Skip to content
2000
image of Novel Pathway and Recent Advances for Targeting Sickle Cell Anemia through Novel Drug Delivery System

Abstract

Red blood cells with sickle cell anemia (SCA) have an irregular shape, and it is a genetic blood condition that can cause several problems and shorten life expectancy. Traditional treatments have focused on symptom management, but recent advancements in drug delivery systems offer promising pathways for targeted therapies. This abstract explores novel approaches to combat SCA through innovative drug delivery systems, gene therapy, and new pharmaceutical interventions. One novel pathway for targeting SCA involves utilizing advanced drug delivery systems to enhance the effectiveness of therapeutic agents. Nanotechnology-based delivery systems, such as nanoparticles and liposomes, offer precise drug targeting, controlled release, and improved bioavailability. These systems can encapsulate anti-sickling agents, like hydroxyurea, and enable their specific delivery to affected cells, reducing side effects and enhancing therapeutic outcomes. Additionally, therapy has become a ground-breaking method of treating SCA. CRISPR/Cas9 technology presents a groundbreaking opportunity to correct the genetic mutation responsible for sickle hemoglobin production. By precisely editing the HBB gene, which encodes the abnormal hemoglobin, researchers aim to restore normal hemoglobin expression, potentially offering a curative treatment for SCA. Furthermore, recent advancements in drug development have led to the discovery of promising candidates targeting specific pathways involved in SCA pathophysiology. Experimental drugs, such as voxelotor and crizanlizumab focus on modifying hemoglobin properties or inhibiting cell adhesion, respectively, thereby preventing sickle cell-related complications and reducing vaso-occlusive crisis frequency.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257325911241113075950
2024-12-03
2025-02-19
Loading full text...

Full text loading...

References

  1. Pace B.S. Starlard-Davenport A. Kutlar A. Sickle cell disease: Progress towards combination drug therapy. Br. J. Haematol. 2021 194 2 240 251 10.1111/bjh.17312 33471938
    [Google Scholar]
  2. Olubiyi O.O. Olagunju M.O. Strodel B. Rational drug design of peptide-based therapies for sickle cell disease. Molecules 2019 24 24 4551 10.3390/molecules24244551 31842406
    [Google Scholar]
  3. Carden M.A. Little J. Emerging disease-modifying therapies for sickle cell disease. Haematologica 2019 104 9 1710 1719 10.3324/haematol.2018.207357 31413089
    [Google Scholar]
  4. Salinas Cisneros G. Thein S.L. Recent advances in the treatment of sickle cell disease. Front. Physiol. 2020 11 May 435 10.3389/fphys.2020.00435 32508672
    [Google Scholar]
  5. Bunn H.F. Pathogenesis and treatment of sickle cell disease. N. Engl. J. Med. 1997 337 11 762 769 10.1056/NEJM199709113371107 9287233
    [Google Scholar]
  6. Barabino G.A. Platt M.O. Kaul D.K. Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 2010 12 1 345 367 10.1146/annurev‑bioeng‑070909‑105339 20455701
    [Google Scholar]
  7. Ware R.E. de Montalembert M. Tshilolo L. Abboud M.R. Sickle cell disease. Lancet 2017 390 10091 311 323 10.1016/S0140‑6736(17)30193‑9 28159390
    [Google Scholar]
  8. Piccin A. Murphy C. Eakins E. Rondinelli M.B. Daves M. Vecchiato C. Wolf D. Mc Mahon C. Smith O.P. Insight into the complex pathophysiology of sickle cell anaemia and possible treatment. Eur. J. Haematol. 2019 102 4 319 330 10.1111/ejh.13212 30664257
    [Google Scholar]
  9. Ataga K.I. Moore C.G. Jones S. Olajide O. Strayhorn D. Hinderliter A. Orringer E.P. Pulmonary hypertension in patients with sickle cell disease: a longitudinal study. Br. J. Haematol. 2006 134 1 109 115 10.1111/j.1365‑2141.2006.06110.x 16803576
    [Google Scholar]
  10. Rees D.C. Williams T.N. Gladwin M.T. Sickle-cell disease. Lancet 2010 376 9757 2018 2031 10.1016/S0140‑6736(10)61029‑X 21131035
    [Google Scholar]
  11. Belcher J.D. Bryant C.J. Nguyen J. Bowlin P.R. Kielbik M.C. Bischof J.C. Hebbel R.P. Vercellotti G.M. Transgenic sickle mice have vascular inflammation. Blood 2003 101 10 3953 3959 10.1182/blood‑2002‑10‑3313 12543857
    [Google Scholar]
  12. Connes P. Lamarre Y. Waltz X. Ballas S.K. Lemonne N. Etienne-Julan M. Hue O. Hardy-Dessources M.D. Romana M. Haemolysis and abnormal haemorheology in sickle cell anaemia. Br. J. Haematol. 2014 165 4 564 572 10.1111/bjh.12786 24611951
    [Google Scholar]
  13. Milton J.N. Rooks H. Drasar E. McCabe E.L. Baldwin C.T. Melista E. Gordeuk V.R. Nouraie M. Kato G.R. Minniti C. Taylor J. Campbell A. Luchtman-Jones L. Rana S. Castro O. Zhang Y. Thein S.L. Sebastiani P. Gladwin M.T. Steinberg M.H. Genetic determinants of haemolysis in sickle cell anaemia. Br. J. Haematol. 2013 161 2 270 278 10.1111/bjh.12245 23406172
    [Google Scholar]
  14. Kato G.J. Gladwin M.T. Steinberg M.H. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007 21 1 37 47 10.1016/j.blre.2006.07.001 17084951
    [Google Scholar]
  15. Frangoul H. Altshuler D. Cappellini D. Chen Y.-S. Domm J. Eustace B. Foell J. Fuente J.D.L. Grupp S. Handgretinger R. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021 384 3 10.1056/NEJMoa2031054
    [Google Scholar]
  16. Caudai C. Galizia A. Geraci F. Le Pera L. Morea V. Salerno E. Via A. Colombo T. AI applications in functional genomics. Comput. Struct. Biotechnol. J. 2021 19 5762 5790 10.1016/j.csbj.2021.10.009 34765093
    [Google Scholar]
  17. Pimanda J.E. Gttgens B. Gene regulatory networks governing haematopoietic stem cell development and identity. Int. J. Dev. Biol. 2010 54 6-7 1201 1211 10.1387/ijdb.093038jp 20711996
    [Google Scholar]
  18. Lu N. Malemud C.J. Extracellular signal-regulated kinase: A regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. Int. J. Mol. Sci. 2019 20 15 3792 10.3390/ijms20153792 31382554
    [Google Scholar]
  19. Wang D. Zhang Y. Li Q. Li Y. Li W. Zhang A. Xu J. Meng J. Tang L. Lyu S. Epigenetics: Mechanisms, potential roles, and therapeutic strategies in cancer progression. Genes Dis. 2024 11 5 101020 10.1016/j.gendis.2023.04.040 38988323
    [Google Scholar]
  20. Morrone K. Mitchell W.B. Author ’ s Accepted Manuscript. Semin. Hematol. 2018 10.1053/j.seminhematol.2018.04.007 30616808
    [Google Scholar]
  21. Wagner D.D. Frenette P.S. The vessel wall and its interactions. Blood 2008 111 11 5271 5281 10.1182/blood‑2008‑01‑078204 18502843
    [Google Scholar]
  22. Gutsaeva D.R. Parkerson J.B. Yerigenahally S.D. Kurz J.C. Schaub R.G. Ikuta T. Head C.A. Inhibition of cell adhesion by anti–P-selectin aptamer: A new potential therapeutic agent for sickle cell disease. Blood 2011 117 2 727 735 10.1182/blood‑2010‑05‑285718 20926770
    [Google Scholar]
  23. Turhan A. Weiss L.A. Mohandas N. Coller B.S. Frenette P.S. Primary role for adherent leukocytes in sickle cell vascular occlusion: A new paradigm. Proc. Natl. Acad. Sci. USA 2002 99 5 3047 3051 10.1073/pnas.052522799 11880644
    [Google Scholar]
  24. Field J.J. Nathan D.G. Linden J. Targeting iNKT cells for the treatment of sickle cell disease. Clin. Immunol. 2011 140 2 177 183 10.1016/j.clim.2011.03.002 21429807
    [Google Scholar]
  25. Linden J. Chapter 4 - Regulation of leukocyte function by adenosine receptors. Advances in Pharmacology 1st ed Elsevier 2011 61 95 114 10.1016/B978‑0‑12‑385526‑8.00004‑7
    [Google Scholar]
  26. Nowak M. Lynch L. Yue S. Ohta A. Sitkovsky M. Balk S.P. Exley M.A. The A2aR adenosine receptor controls cytokine production in iNKT cells. Eur. J. Immunol. 2010 40 3 682 687 10.1002/eji.200939897 20039304
    [Google Scholar]
  27. Field J.J. Lin G. Okam M.M. Majerus E. Keefer J. Onyekwere O. Ross A. Campigotto F. Neuberg D. Linden J. Nathan D.G. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood 2013 121 17 3329 3334 10.1182/blood‑2012‑11‑465963 23377438
    [Google Scholar]
  28. Field J.J. Majerus E. Gordeuk V.R. Gowhari M. Hoppe C. Heeney M.M. Achebe M. George A. Chu H. Sheehan B. Puligandla M. Neuberg D. Lin G. Linden J. Nathan D.G. Randomized phase 2 trial of regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease. Blood Adv. 2017 1 20 1645 1649 10.1182/bloodadvances.2017009613 29296811
    [Google Scholar]
  29. Field J.J. Majerus E. Ataga K.I. Vichinsky E.P. Schaub R. Mashal R. Nathan D.G. NNKTT120, an anti-iNKT cell monoclonal antibody, produces rapid and sustained iNKT cell depletion in adults with sickle cell disease. PLoS One 2017 12 2 e0171067 10.1371/journal.pone.0171067 28152086
    [Google Scholar]
  30. Van Zuuren E.J. Low-molecular-weight heparins for managing vaso-occlusive crises in people with sickle cell disease. J. Bahrain Med. Soc. 2014 25 2 129 131
    [Google Scholar]
  31. Tomer A. Harker L.A. Kasey S. Eckman J.R. Thrombogenesis in sickle cell disease. J. Lab. Clin. Med. 2001 137 6 398 407 10.1067/mlc.2001.115450 11385360
    [Google Scholar]
  32. Brittain H.A. Eckman J.R. Swerlick R.A. Howard R.J. Wick T.M. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: A potential role for platelet activation in sickle cell vaso-occlusion. Blood 1993 81 8 2137 2143 10.1182/blood.V81.8.2137.2137 8471771
    [Google Scholar]
  33. Davila J. Manwani D. Vasovic L. Avanzi M. Uehlinger J. Ireland K. Mitchell W.B. A novel inflammatory role for platelets in sickle cell disease. Platelets 2015 26 8 726 729 10.3109/09537104.2014.983891 25548984
    [Google Scholar]
  34. Lee S.P. Ataga K.I. Orringer E.P. Phillips D.R. Parise L.V. Biologically active CD40 ligand is elevated in sickle cell anemia: potential role for platelet-mediated inflammation. Arterioscler. Thromb. Vasc. Biol. 2006 26 7 1626 1631 10.1161/01.ATV.0000220374.00602.a2 16601237
    [Google Scholar]
  35. Wilkie D.J. Molokie R. Boyd-Seal D. Suarez M.L. Kim Y.O. Zong S. Wittert H. Zhao Z. Saunthararajah Y. Wang Z.J. Patient-reported outcomes: Descriptors of nociceptive and neuropathic pain and barriers to effective pain management in adult outpatients with sickle cell disease. J. Natl. Med. Assoc. 2010 102 1 18 27 10.1016/S0027‑9684(15)30471‑5 20158132
    [Google Scholar]
  36. Molokie R.E. Wilkie D.J. Wittert H. Suarez M.L. Yao Y. Zhao Z. He Y. Wang Z.J. Mechanism-driven phase I translational study of trifluoperazine in adults with sickle cell disease. Eur. J. Pharmacol. 2014 723 1 419 424 10.1016/j.ejphar.2013.10.062 24211787
    [Google Scholar]
  37. Lei J. Benson B. Tran H. Ofori-Acquah S.F. Gupta K. Comparative analysis of pain behaviours in humanized mouse models of sickle cell anemia. PLoS One 2016 11 8 e0160608 10.1371/journal.pone.0160608 27494522
    [Google Scholar]
  38. Egesa W.I. Nakalema G. Waibi W.M. Turyasiima M. Amuje E. Kiconco G. Odoch S. Kumbakulu P.K. Abdirashid S. Asiimwe D. Sickle cell disease in children and adolescents: A review of the historical, clinical, and public health perspective of sub-Saharan Africa and beyond. Int. J. Pediatr. 2022 2022 1 26 10.1155/2022/3885979 36254264
    [Google Scholar]
  39. Anurogo D. Yuli Prasetyo Budi N. Thi Ngo M.H. Huang Y.H. Pawitan J.A. Cell and gene therapy for anemia: Hematopoietic stem cells and gene editing. Int. J. Mol. Sci. 2021 22 12 6275 10.3390/ijms22126275 34200975
    [Google Scholar]
  40. Brusson M. Chalumeau A. Martinucci P. Romano O. Felix T. Poletti V. Scaramuzza S. Ramadier S. Masson C. Ferrari G. Mavilio F. Cavazzana M. Amendola M. Miccio A. Novel lentiviral vectors for gene therapy of sickle cell disease combining gene addition and gene silencing strategies. Mol. Ther. Nucleic Acids 2023 32 June 229 246 10.1016/j.omtn.2023.03.012 37090420
    [Google Scholar]
  41. Germino-Watnick P. Hinds M. Le A. Chu R. Liu X. Uchida N. Hematopoietic stem cell gene-addition/editing therapy in sickle cell disease. Cells 2022 11 11 1843 10.3390/cells11111843 35681538
    [Google Scholar]
  42. Gundry M.C. Brunetti L. Lin A. Mayle A.E. Kitano A. Wagner D. Hsu J.I. Hoegenauer K.A. Rooney C.M. Goodell M.A. Nakada D. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep. 2016 17 5 1453 1461 10.1016/j.celrep.2016.09.092 27783956
    [Google Scholar]
  43. Humbert O. Radtke S. Samuelson C. Carrillo R.R. Perez A.M. Reddy S.S. Lux C. Pattabhi S. Schefter L.W. Negre O. Lee C.M. Therapeutically relevant engraftment of a CRISPR-Cas9-edited HSC-enriched population with HbF reactivation in nonhuman primates. Sci. Transl. Med. 2019 11 503 eaaw3768 10.1126/scitranslmed.aaw3768
    [Google Scholar]
  44. Mainous A.G. Tanner R.J. Harle C.A. Baker R. Shokar N.K. Hulihan M.M. Attitudes toward management of sickle cell disease and its complications: A national survey of academic family physicians. Anemia 2015 2015 1 6 10.1155/2015/853835 25793124
    [Google Scholar]
  45. Niihara Y. Miller S.T. Kanter J. Lanzkron S. Smith W.R. Hsu L.L. Gordeuk V.R. Viswanathan K. Sarnaik S. Osunkwo I. Guillaume E. Sadanandan S. Sieger L. Lasky J.L. Panosyan E.H. Blake O.A. New T.N. Bellevue R. Tran L.T. Razon R.L. Stark C.W. Neumayr L.D. Vichinsky E.P. A phase 3 trial of 1-glutamine in sickle cell disease. N. Engl. J. Med. 2018 379 3 226 235 10.1056/NEJMoa1715971 30021096
    [Google Scholar]
  46. Howard J. Ataga K.I. Brown R.C. Achebe M. Nduba V. El-Beshlawy A. Hassab H. Agodoa I. Tonda M. Gray S. Lehrer-Graiwer J. Vichinsky E. Voxelotor in adolescents and adults with sickle cell disease (HOPE): Long-term follow-up results of an international, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Haematol. 2021 8 5 e323 e333 10.1016/S2352‑3026(21)00059‑4 33838113
    [Google Scholar]
  47. Saramba M.I. Shakya S. Zhao D. Analgesic management of uncomplicated acute sickle-cell pain crisis in pediatrics: A systematic review and meta-analysis. J. Pediatr. (Rio J.) 2020 96 2 142 158 10.1016/j.jped.2019.05.004 31351033
    [Google Scholar]
  48. Rankine-Mullings A.E. Owusu-Ofori S. Prophylactic antibiotics for preventing pneumococcal infection in children with sickle cell disease. Cochrane Database Syst. Rev. 2021 3 3 CD003427 33724440
    [Google Scholar]
  49. Johnson-Wimbley T.D. Graham D.Y. Diagnosis and management of iron deficiency anemia in the 21st century. Therap. Adv. Gastroenterol. 2011 4 3 177 184 10.1177/1756283X11398736 21694802
    [Google Scholar]
  50. Gordeuk V.R. Sachdev V. Taylor J.G. Gladwin M.T. Kato G. Castro O.L. Relative systemic hypertension in patients with sickle cell disease is associated with risk of pulmonary hypertension and renal insufficiency. Am. J. Hematol. 2008 83 1 15 18 10.1002/ajh.21016 17696198
    [Google Scholar]
  51. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  52. Han J. Saraf S.L. Lash J.P. Gordeuk V.R. Use of anti-inflammatory analgesics in sickle-cell disease. J. Clin. Pharm. Ther. 2017 42 5 656 660 10.1111/jcpt.12592 28695614
    [Google Scholar]
  53. Usmani A. Machado R.F. Vascular complications of sickle cell disease. Clin. Hemorheol. Microcirc. 2018 68 2-3 205 221 10.3233/CH‑189008 29614633
    [Google Scholar]
  54. Lis B. Olas B. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products – History and present. J. Funct. Foods 2019 59 February 40 48 10.1016/j.jff.2019.05.012
    [Google Scholar]
  55. Salve J. Pate S. Debnath K. Langade D. Adaptogenic and anxiolytic effects of ashwagandha root extract in healthy adults: A double-blind, randomized, placebo-controlled clinical study. Cureus 2019 11 12 e6466 10.7759/cureus.6466 32021735
    [Google Scholar]
  56. Jimenez K. Kulnigg-Dabsch S. Gasche C. Management of iron deficiency anemia. Gastroenterol. Hepatol. (N. Y.) 2015 11 4 241 250 27099596
    [Google Scholar]
  57. Hussain Y. Abdullah Khan F. Alsharif K.F. Alzahrani K.J. Saso L. Khan H. Regulatory effects of curcumin on platelets: An update and future directions. Biomedicines 2022 10 12 3180 10.3390/biomedicines10123180 36551934
    [Google Scholar]
  58. Yang R. Yuan B.C. Ma Y.S. Zhou S. Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm. Biol. 2017 55 1 5 18 10.1080/13880209.2016.1225775 27650551
    [Google Scholar]
  59. Dinarello C.A. Anti-inflammatory agents: Present and future. Cell 2010 140 6 935 950 10.1016/j.cell.2010.02.043 20303881
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257325911241113075950
Loading
/content/journals/chamc/10.2174/0118715257325911241113075950
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cells ; haemoglobin ; gene targeting ; Anemia ; blood ; drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test