart D.A. Gage B. Gandolfi R. King R. Lyon E. Nussbaum R. O’Kane D. Schulman K. Veenstra D. Williams M.S. Watson M.S. ACMG Working Group on Pharmacogenetic Testing of CYP2C9, VKORC1 Alleles for Warfarin Use Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet. Med. 2008 10 2 139 150 10.1097/gim.0b013e318163c35f 18281922
    [Google Scholar]
  22. Scott S.A. Edelmann L. Kornreich R. Desnick R.J. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the ashkenazi and sephardi jewish populations. Am. J. Hum. Genet. 2008 82 2 495 500 10.1016/j.ajhg.2007.10.002 18252229
    [Google Scholar]
  23. Li T. Lange L.A. Li X. Susswein L. Bryant B. Malone R. Lange E.M. Huang T.Y. Stafford D.W. Evans J.P. Polymorphisms in the VKORC1 gene are strongly associated with warfarin dosage requirements in patients receiving anticoagulation. J. Med. Genet. 2006 43 9 740 744 10.1136/jmg.2005.040410 16611750
    [Google Scholar]
  24. Limdi N.A. Wadelius M. Cavallari L. Eriksson N. Crawford D.C. Lee M.T.M. Chen C.H. Motsinger-Reif A. Sagreiya H. Liu N. Wu A.H.B. Gage B.F. Jorgensen A. Pirmohamed M. Shin J.G. Suarez-Kurtz G. Kimmel S.E. Johnson J.A. Klein T.E. Wagner M.J. International Warfarin Pharmacogenetics Consortium Warfarin pharmacogenetics: A single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 2010 115 18 3827 3834 10.1182/blood‑2009‑12‑255992 20203262
    [Google Scholar]
  25. Mushiroda T. Ohnishi Y. Saito S. Takahashi A. Kikuchi Y. Saito S. Shimomura H. Wanibuchi Y. Suzuki T. Kamatani N. Nakamura Y. Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in japanese patients. J. Hum. Genet. 2006 51 3 249 253 10.1007/s10038‑005‑0354‑5 16432637
    [Google Scholar]
  26. AL-Eitan L.N. Almasri A.Y. Khasawneh R.H. Impact of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness in jordanian cardiovascular patients during the initiation therapy. Genes (Basel) 2018 9 12 578 10.3390/genes9120578 30486437
    [Google Scholar]
  27. AL-Eitan L.N. Almasri A.Y. Khasawneh R.H. Effects of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness during the stabilization phase of therapy. Saudi Pharm. J. 2019 27 4 484 490 10.1016/j.jsps.2019.01.011 31061616
    [Google Scholar]
  28. 2018 Available from: https://medlineplus.gov/genetics/condition/warfarin-sensitivity/ (Accessed on: 1 Sep 2023
  29. Sensitivity W. 2023 Available from: https://arupconsult.com/ati/warfarin-sensitivity-genotyping (Accessed on: 14 Dec 2023
  30. Dean L. Warfarin therapy and VKORC1 and CYP genotype. Medical Genetics Summaries Pratt V.M. Scott S.A. Pirmohamed M. Bethesda (MD) National Center for Biotechnology Information (US) 2012
    [Google Scholar]
  31. Lu T. Zhou S. Wu H. Forgetta V. Greenwood C.M.T. Richards J.B. Individuals with common diseases but with a low polygenic risk score could be prioritized for rare variant screening. Genet. Med. 2021 23 3 508 515 10.1038/s41436‑020‑01007‑7 33110269
    [Google Scholar]
  32. Jurgens S.J. Pirruccello J.P. Choi S.H. Morrill V.N. Chaffin M. Lubitz S.A. Lunetta K.L. Ellinor P.T. Adjusting for common variant polygenic scores improves yield in rare variant association analyses. Nat. Genet. 2023 55 4 544 548 10.1038/s41588‑023‑01342‑w 36959364
    [Google Scholar]
  33. Saadatagah S. Naderian M. Dikilitas O. Hamed M.E. Bangash H. Kullo I.J. Polygenic risk, rare variants, and family history. JACC Adv. 2023 2 7 100567 100567 10.1016/j.jacadv.2023.100567 38939477
    [Google Scholar]
  34. Dornbos P. Koesterer R. Ruttenburg A. Nguyen T. Cole J.B. Leong A. Meigs J.B. Florez J.C. Rotter J.I. Udler M.S. Flannick J. AMP-T2D-GENES Consortium A combined polygenic score of 21,293 rare and 22 common variants improves diabetes diagnosis based on hemoglobin a1c levels. Nat. Genet. 2022 54 11 1609 1614 10.1038/s41588‑022‑01200‑1 36280733
    [Google Scholar]
  35. Bosch A. Uleryk E. Avila L. Role of factor viii, ix, and xi in venous thrombosis recurrence risk in adults and children: A systematic review. Res. Pract. Thromb. Haemost. 2023 7 2 100064 100064 10.1016/j.rpth.2023.100064 36852262
    [Google Scholar]
  36. Solier Lopez A. Jara Palomares L. Elias Hernandez T. Asensio Cruz M.I. Blasco Esquivias I. Sanchez Lopez V. Arellano Lopez E. Marin Barrera L. Suarez Valdivia L. Rodriguez de la Borbolla M. Otero Candelera R. Search predictive factors of recurrence in venous thromboembolic disease associated with cancer after withdrawal of the anticoagulation. hispalis study. Eur. Respir. J. 2016 48 60 PA2462 10.1183/13993003.congress‑2016.pa2462
    [Google Scholar]
  37. Kyrle P.A. Minar E. Hirschl M. Bialonczyk C. Stain M. Schneider B. Weltermann A. Speiser W. Lechner K. Eichinger S. High plasma levels of factor viii and the risk of recurrent venous thromboembolism. N. Engl. J. Med. 2000 343 7 457 462 10.1056/nejm200008173430702 10950667
    [Google Scholar]
  38. Timp J.F. Lijfering W.M. Flinterman L.E. van Hylckama Vlieg A. le Cessie S. Rosendaal F.R. Cannegieter S.C. Predictive value of factor viii levels for recurrent venous thrombosis: Results from the mega follow‐up study. J. Thromb. Haemost. 2015 13 10 1823 1832 10.1111/jth.13113 26270389
    [Google Scholar]
  39. Purdy M. Obi A. Myers D. Wakefield T. P‐ and e‐ selectin in venous thrombosis and non‐venous pathologies. J. Thromb. Haemost. 2022 20 5 1056 1066 10.1111/jth.15689 35243742
    [Google Scholar]
  40. Saadeldin A.A. El-Sakhawy Y.N. Hussien H.A. Soluble p-selectin level in patients with deep venous thrombosis. Egypt. J. Hosp. Med. 2018 70 9 1529 1538 10.12816/0044679
    [Google Scholar]
  41. Ay C. Jungbauer L.V. Sailer T. Tengler T. Koder S. Kaider A. Panzer S. Quehenberger P. Pabinger I. Mannhalter C. High concentrations of soluble p-selectin are associated with risk of venous thromboembolism and the p-selectin thr715 variant. Clin. Chem. 2007 53 7 1235 1243 10.1373/clinchem.2006.085068 17510305
    [Google Scholar]
  42. Ay C. Simanek R. Vormittag R. Dunkler D. Alguel G. Koder S. Kornek G. Marosi C. Wagner O. Zielinski C. Pabinger I. High plasma levels of soluble p-selectin are predictive of venous thromboembolism in cancer patients: Results from the vienna cancer and thrombosis study (cats). Blood 2008 112 7 2703 2708 10.1182/blood‑2008‑02‑142422 18539899
    [Google Scholar]
  43. Ay C. Simanek R. Vormittag R. Dunkler D. Alguel G. Koder S. Wagner O. Zielinski C. Pabinger I. High plasma levels of soluble p-selectin are predictive for venous thromboembolism in cancer patients - results from the vienna cancer and thrombosis study (cats). Blood 2007 110 11 701 701 10.1182/blood.v110.11.701.701
    [Google Scholar]
  44. Castellón Rubio V.E. Segura P.P. Muñoz A. Farré A.L. Ruiz L.C. Lorente J.A. High plasma levels of soluble p-selectin and factor viii predict venous thromboembolism in non-small cell lung cancer patients: The thrombo-nsclc risk score. Thromb. Res. 2020 196 349 354 10.1016/j.thromres.2020.09.021 32977135
    [Google Scholar]
  45. Ay C. Dunkler D. Marosi C. Chiriac A.L. Vormittag R. Simanek R. Quehenberger P. Zielinski C. Pabinger I. Prediction of venous thromboembolism in cancer patients. Blood 2010 116 24 5377 5382 10.1182/blood‑2010‑02‑270116 20829374
    [Google Scholar]
  46. Harada Y. Sato A. Nishioka A. Ogusu S. Matsumoto M. Sueoka E. Kawaguchi A. Kimura S. Sueoka-αragane N. Usefulness of blood biomarkers for predicting venous thromboembolism in japanese patients with cancer. Oncol. Lett. 2023 25 5 180 10.3892/ol.2023.13766 37033099
    [Google Scholar]
  47. Iding A.F.J. Kremers B.M.M. Nagy M. Pallares Robles A. ten Cate H. Spronk H.M.H. ten Cate-Hoek A.J. Translational insights into mechanisms underlying residual venous obstruction and the role of factor xi, p-selectin and gpvi in recurrent venous thromboembolism. Thromb. Res. 2023 221 58 64 10.1016/j.thromres.2022.11.023 36473362
    [Google Scholar]
  48. Hanaa A. El-Sayed A. Ebrahim M. Validity of modified vienna-cats score for prediction of venous thromboembolism in egyptian cancer cases. Egypt. J. Hospi. Medi. 2022 89 2 6831 6838 10.21608/ejhm.2022.270820
    [Google Scholar]
  49. EL-Sayed H.A. Othman M. Azzam H. Bucciol R. Ebrahim M.A. EL-Agdar M.A.M.A. Tera Y. Sakr D.H. Ghoneim H.R. Selim T.E.S. Assessing the risk of venous thromboembolism in patients with haematological cancers using three prediction models. J. Cancer Res. Clin. Oncol. 2023 149 20 17771 17780 10.1007/s00432‑023‑05475‑7 37935936
    [Google Scholar]
  50. Tan W.J. Chen L. Yang S.J. Zhang B.Y. Sun M.L. Lin Y.B. Wang X.H. Development and validation of a prediction model for venous thrombus embolism (vte) in patients with colorectal cancer. Technol. Cancer Res. Treat. 2023 22 15330338231186790 10.1177/15330338231186790 38018116
    [Google Scholar]
  51. Estrin M.A. Wehausen C.E. Lessen C.R. Lee J.A. Disseminated intravascular coagulation in cats. J. Vet. Intern. Med. 2006 20 6 1334 1339 10.1111/j.1939‑1676.2006.tb00747.x 17186846
    [Google Scholar]
  52. Paul Pion D.V.M. Spadafori G. Veterinary partner. 2017 Available from: https://veterinarypartner.vin.com/default.aspx?pid=19239&id=4952842 (Accessed on: 8 Aug 2017).
  53. Lyman G.H. Carrier M. Ay C. Di Nisio M. Hicks L.K. Khorana A.A. Leavitt A.D. Lee A.Y.Y. Macbeth F. Morgan R.L. Noble S. Sexton E.A. Stenehjem D. Wiercioch W. Kahale L.A. Alonso-Coello P. American society of hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021 5 4 927 974 10.1182/bloodadvances.2020003442 33570602
    [Google Scholar]
  54. Moik F. Colling M. Mahé I. Jara-Palomares L. Pabinger I. Ay C. Extended anticoagulation treatment for cancer‐associated thrombosis—rates of recurrence and bleeding beyond 6 months: A systematic review. J. Thromb. Haemost. 2022 20 3 619 634 10.1111/jth.15599 34816583
    [Google Scholar]
  55. Yoon H.Y. Song T.J. Yee J. Park J. Gwak H.S. Association between genetic polymorphisms and bleeding in patients on direct oral anticoagulants. Pharmaceutics 2022 14 9 1889 10.3390/pharmaceutics14091889 36145636
    [Google Scholar]
  56. Derington C.G. Goodrich G.K. Xu S. Clark N.P. Reynolds K. An J. Witt D.M. Smith D.H. O’Keeffe-Rosetti M. Lang D.T. Ho P.M. Cheetham T.C. Comer A.C. King J.B. Association of direct oral anticoagulation management strategies with clinical outcomes for adults with atrial fibrillation. JAMA Netw. Open 2023 6 7 e2321971 10.1001/jamanetworkopen.2023.21971 37410461
    [Google Scholar]
  57. Raymond J. Imbert L. Cousin T. Duflot T. Varin R. Wils J. Lamoureux F. Pharmacogenetics of direct oral anticoagulants: A systematic review. J. Pers. Med. 2021 11 1 37 10.3390/jpm11010037 33440670
    [Google Scholar]
  58. Tufano A. Coppola A. How to manage anticoagulation for cancer-associated thrombosis and atrial fibrillation in cancer. Thromb. Update 2024 15 100169 100169 10.1016/j.tru.2024.100169
    [Google Scholar]
  59. Farge D. Frere C. Connors J.M. Khorana A.A. Kakkar A. Ay C. Muñoz A. Brenner B. Prata P.H. Brilhante D. Antic D. Casais P. Guillermo Esposito M.C. Ikezoe T. Abutalib S.A. Meillon-García L.A. Bounameaux H. Pabinger I. Douketis J. Ageno W. Ajauro F. Alcindor T. Angchaisuksiri P. Arcelus J.I. Barba R. Bazarbachii A. Bellesoeur A. Bensaoula O. Benzidia I. Bita D. Bitsadze V. Blickstein D. Blostein M. Bogalho I. Brandao A. Calado R. Carpentier A. Ceresetto J.M. Chitsike R. Connault J. Correia C.J. Crichi B. De Paula E.V. Demir A.M. Deville L. Doucet L. Dounaevskaia V. Durant C. Ellis M. Emmerich J. Falanga A. Font C. Gallardo E. Gary T. Gonçalves F. Gris J-C. Hayashi H. Hij A. Jara-Palomares L. Jiménez D. Khizroeva J. N’Guessan M. Langer F. Le Hello C. Le Maignan C. Lecumberri R. Lee L.H. Liederman Z. Lopes dos Santos L. Machado D.H. Makatsariya A. Maneyro A. Marjanovic Z. Milhaileanu S. Monreal M. Morais S. Moreira A. Mukai M. Ndour A. Correa Oliveira L. Otero-Candelara R. Tostes Pintao M.C. Posch F. Prilollet P. Rafii H. Dias Ribeiro D. Riess H. Righini M. Robert-Ebadi H. Rothschild C. Roussin A. Rueda Camino J.A. Ruiz-Artacho P. Saharov G. Santos J. Sebuhyan M. Shamseddine A. Spectre G.S. Taher A. Trujillo-Santos J. Tzoran I. Villiers S. Wong R. Yamashita Y. Yannoutsos A. Yasuda C. International Initiative on Thrombosis and Cancer (ITAC) advisory panel 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with covid-19. Lancet Oncol. 2022 23 7 e334 e347 10.1016/s1470‑2045(22)00160‑7 35772465
    [Google Scholar]
  60. Kearon C. Akl E.A. Duration of anticoagulant therapy for deep vein thrombosis and pulmonary embolism. Blood 2014 123 12 1794 1801 10.1182/blood‑2013‑12‑512681 24497538
    [Google Scholar]
  61. Thompson L.E. Davis B.H. Narayan R. Goff B. Brown T.M. Limdi N.A. Personalizing direct oral anticoagulant therapy for a diverse population: Role of race, kidney function, drug interactions, and pharmacogenetics. Clin. Pharmacol. Ther. 2023 113 3 585 599 10.1002/cpt.2714 35857814
    [Google Scholar]
  62. Cross B. Turner R.M. Zhang J.E. Pirmohamed M. Being precise with anticoagulation to reduce adverse drug reactions: Are we there yet? Pharmacogenomics J. 2024 24 2 7 10.1038/s41397‑024‑00329‑y 38443337
    [Google Scholar]
  63. Score C.A.T.S. Cats score. 2017 Available from: https://practical-haemostasis.com/Clinical%20Prediction%20Scores/Formulae%20code%20and%20formulae/Formulae/VTED-Cancer/CATS_score.html
  64. Pabinger I. van Es N. Heinze G. Posch F. Riedl J. Reitter E.M. Di Nisio M. Cesarman-Maus G. Kraaijpoel N. Zielinski C.C. Büller H.R. Ay C. A clinical prediction model for cancer-associated venous thromboembolism: A development and validation study in two independent prospective cohorts. Lancet Haematol. 2018 5 7 e289 e298 10.1016/s2352‑3026(18)30063‑2 29885940
    [Google Scholar]
  65. Verzeroli C. Giaccherini C. Russo L. Bolognini S. Gamba S. Tartari C.J. Schieppati F. Ticozzi C. Vignoli A. Masci G. Sarmiento R. Spinelli D. Malighetti P. Tondini C. Petrelli F. Giuliani F. D’Alessio A. Gasparini G. Minelli M. De Braud F. Santoro A. Labianca R. Marchetti M. Falanga A. Marina M. Silvia B. Sara G. Cinzia G. Laura R. Francesca S. Julia T.C. Chiara T. Cristina V. Alfonso V. Armando S. Giovanna M. Filippo D.B. Antonia M. Carlo T. Roberto L. Giampietro G. Roberta S. Elisabetta G. Mauro M. Sandro B. Fausto P. Mara G. Andrea D.A. Sara C. Francesco G. Paolo M. Chiara M. Daniele S. Falanga A. HYPERCAN Investigators Utility of the khorana and the new-vienna cats prediction scores in cancer patients of the hypercan cohort. J. Thromb. Haemost. 2023 21 7 1869 1881 10.1016/j.jtha.2023.03.037 37054917
    [Google Scholar]
  66. Drăgan A. Drăgan A.Ş. Novel insights in venous thromboembolism risk assessment methods in ambulatory cancer patients: From the guidelines to clinical practice. Cancers (Basel) 2024 16 2 458 10.3390/cancers16020458 38275899
    [Google Scholar]
  67. Riondino S. Ferroni P. Zanzotto F.M. Roselli M. Guadagni F. Predicting vte in cancer patients: Candidate biomarkers and risk assessment models. Cancers (Basel) 2019 11 1 95 95 10.3390/cancers11010095 30650562
    [Google Scholar]
  68. Kim A.S. Khorana A.A. McCrae K.R. Mechanisms and biomarkers of cancer-associated thrombosis. Transl. Res. 2020 225 33 53 10.1016/j.trsl.2020.06.012 32645431
    [Google Scholar]
  69. Mosaad M. Elnaem M.H. Cheema E. Ibrahim I. Ab Rahman J. Kori A.N. Hin H.S. Cancer-associated thrombosis: A clinical scoping review of the risk assessment models across solid tumours and haematological malignancies. Int. J. Gen. Med. 2021 14 3881 3897 10.2147/ijgm.s320492 34335052
    [Google Scholar]
  70. Hanna D.L. White R.H. Wun T. Biomolecular markers of cancer-associated thromboembolism. Crit. Rev. Oncol. Hematol. 2013 88 1 19 29 10.1016/j.critrevonc.2013.02.008 23522921
    [Google Scholar]
  71. Levy J.H. Spyropoulos A.C. Samama C.M. Douketis J. Direct oral anticoagulants: New drugs and new concepts. JACC Cardiovasc. Interv. 2014 7 12 1333 1351 10.1016/j.jcin.2014.06.014 25523529
    [Google Scholar]
  72. Bolek H. Ürün Y. Cancer‐associated thrombosis and drug–drug interactions of antithrombotic and antineoplastic agents. Cancer 2023 129 20 3216 3229 10.1002/cncr.34937 37401828
    [Google Scholar]
  73. Choi E.K. Kwon S. Coagulation biomarkers for predicting clinical outcomes among patients with atrial fibrillation. JACC Asia 2023 3 4 608 610 10.1016/j.jacasi.2023.07.002 37614537
    [Google Scholar]
  74. Oldgren J. Hijazi Z. Lindbäck J. Alexander J.H. Connolly S.J. Eikelboom J.W. Ezekowitz M.D. Granger C.B. Hylek E.M. Lopes R.D. Siegbahn A. Yusuf S. Wallentin L. RE-LY and ARISTOTLE Investigators Performance and validation of a novel biomarker-based stroke risk score for atrial fibrillation. Circulation 2016 134 22 1697 1707 10.1161/circulationaha.116.022802 27569438
    [Google Scholar]
  75. Scherer A. Reproducibility in biomarker research and clinical development: A global challenge. Biomarkers Med. 2017 11 4 309 312 10.2217/bmm‑2017‑0024 28290208
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257335790241203061748
Loading
/content/journals/chamc/10.2174/0118715257335790241203061748
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test