Skip to content
2000
image of Anti-thrombotic Mechanisms of Echinochrome A on Arterial Thrombosis in Rats: In-Silico, In-Vitro and In-Vivo Studies

Abstract

Background

Arterial thrombosis is one of the most significant healthcare concerns in the world. Echinochrome A (Ech-A) is a natural quinone pigment isolated from sea urchins. It has a variety of medicinal values associated with its antioxidant, anticancer, antiviral, anti-diabetic, and cardio-protective activities.

Objective

The current study aims to investigate the effect and mechanism of Ech-A to inhibit thrombus formation induced by ferric chloride in rats.

Methods

Twenty-four rats were assigned into four groups (n= 6); sham and thrombotic model groups were orally administered 2% DMSO, while the other groups were treated with two dosages of Ech-A (1 and 10 mg/kg, body weight). After seven days of administration, all groups were exposed to 50% ferric chloride for 10 min, except the sham group exposure to normal saline.

Results

The molecular docking showed the free binding energies of Ech-A and vitamin K (Vit. K) with Vit. K epoxide reductase were -8.5 and -9.8 kcal/mol, which confirm the antithrombotic activity of Ech-A. The oral administration of Ech-A caused a significant increase in partial thromboplastin time, prothrombin time, clotting time, platelet count, fibrinogen levels, factor VIII, glutathione reduced, catalase, nitric oxide, and glutathione S-transferase. While white blood cells count, calcium level, and malondialdehyde concentration significantly decreased. The histological examination revealed a definite improvement in the carotid and cardiac tissues in the Ech-A groups.

Conclusion

The study results showed that Ech-A prevented thrombosis by several mechanisms, including chelating calcium ions, increasing the NO concentration, suppressing oxidative stress, and antagonizing Vit. K.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257332064241104114546
2024-11-12
2025-02-19
Loading full text...

Full text loading...

References

  1. Chen G. Farris M.S. Cowling T. Pinto L. Rogoza R.M. MacKinnon E. Champsi S. Anderson T.J. Prevalence of atherosclerotic cardiovascular disease and subsequent major adverse cardiovascular events in Alberta, Canada: A real-world evidence study. Clin. Cardiol. 2021 44 11 1613 1620 10.1002/clc.23732 34585767
    [Google Scholar]
  2. Mendis S. Davis S. Norrving B. Organizational update: The world health organization global status report on noncommunicable diseases 2014: One more landmark step in the combat against stroke and vascular disease. Stroke 2015 46 5 e121 2 10.1161/STROKEAHA.115.008097.
    [Google Scholar]
  3. Shi P. Zheng W. Zhou J. Han N. Yin J. Effects of MaiLiuPian on carotid thrombosis in rats and acute pulmonary embolism in mice and its antithrombotic mechanism. J. Food Biochem. 2022 46 7 e14143 10.1111/jfbc.14143 35388507
    [Google Scholar]
  4. Ashorobi D. Ameer M.A. Fernandez R.J.S. Thrombosis. StatPearls Treasure Island, FL StatPearls Publishing 2022
    [Google Scholar]
  5. Kaikita K. Hosokawa K. Dahlen J.R. Tsujita K. Total thrombus-formation analysis system (T-TAS): Clinical application of quantitative analysis of thrombus formation in cardiovascular disease. Thromb. Haemost. 2019 119 10 1554 1562 10.1055/s‑0039‑1693411 31330558
    [Google Scholar]
  6. Zhang Y. Li L. Zhao Y. Han H. Hu Y. Liang D. Yu B. Kou J. The myosin II inhibitor, blebbistatin, ameliorates FeCl3-induced arterial thrombosis via the GSK3β-NF-κB pathway. Int. J. Biol. Sci. 2017 13 5 630 639 10.7150/ijbs.18485 28539835
    [Google Scholar]
  7. Sonneveld M.A.H. de Maat M.P.M. Leebeek F.W.G. Von Willebrand factor and ADAMTS13 in arterial thrombosis: A systematic review and meta-analysis. Blood Rev. 2014 28 4 167 178 10.1016/j.blre.2014.04.003 24825749
    [Google Scholar]
  8. Joshi S. Smith A.N. Prakhya K.S. Alfar H.R. Lykins J. Zhang M. Pokrovskaya I. Aronova M. Leapman R.D. Storrie B. Whiteheart S.W. Ferric chloride-induced arterial thrombosis and sample collection for 3D electron microscopy analysis. J Vis Exp 2023 193 e64985 10.3791/64985.
    [Google Scholar]
  9. Bang J. Jeon W. K. Mumefural improves blood flow in a rat model of FeCl3-induced arterial thrombosis. Nutrients 2020 12 12 3795 10.3390/nu12123795
    [Google Scholar]
  10. Grover S.P. Mackman N. How useful are ferric chloride models of arterial thrombosis? Platelets 2020 31 4 432 438 10.1080/09537104.2019.1678119 31608756
    [Google Scholar]
  11. Li P. Lin B. Tang P. Ye Y. Wu Z. Gui S. Zhan Y. Yang W. Lin B. Aqueous extract of Whitmania pigra Whitman ameliorates ferric chloride-induced venous thrombosis in rats via antioxidation. J. Thromb. Thrombolysis 2021 52 1 59 68 10.1007/s11239‑020‑02337‑8 33201380
    [Google Scholar]
  12. Shim Y. Kwon I. Park Y. Lee H.W. Kim J. Kim Y.D. Nam H.S. Park S. Heo J.H.J.Y.j. Characterization of ferric chloride-induced arterial thrombosis model of mice and the role of red blood cells in thrombosis acceleration. Yonsei Med J 2021 62 11 1032 1041 10.3349/ymj.2021.62.11.1032.
    [Google Scholar]
  13. Wang P. Chi L. Zhang Z. Zhao H. Zhang F. Linhardt R.J. Heparin: An old drug for new clinical applications. Carbohydr. Polym. 2022 295 119818 10.1016/j.carbpol.2022.119818 35989029
    [Google Scholar]
  14. Ansari U. Asghar Z. Oswald M. Ng H. Apixaban-induced hepatotoxicity. Cureus 2022 14 4 e23879 35402115
    [Google Scholar]
  15. Nguyen T.N.M. Sha S. Chen L.J. Holleczek B. Brenner H. Schöttker B. Strongly increased risk of gastric and duodenal ulcers among new users of low‐dose aspirin: Results from two large cohorts with new‐user design. Aliment. Pharmacol. Ther. 2022 56 2 251 262 10.1111/apt.17050 35621052
    [Google Scholar]
  16. Sampat P.J. Wadhwa R. Prasugrel StatPearls Treasure Island, FL StatPearls Publishing 2022
    [Google Scholar]
  17. Sadek S.A. Hassanein S.S. Mohamed A.S. Soliman A.M. Fahmy S.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J. Food Biochem. 2022 46 3 e13729 10.1111/jfbc.13729 33871886
    [Google Scholar]
  18. Kim H.K. Vasileva E.A. Mishchenko N.P. Fedoreyev S.A. Han J. Multifaceted clinical effects of echinochrome. Mar Drugs 2021 19 8 412 10.3390/md19080412.
    [Google Scholar]
  19. Kikionis S. Papakyriakopoulou P. Mavrogiorgis P. Vasileva E.A. Mishchenko N.P. Fedoreyev S.A. Valsami G. Ioannou E. Roussis V. Development of novel pharmaceutical forms of the marine bioactive pigment echinochrome A enabling alternative routes of administration. Mar Drugs 2023 21 4 250 10.3390/md21040250
    [Google Scholar]
  20. Sun Q. Hu S. Lou Z. Gao J. The macrophage polarization in inflammatory dermatosis and its potential drug candidates. Biomed. Pharmacother. 2023 161 114469 10.1016/j.biopha.2023.114469 37002572
    [Google Scholar]
  21. Moreno-García D.M. Salas-Rojas M. Fernández-Martínez E. López-Cuellar M.R. Sosa-Gutierrez C.G. Peláez-Acero A. Rivero-Perez N. Zaragoza-Bastida A. Ojeda-Ramírez D. Sea urchins: An update on their pharmacological properties. PeerJ 2022 10 e13606 10.7717/peerj.13606 35811815
    [Google Scholar]
  22. Sibiya A. Jeyavani J. Sivakamavalli J. Ravi C. Divya M. Vaseeharan B. Bioactive compounds from various types of sea urchin and their therapeutic effects — A review. Reg. Stud. Mar. Sci. 2021 44 101760 10.1016/j.rsma.2021.101760
    [Google Scholar]
  23. Coates C.J. McCulloch C. Betts J. Whalley T. Echinochrome A release by red spherule cells is an iron-withholding strategy of sea urchin innate immunity. J. Innate Immun. 2018 10 2 119 130 10.1159/000484722 29212075
    [Google Scholar]
  24. Hwang J.W. Park J.H. Park B.W. Kim H. Kim J.J. Sim W.S. Mishchenko N.P. Fedoreyev S.A. Vasileva E.A. Ban K. Park H.J. Baek S.H. Histochrome attenuates myocardial ischemia-reperfusion injury by inhibiting ferroptosis-induced cardiomyocyte death. Antioxidants 2021 10 10 1624 10.3390/antiox10101624 34679760
    [Google Scholar]
  25. Clark A. Monograph of shallow-water Indo-West pacific echinoderms. Trust. Br. Mus. (Nat. Hist.), Publ. 1971 690 1 238
    [Google Scholar]
  26. Amarowicz R. Synowiecki J. Shahidi F. Sephadex LH-20 separation of pigments from shells of red sea urchin (Strongylocentrotus franciscanus). Food Chem. 1994 51 2 227 229 10.1016/0308‑8146(94)90262‑3
    [Google Scholar]
  27. Kuwahara R. Hatate H. Yuki T. Murata H. Tanaka R. Hama Y. Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina . Lebensm. Wiss. Technol. 2009 42 7 1296 1300 10.1016/j.lwt.2009.02.020
    [Google Scholar]
  28. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  29. Rahman F. Tabrez S. Ali R. Alqahtani A.S. Ahmed M.Z. Rub A. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. J. Tradit. Complement. Med. 2021 11 2 173 179 10.1016/j.jtcme.2021.01.006 33520682
    [Google Scholar]
  30. Gul H. Jamshed A. Jabeen Q. Pharmacological investigation of Asphodelus tenuifolius Cav. for its potential against thrombosis in experimental models. Dose Response 2022 20 3 10.1177/15593258221127566.
    [Google Scholar]
  31. Fries D. Innerhofer P. Klingler A. Berresheim U. Mittermayr M. Calatzis A. Schobersberger W. The effect of the combined administration of colloids and lactated Ringer’s solution on the coagulation system: An in vitro study using thrombelastograph coagulation analysis (ROTEG). Anesth. Analg. 2002 94 5 1280 1287 10.1097/00000539‑200205000‑00043 11973205
    [Google Scholar]
  32. Lin X. Zhao P. Lin Z. Chen J. Bingwa L.A. Siaw-Debrah F. Zhang P. Jin K. Yang S. Zhuge Q. Establishment of a modified and standardized ferric chloride-induced rat carotid artery thrombosis model. ACS Omega 2022 7 10 8919 8927 10.1021/acsomega.1c07316 35309441
    [Google Scholar]
  33. Mohamed A.S. Hosney M. Bassiony H. Hassanein S.S. Soliman A.M. Fahmy S.R. Gaafar K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci. Rep. 2020 10 1 378 10.1038/s41598‑019‑57252‑7 31942001
    [Google Scholar]
  34. Mohamed A.S. Soliman A.M. Marie M.A.S. Mechanisms of echinochrome potency in modulating diabetic complications in liver. Life Sci. 2016 151 41 49 10.1016/j.lfs.2016.03.007 26947587
    [Google Scholar]
  35. Sayed D.A. Soliman A.M. Fahmy S.R. Echinochrome pigment as novel therapeutic agent against experimentally - Induced gastric ulcer in rats. Biomed. Pharmacother. 2018 107 90 95 10.1016/j.biopha.2018.07.173 30081206
    [Google Scholar]
  36. Young D.J.C.C. Effects of disease on clinical lab tests. AACC 2001 48 682
    [Google Scholar]
  37. Young D.S. Pestaner L.C. Gibberman V. Effects of drugs on clinical laboratory tests. Clin. Chem. 1975 21 5 1D 432D 1091375
    [Google Scholar]
  38. Beutler E. Duron O. Kelly B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963 61 882 888 13967893
    [Google Scholar]
  39. Aebi H. Catalase in vitro. Methods Enzymol 1984 105 121 126 10.1016/s0076‑6879(84)05016‑3.
    [Google Scholar]
  40. Habig W.H. Pabst M.J. Jakoby W.B. Glutathione S-transferases. J. Biol. Chem. 1974 249 22 7130 7139 10.1016/S0021‑9258(19)42083‑8 4436300
    [Google Scholar]
  41. Montogomery H. Dymock J. The determination of nitrite in water. Analyst 1961 414 416
    [Google Scholar]
  42. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  43. Bancroft J. Stevens A. Theory And Practice Of Histological Techniques. New York Churchill Livingstone 1996 309 339
    [Google Scholar]
  44. Qin-Wei Z.H.U. Yong-Guang L.I. Berberine attenuates myocardial ischemia reperfusion injury by suppressing the activation of PI3K/AKT signaling. Exp. Ther. Med. 2016 11 3 978 984 10.3892/etm.2016.3018 26998023
    [Google Scholar]
  45. Lacroix R. Dubois C. Leroyer A.S. Sabatier F. Dignat-George F. Revisited role of microparticles in arterial and venous thrombosis. J. Thromb. Haemost. 2013 11 s1 24 35 10.1111/jth.12268 23809108
    [Google Scholar]
  46. Zirlik A. Bode C. Vitamin K antagonists: Relative strengths and weaknesses vs. direct oral anticoagulants for stroke prevention in patients with atrial fibrillation. J. Thromb. Thrombolysis 2017 43 3 365 379 10.1007/s11239‑016‑1446‑0 27896543
    [Google Scholar]
  47. Kiouptsi K. Jäckel S. Pontarollo G. Grill A. Kuijpers M.J.E. Wilms E. Weber C. Sommer F. Nagy M. Neideck C. Jansen Y. Ascher S. Formes H. Karwot C. Bayer F. Kollar B. Subramaniam S. Molitor M. Wenzel P. Rosenstiel P. Todorov H. Gerber S. Walter U. Jurk K. Heemskerk J.W.M. van der Vorst E.P.C. Döring Y. Reinhardt C. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. MBio 2019 10 5 e02298-19 10.1128/mBio.02298‑19 31641089
    [Google Scholar]
  48. Song J. Drobatz K.J. Silverstein D.C. Retrospective evaluation of shortened prothrombin time or activated partial thromboplastin time for the diagnosis of hypercoagulability in dogs: 25 cases (2006-2011). J Vet Emerg Crit Care (San Antonio) 2016 26 3 398 405 10.1111/vec.12478.
    [Google Scholar]
  49. Choi J.H. Kim Y.S. Shin C.H. Lee H.J. Kim S. Antithrombotic activities of luteolin in vitro and in vivo . J. Biochem. Mol. Toxicol. 2015 29 12 552 558 10.1002/jbt.21726 26184785
    [Google Scholar]
  50. Mohamed A.S. Echinochrome exhibits antitumor activity against ehrlich ascites carcinoma in swiss albino mice. Nutr. Cancer 2021 73 1 124 132 10.1080/01635581.2020.1737152 32151164
    [Google Scholar]
  51. Alamgeer . ul Ain Qurut. Habiba Hasan Umme. Asif Hira. Antithrombotic activity of Mentha longifolia in animal model. Bangladesh J. Pharmacol. 2018 13 1 33243 10.3329/bjp.v13i1.33243.
    [Google Scholar]
  52. Jiang Y.H. Jiang P. Yang J. Ma D.F. Lin H.Q. Su W. Wang Z. Li X. Cardiac dysregulation and myocardial injury in a 6-hydroxydopamine-induced rat model of sympathetic denervation. PLoS One 2015 10 7 e0133971 10.1371/journal.pone.0133971 26230083
    [Google Scholar]
  53. Kitzenberg D. Colgan S.P. Glover L.E. Creatine kinase in ischemic and inflammatory disorders. Clin. Transl. Med. 2016 5 1 e31 10.1186/s40169‑016‑0114‑5 27527620
    [Google Scholar]
  54. Fowler E.D. Benoist D. Drinkhill M.J. Stones R. Helmes M. Wüst R.C.I. Stienen G.J.M. Steele D.S. White E. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension. J. Mol. Cell. Cardiol. 2015 86 1 8 10.1016/j.yjmcc.2015.06.016 26116865
    [Google Scholar]
  55. Han D.G. Kwak J. Choi E. Seo S.W. Vasileva E.A. Mishchenko N.P. Fedoreyev S.A. Stonik V.A. Kim H.K. Han J. Byun J.H. Jung I.H. Yun H. Yoon I.S. Physicochemical characterization and phase II metabolic profiling of echinochrome A, a bioactive constituent from sea urchin, and its physiologically based pharmacokinetic modeling in rats and humans. Biomed. Pharmacother. 2023 162 114589 10.1016/j.biopha.2023.114589 37004327
    [Google Scholar]
  56. Eckly A. Hechler B. Freund M. Zerr M. Cazenave J.P. Lanza F. Mangin P.H. Gachet C. Mechanisms underlying FeCl3‐induced arterial thrombosis. J. Thromb. Haemost. 2011 9 4 779 789 10.1111/j.1538‑7836.2011.04218.x 21261806
    [Google Scholar]
  57. Zhao Y. Chu X. Pang X.B. Wang S.H. Du G.H. Antithrombotic effects of the effective components group of Xiaoshuantongluo formula in vivo and in vitro. Chin. J. Nat. Med. 2015 13 2 99 107 10.1016/S1875‑5364(15)60013‑9 25769892
    [Google Scholar]
  58. Sindhura S. Chinna Eswaraiah M. Effect of Dalechampia indica wight extract fractions on behavioral and biochemical abnormalities following ischemia-reperfusion insult in rats. Pharmacogn. J. 2018 10 1
    [Google Scholar]
  59. Tousoulis D. Kampoli A.M. Tentolouris Nikolaos Papageorgiou C. Stefanadis C. Stefanadis C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012 10 1 4 18 10.2174/157016112798829760 22112350
    [Google Scholar]
  60. Naseem K. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 2005 26 1-2 33 65 10.1016/j.mam.2004.09.003 15722114
    [Google Scholar]
  61. Freedman J.E. Loscalzo J. Nitric oxide and its relationship to thrombotic disorders. J Thromb Haemost 2003 1 6 1183 8 10.1046/j.1538‑7836.2003.00180.x.
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257332064241104114546
Loading
/content/journals/chamc/10.2174/0118715257332064241104114546
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ferric chloride ; Echinochrome A ; molecular docking ; oxidative stress ; Arterial thrombosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test