Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Introduction

Doxorubicin (Dox), an antineoplastic agent is used as a primary anti-cancerous drug against various types of cancers. However, its associated toxicity to the cardiovascular system is major. Literature has recorded the cases of mortality due to poor validation and lack of prediagnosis of Dox-induced cardiotoxicity. Therapeutic interventions using natural products having cardioprotective properties with low toxic outcomes hold therapeutic potential for future cardio-oncological therapies. (Black berry), a traditional Indian herbal plant, has been researched and found to exert cardioprotective, anti-inflammatory, and antioxidant activities, which have been credited due to the presence of polyphenols, flavonoids, and tannins.

Methods

In the current research, we investigated the cardioprotective potential of against Doxorubicin-induced cardiotoxicity (DIC) in H9C2 cardiomyocytes. Methanolic seed extract preparation of was performed using the Soxhlet apparatus. Cell viability and cell death assays were performed to determine the cardiotoxic doses of Doxorubicin. Furthermore, the cardioprotective potential of extract against DIC was studied. Morphological and nuclear alterations in H9C2 cells were studied by microscopic assays using Giemsa, Haematoxylin-Eosin stain, and PI. The intracellular stress level and ROS production were studied using DCFH-DA followed by mitochondrial integrity analysis using fluorescent microscopic methods.

Results

In the results, we investigated that Dox exerted a dose and time-dependent cardiotoxicity on H9C2 cardiomyocytes. Moreover, we observed that morphological and nuclear alterations caused by doxorubicin in dose-dependent manner were prevented by supplementing with polyphenols and it attenuated the oxidative stress in H9C2 cardiomyocytes effectively.

Conclusion

Conclusively, possesses cardioprotective potential in H9C2 cardiomyocytes in dox-induced cardiotoxicity.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257273859231211112731
2024-01-30
2025-05-04
Loading full text...

Full text loading...

References

  1. BhagatA. KleinermanE.S. Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention.Adv. Exp. Med. Biol.2020125718119210.1007/978‑3‑030‑43032‑0_1532483740
    [Google Scholar]
  2. PreziosoL. TanziS. GalavernaF. FratiC. TestaB. SaviM. GraianiG. LagrastaC. CavalliS. GalatiS. MadedduD. RizziniE. FerraroF. MussoE. StilliD. UrbanekK. PiegariE. De AngelisA. MaseriA. RossiF. QuainiE. QuainiF. Cancer treatment-induced cardiotoxicity: A cardiac stem cell disease?Cardiovasc. Hematol. Agents Med. Chem.201081557510.2174/18715251079079616520210776
    [Google Scholar]
  3. WHO factsheet.2022Available from: http://www.who.int/mediacentre/factsheets/fs297/en/
  4. SenkusE. JassemJ. Cardiovascular effects of systemic cancer treatment.Cancer Treat. Rev.201137430031110.1016/j.ctrv.2010.11.00121126826
    [Google Scholar]
  5. HerrmannJ. Adverse cardiac effects of cancer therapies: Cardiotoxicity and arrhythmia.Nat. Rev. Cardiol.202017847450210.1038/s41569‑020‑0348‑132231332
    [Google Scholar]
  6. JerusalemG. LancellottiP. KimS.B. HER2+ breast cancer treatment and cardiotoxicity: Monitoring and management.Breast Cancer Res. Treat.2019177223725010.1007/s10549‑019‑05303‑y31165940
    [Google Scholar]
  7. ShelburneN. SimondsN.I. AdhikariB. AlleyM. Desvigne-NickensP. DimondE. FilipskiK. GallicchioL. MinasianL. Changing hearts and minds: Improving outcomes in cancer treatment-related cardiotoxicity.Curr. Oncol. Rep.2019211910.1007/s11912‑019‑0751‑030701318
    [Google Scholar]
  8. BanfillK. GiulianiM. AznarM. FranksK. McWilliamA. SchmittM. SunF. VozeninM.C. Faivre FinnC. Cardiac toxicity of thoracic radiotherapy: Existing evidence and future directions.J. Thorac. Oncol.202116221622710.1016/j.jtho.2020.11.00233278607
    [Google Scholar]
  9. FerransV.J. ClarkJ.R. ZhangJ. YuZ.X. HermanE.H. Pathogenesis and prevention of doxorubicin cardiomyopathy.Tsitologiia199739109283710.1016/j.yjmcc.2012.03.00622465037
    [Google Scholar]
  10. SongboM. LangH. XinyongC. BinX. PingZ. LiangS. Oxidative stress injury in doxorubicin-induced cardiotoxicity.Toxicol. Lett.2019307414810.1016/j.toxlet.2019.02.01330817977
    [Google Scholar]
  11. TadokoroT. IkedaM. IdeT. DeguchiH. IkedaS. OkabeK. IshikitaA. MatsushimaS. KoumuraT. YamadaK. ImaiH. TsutsuiH. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity.JCI Insight202059e13274710.1172/jci.insight.13274732376803
    [Google Scholar]
  12. TakemuraG. FujiwaraH. Doxorubicin-induced cardiomyopathy.Prog. Cardiovasc. Dis.200749533035210.1016/j.pcad.2006.10.00217329180
    [Google Scholar]
  13. WuL. WangL. DuY. ZhangY. RenJ. Mitochondrial quality control mechanisms as therapeutic targets in doxorubicin-induced cardiotoxicity.Trends Pharmacol. Sci.2023441344910.1016/j.tips.2022.10.00336396497
    [Google Scholar]
  14. ButlerM.S. RobertsonA.A.B. CooperM.A. Natural product and natural product derived drugs in clinical trials.Nat. Prod. Rep.201431111612166110.1039/C4NP00064A25204227
    [Google Scholar]
  15. LichotaA. GwozdzinskiL. GwozdzinskiK. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency.Eur. J. Med. Chem.2019176689110.1016/j.ejmech.2019.04.07531096120
    [Google Scholar]
  16. NobiliS. LippiD. WitortE. DonniniM. BausiL. MiniE. CapaccioliS. Natural compounds for cancer treatment and prevention.Pharmacol. Res.200959636537810.1016/j.phrs.2009.01.01719429468
    [Google Scholar]
  17. LiS. YuanS. ZhaoQ. WangB. WangX. LiK. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it.Biomed. Pharmacother.201810044144710.1016/j.biopha.2018.02.05529475141
    [Google Scholar]
  18. BeshelJ.A. BeshelF.N. NwangwaJ.N. OkonI.A. EjimC.I. OwuD.U. Cardioprotective role of Theobroma cacao against isoproterenol-induced acute myocardial injury.Cardiovasc. Hematol. Agents Med. Chem.2022201758010.2174/187152571899920091711495432940189
    [Google Scholar]
  19. ChagasV.T. FrançaL.M. MalikS. PaesA.M.A. Syzygium cumini (L.) skeels: A prominent source of bioactive molecules against cardiometabolic diseases.Front. Pharmacol.2015625910.3389/fphar.2015.0025926578965
    [Google Scholar]
  20. El-Saber BatihaG. AlkazmiL.M. WasefL.G. BeshbishyA.M. NadwaE.H. RashwanE.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents. Pharmacological and Toxicological Activities.Biomolecules202010220210.3390/biom1002020232019140
    [Google Scholar]
  21. QamarM. AkhtarS. IsmailT. YuanY. AhmadN. TawabA. IsmailA. BarnardR.T. CooperM.A. BlaskovichM.A.T. ZioraZ.M. Syzygium cumini(L.), Skeels fruit extracts: In vitro and in vivo anti-inflammatory properties.J. Ethnopharmacol.202127111380510.1016/j.jep.2021.11380533465442
    [Google Scholar]
  22. QamarM. AkhtarS. IsmailT. WahidM. AliS. NazirY. MurtazaS. AbbasM.W. ZioraZ.M. Syzygium cumini (L.) Skeels extracts; in vivo anti-nociceptive, anti-inflammatory, acute and subacute toxicity assessment.J. Ethnopharmacol.202228711491910.1016/j.jep.2021.11491934995693
    [Google Scholar]
  23. AtaleN. RaniV. Syzygium cumini: An effective cardioprotective via its antiglycoxidation potential.Int. J. Pharm. Sci. Rev. Res.20163714251
    [Google Scholar]
  24. AtaleN. ChakrabortyM. MohantyS. BhattacharyaS. NigamD. SharmaM. RaniV. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes.Cardiovasc. Toxicol.201313327828910.1007/s12012‑013‑9207‑123512199
    [Google Scholar]
  25. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.949820716914
    [Google Scholar]
  26. WatkinsS.J. BorthwickG.M. ArthurH. M. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell. Dev. Biol. Anim.201147212513110.1007/s11626‑010‑9368‑121082279
    [Google Scholar]
  27. RedfernJ. KinninmonthM. BurdassD. VerranJ. Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties.J. Microbiol. Biol. Educ.2014151454610.1128/jmbe.v15i1.65624839520
    [Google Scholar]
  28. KashyapS.M. PandyaG.H. KondawarV.K. GabhaneS.S. Rapid analysis of 2,4-D in soil samples by modified Soxhlet apparatus using HPLC with UV detection.J. Chromatogr. Sci.2005432818610.1093/chromsci/43.2.8115826366
    [Google Scholar]
  29. SreejitP. KumarS. VermaR.S. An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cell. Dev. Biol. Anim.2008443-4455010.1007/s11626‑007‑9079‑418297366
    [Google Scholar]
  30. VisticaD.T. SkehanP. ScudieroD. MonksA. PittmanA. BoydM.R. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production.Cancer Res.19915110251525202021931
    [Google Scholar]
  31. StroberW. Trypan blue exclusion test of cell viability.Curr. Protoc. Immunol.2015111A3.B.1A3.B.310.1002/0471142735.ima03bs111
    [Google Scholar]
  32. BarciaJ.J. The Giemsa stain: Its history and applications.Int. J. Surg. Pathol.200715329229610.1177/106689690730223917652540
    [Google Scholar]
  33. DolanM. The role of the Giemsa stain in cytogenetics.Biotech. Histochem.2011862949710.3109/10520295.2010.51549321395494
    [Google Scholar]
  34. FeldmanA.T. WolfeD. Tissue processing and hematoxylin and eosin staining.Methods Mol. Biol.20141180314310.1007/978‑1‑4939‑1050‑2_325015141
    [Google Scholar]
  35. KuroiwaT. XiG. HuaY. NagarajaT.N. FenstermacherJ.D. KeepR.F. Development of a rat model of photothrombotic ischemia and infarction within the caudoputamen.Stroke200940124825310.1161/STROKEAHA.108.52785319038913
    [Google Scholar]
  36. WangH. JosephJ.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader11Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.Free Radic. Biol. Med.1999275-661261610.1016/S0891‑5849(99)00107‑010490282
    [Google Scholar]
  37. EruslanovE. KusmartsevS. Identification of ROS using oxidized DCFDA and flow-cytometry.Methods Mol. Biol.2010594577210.1007/978‑1‑60761‑411‑1_420072909
    [Google Scholar]
  38. CrowleyL.C. MarfellB.J. ScottA.P. WaterhouseN.J. Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. Cold Spring Harb. Protoc.2016201611pdb.prot08728810.1101/pdb.prot08728827803250
    [Google Scholar]
  39. BranaC. BenhamC. SundstromL. A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry.Brain Res. Brain Res. Protoc.200210210911410.1016/S1385‑299X(02)00201‑512431710
    [Google Scholar]
  40. ChackoS.M. NevinK.G. DhanyakrishnanR. KumarB.P. Protective effect of p -coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines.Toxicol. Rep.201521213122110.1016/j.toxrep.2015.08.00228962464
    [Google Scholar]
  41. KothaR.R. TareqF.S. YildizE. LuthriaD.L. Oxidative stress and antioxidants—a critical review on in vitro antioxidant assays.Antioxidants20221112238810.3390/antiox1112238836552596
    [Google Scholar]
  42. WeydertC.J. CullenJ.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue.Nat. Protoc.201051516610.1038/nprot.2009.19720057381
    [Google Scholar]
  43. AebiH. Catalase in vitro.Methods Enzymol.198410512112610.1016/S0076‑6879(84)05016‑36727660
    [Google Scholar]
  44. HeQ. GoshiE. ZhouG. Nitric oxide detection methods in vitro and in vivo.Med. Gas Res.20199419220710.4103/2045‑9912.27395731898604
    [Google Scholar]
  45. AtaleN. MishraC.B. KohliS. MongreR.K. PrakashA. KumariS. YadavU.C.S. JeonR. RaniV. Anti-inflammatory Effects of S. cumini Seed Extract on Gelatinase-B (MMP-9) Regulation against Hyperglycemic Cardiomyocyte Stress.Oxid. Med. Cell. Longev.2021202111410.1155/2021/883947933747350
    [Google Scholar]
  46. SyamaH.P. AryaA.D. DhanyaR. NishaP. SundaresanA. JacobE. JayamurthyP. Quantification of phenolics in Syzygium cumini seed and their modulatory role on tertiary butyl-hydrogen peroxide-induced oxidative stress in H9c2 cell lines and key enzymes in cardioprotection.J. Food Sci. Technol.20175472115212510.1007/s13197‑017‑2651‑328720969
    [Google Scholar]
  47. RizviM.K. RabailR. MunirS. Inam-Ur-RaheemM. QayyumM.M.N. KieliszekM. HassounA. AadilR.M. Astounding Health Benefits of Jamun (Syzygium cumini) toward Metabolic Syndrome.Molecules20222721718410.1080/15376516.2021.199206434635025
    [Google Scholar]
  48. WangZ.Q. ChenM.T. ZhangR. ZhangY. LiW. LiY.G. Docosahexaenoic acid attenuates doxorubicin-induced cytotoxicity and inflammation by suppressing NF-κB/iNOS/NO signaling pathway activation in H9C2 cardiac cells.J. Cardiovasc. Pharmacol.201667428328910.1097/FJC.000000000000035026657886
    [Google Scholar]
  49. MarchiS. GiorgiC. SuskiJ.M. AgnolettoC. BononiA. BonoraM. De MarchiE. MissiroliS. PatergnaniS. PolettiF. RimessiA. DuszynskiJ. WieckowskiM.R. PintonP. Mitochondria-ros crosstalk in the control of cell death and aging.J. Signal Transduct.2012201211710.1155/2012/32963522175013
    [Google Scholar]
  50. EnomotoY. AkiyamaM. MoritaY. KomatsuT. Polyelectrolyte/gold nanoparticle nanotubes incorporating doxorubicin‐loaded liposomes.Chem. Asian J.202116244057406110.1002/asia.20210110934664406
    [Google Scholar]
  51. ZhengY. LingY. ZhangD.Y. TanC.P. ZhangH. YangG.G. WangH. JiL.N. MaoZ.W. Regulating Tumor N6 ‐methyladenosine methylation landscape using hypoxia‐modulating OsSx nanoparticles.Small2021171200508610.1002/smll.20200508633284508
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257273859231211112731
Loading
/content/journals/chamc/10.2174/0118715257273859231211112731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test