Skip to content
2000
image of Sodium Butyrate, a Gut Microbiota Derived Metabolite, in Type 2 Diabetes Mellitus and Cardiovascular Disease: A Review

Abstract

Type 2 diabetes is characterized by elevated blood glucose levels, leading to an increased risk of cardiovascular diseases. Sodium butyrate, the sodium salt of the short-chain fatty acid butyric acid produced by gut microbiota fermentation, has shown promising effects on metabolic diseases, including type 2 diabetes and cardiovascular diseases. Sodium butyrate demonstrates anti-inflammatory, anti-oxidative, and lipid-lowering properties and can improve insulin sensitivity and reduce hepatic steatosis. In this review, we investigate how sodium butyrate influences cardiovascular complications of type 2 diabetes, including atherosclerosis (AS), heart failure (HF), hypertension, and angiogenesis. Moreover, we explore the pathophysiology of cardiovascular disease in type 2 diabetes, focusing on hyperglycemia, oxidative stress, inflammation, and genetic factors playing crucial roles. The review suggests that sodium butyrate can be a potential preventive and therapeutic agent for cardiovascular complications in individuals with type 2 diabetes.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257307380240820052940
2024-08-28
2025-01-28
Loading full text...

Full text loading...

References

  1. Steven S. Dib M. Hausding M. Kashani F. Oelze M. Kröller-Schön S. Hanf A. Daub S. Roohani S. Gramlich Y. Lutgens E. Schulz E. Becker C. Lackner K.J. Kleinert H. Knosalla C. Niesler B. Wild P.S. Münzel T. Daiber A. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc. Res. 2018 114 2 312 323 10.1093/cvr/cvx197 29036612
    [Google Scholar]
  2. Wright A.K. Suarez-Ortegon M.F. Read S.H. Kontopantelis E. Buchan I. Emsley R. Sattar N. Ashcroft D.M. Wild S.H. Rutter M.K. Risk factor control and cardiovascular event risk in people with type 2 diabetes in primary and secondary prevention settings. Circulation 2020 142 20 1925 1936 10.1161/CIRCULATIONAHA.120.046783 33196309
    [Google Scholar]
  3. Ahmad A.F. Dwivedi G. O’Gara F. Caparros-Martin J. Ward N.C. The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Am. J. Physiol. Heart Circ. Physiol. 2019 317 5 H923 H938 10.1152/ajpheart.00376.2019 31469291
    [Google Scholar]
  4. Einarson T.R. Acs A. Ludwig C. Panton U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018 17 1 83 10.1186/s12933‑018‑0728‑6 29884191
    [Google Scholar]
  5. Zhang L. Du J. Yano N. Wang H. Zhao Y.T. Dubielecka P.M. Zhuang S. Chin Y.E. Qin G. Zhao T.C. Sodium butyrate protects against high fat diet‐induced cardiac dysfunction and metabolic disorders in type II diabetic mice. J. Cell. Biochem. 2017 118 8 2395 2408 10.1002/jcb.25902 28109123
    [Google Scholar]
  6. Matheus V.A. Monteiro L.C.S. Oliveira R.B. Maschio D.A. Collares-Buzato C.B. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Exp. Biol. Med. (Maywood) 2017 242 12 1214 1226 10.1177/1535370217708188 28504618
    [Google Scholar]
  7. Kaźmierczak-Siedlecka K. Marano L. Merola E. Roviello F. Połom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front. Cell. Infect. Microbiol. 2022 12 1023806 10.3389/fcimb.2022.1023806 36389140
    [Google Scholar]
  8. Adeyanju O.A. Badejogbin O.C. Areola D.E. Olaniyi K.S. Dibia C. Soetan O.A. Oniyide A.A. Michael O.S. Olatunji L.A. Soladoye A.O. Sodium butyrate arrests pancreato-hepatic synchronous uric acid and lipid dysmetabolism in high fat diet fed Wistar rats. Biomed. Pharmacother. 2021 133 110994 10.1016/j.biopha.2020.110994 33197764
    [Google Scholar]
  9. Amiri P. Hosseini S.A. Ghaffari S. Tutunchi H. Ghaffari S. Mosharkesh E. Asghari S. Roshanravan N. Role of butyrate, a gut microbiota derived metabolite, in cardiovascular diseases: A comprehensive narrative review. Front. Pharmacol. 2022 12 837509 10.3389/fphar.2021.837509 35185553
    [Google Scholar]
  10. Rodriguez-Araujo G. Nakagami H. Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovasc. Endocrinol. Metab. 2018 7 1 4 9 10.1097/XCE.0000000000000141 31646271
    [Google Scholar]
  11. Chyun D.A. Young L.H. Diabetes mellitus and cardiovascular disease. Nurs. Clin. North Am. 2006 41 4 681 695, viii-ix 10.1016/j.cnur.2006.07.007 17059982
    [Google Scholar]
  12. Patel T.P. Rawal K. Bagchi A.K. Akolkar G. Bernardes N. Dias D.S. Gupta S. Singal P.K. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail. Rev. 2016 21 1 11 23 10.1007/s10741‑015‑9515‑6 26542377
    [Google Scholar]
  13. Marks J.B. Raskin P. Cardiovascular risk in diabetes. J. Diabetes Complications 2000 14 2 108 115 10.1016/S1056‑8727(00)00065‑9 10959073
    [Google Scholar]
  14. Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 2005 54 1 1 7 10.2337/diabetes.54.1.1 15616004
    [Google Scholar]
  15. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003 26 5 1589 1596 10.2337/diacare.26.5.1589 12716823
    [Google Scholar]
  16. Farahmand F. Lou H. Singal P.K. Oxidative stress in cardiovascular complications of diabetes. Atherosclerosis, hypertension and diabetes. Cardiovasc. Res. 2003 ••• 427 437
    [Google Scholar]
  17. Madonna R. Pieragostino D. Balistreri C.R. Rossi C. Geng Y.J. Del Boccio P. De Caterina R. Diabetic macroangiopathy: Pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage. Vascul. Pharmacol. 2018 107 27 34 10.1016/j.vph.2018.01.009 29425894
    [Google Scholar]
  18. Hinkel R. Howe A. Renner S. Ng J. Lee S. Klett K. Kaczmarek V. Moretti A. Laugwitz K.L. Skroblin P. Mayr M. Milting H. Dendorfer A. Reichart B. Wolf E. Kupatt C. Diabetes mellitus–induced microvascular destabilization in the myocardium. J. Am. Coll. Cardiol. 2017 69 2 131 143 10.1016/j.jacc.2016.10.058 28081822
    [Google Scholar]
  19. Lum H. Roebuck K.A. Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. Cell Physiol. 2001 280 4 C719 C741 10.1152/ajpcell.2001.280.4.C719 11245588
    [Google Scholar]
  20. Versari D. Daghini E. Virdis A. Ghiadoni L. Taddei S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 2009 32 Suppl 2 Suppl. 2 S314 S321 10.2337/dc09‑S330 19875572
    [Google Scholar]
  21. Schram M.T. Chaturvedi N. Schalkwijk C. Giorgino F. Ebeling P. Fuller J.H. Stehouwer C.D. EURODIAB Prospective Complications Study Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care 2003 26 7 2165 2173 10.2337/diacare.26.7.2165 12832330
    [Google Scholar]
  22. El-Osta A. Brasacchio D. Yao D. Pocai A. Jones P.L. Roeder R.G. Cooper M.E. Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 2008 205 10 2409 2417 10.1084/jem.20081188 18809715
    [Google Scholar]
  23. Hink U. Li H. Mollnau H. Oelze M. Matheis E. Hartmann M. Skatchkov M. Thaiss F. Stahl R.A.K. Warnholtz A. Meinertz T. Griendling K. Harrison D.G. Forstermann U. Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 2001 88 2 E14 E22 10.1161/01.RES.88.2.e14 11157681
    [Google Scholar]
  24. Sedighi M. Bahmani M. Asgary S. Beyranvand F. Rafieian-Kopaei M. A review of plant-based compounds and medicinal plants effective on atherosclerosis. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. Cardiovasc. Res. 2017 ••• 22
    [Google Scholar]
  25. Zhang X-G. Zhang Y-Q. Zhao D-K. Wu J-X. Zhao J. Jiao X-M. Chen B. Lv X.F. Relationship between blood glucose fluctuation and macrovascular endothelial dysfunction in type 2 diabetic patients with coronary heart disease. Eur. Rev. Med. Pharmacol. Sci. 2014 18 23 3593 3600 25535128
    [Google Scholar]
  26. Stamler J. Vaccaro O. Neaton J.D. Wentworth D. Group M.R.F.I.T.R. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993 16 2 434 444 10.2337/diacare.16.2.434 8432214
    [Google Scholar]
  27. Barrett-Connor E.L. Cohn B.A. Wingard D.L. Edelstein S.L. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. JAMA 1991 265 5 627 631 10.1001/jama.1991.03460050081025 1987413
    [Google Scholar]
  28. Connelly P.W. Petrasovits A. Stachenko S. MacLean D.R. Little J.A. Chockalingam A. Canadian Heart Health Surveys Research Group Prevalence of high plasma triglyceride combined with low HDL-C levels and its association with smoking, hypertension, obesity, diabetes, sedentariness and LDL-C levels in the Canadian population. Can. J. Cardiol. 1999 15 4 428 433 10322252
    [Google Scholar]
  29. Hamed S. Brenner B. Roguin A. Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2. Cardiovasc. Res. 2011 91 1 9 15 10.1093/cvr/cvq412 21186243
    [Google Scholar]
  30. Berbudi A. Rahmadika N. Tjahjadi A.I. Ruslami R. Type 2 diabetes and its impact on the immune system. Curr. Diabetes Rev. 2020 16 5 442 449 10.2174/18756417MTAxgODQqy 31657690
    [Google Scholar]
  31. Libby P. Ridker P.M. Maseri A. Inflammation and Atherosclerosis. Circulation 2002 105 9 1135 1143 10.1161/hc0902.104353 11877368
    [Google Scholar]
  32. Moore K.J. Freeman M.W. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 2006 26 8 1702 1711 10.1161/01.ATV.0000229218.97976.43 16728653
    [Google Scholar]
  33. van Berkel T.J.C. Out R. Hoekstra M. Kuiper J. Biessen E. van Eck M. Scavenger receptors: friend or foe in atherosclerosis? Curr. Opin. Lipidol. 2005 16 5 525 535 10.1097/01.mol.0000183943.20277.26 16148537
    [Google Scholar]
  34. Deguchi J. Aikawa M. Tung C.H. Aikawa E. Kim D.E. Ntziachristos V. Weissleder R. Libby P. Inflammation in Atherosclerosis. Circulation 2006 114 1 55 62 10.1161/CIRCULATIONAHA.106.619056 16801460
    [Google Scholar]
  35. Shah P.K. Falk E. Badimon J.J. Fernandez-Ortiz A. Mailhac A. Villareal-Levy G. Fallon J.T. Regnstrom J. Fuster V. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 1995 92 6 1565 1569 7664441
    [Google Scholar]
  36. Geovanini G.R. Libby P. Atherosclerosis and inflammation: overview and updates. Clin. Sci. (Lond.) 2018 132 12 1243 1252 10.1042/CS20180306 29930142
    [Google Scholar]
  37. Omerovic E. Brohall G. Müller M. Råmunddal T. Matejka G. Waagstein F. Fagerberg B. Silent myocardial infarction in women with type II diabetes mellitus and microalbuminuria. Ther. Clin. Risk Manag. 2008 4 4 705 711 10.2147/TCRM.S2826 19209251
    [Google Scholar]
  38. Heydari B. Shah R. Abbasi S. Feng J.H. Farhad H. Neilan T.G. Blankstein R. van der Geest R.J. Abdullah S. Francis S. Hoffmann U. Jerosch-Herold M. Kwong R.Y. Diabetes remains an independent risk factor for adverse remodeling following acute myocardial infarction even with quantification of total infarct size and change in myocardial extracellular volume fraction by CMR. J. Cardiovasc. Magn. Reson. 2013 15 1 P185 10.1186/1532‑429X‑15‑S1‑P185 23324167
    [Google Scholar]
  39. Stone P.H. Muller J.E. Hartwell T. York B.J. Rutherford J.D. Parker C.B. Turi Z.G. Strauss H.W. Willerson J.T. Robertson T. Braunwald E. Jaffe A.S. The MILIS Study Group The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: Contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. J. Am. Coll. Cardiol. 1989 14 1 49 57 10.1016/0735‑1097(89)90053‑3 2661630
    [Google Scholar]
  40. Filippo C.D. Cuzzocrea S. Rossi F. Marfella R. D’Amico M. Oxidative stress as the leading cause of acute myocardial infarction in diabetics. Cardiovasc. Drug Rev. 2006 24 2 77 87 10.1111/j.1527‑3466.2006.00077.x 16961722
    [Google Scholar]
  41. Louis P. Flint H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017 19 1 29 41 10.1111/1462‑2920.13589 27928878
    [Google Scholar]
  42. Canani R.B. Costanzo M.D. Leone L. Pedata M. Meli R. Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011 17 12 1519 1528 10.3748/wjg.v17.i12.1519 21472114
    [Google Scholar]
  43. Louis P. Flint H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009 294 1 1 8 10.1111/j.1574‑6968.2009.01514.x 19222573
    [Google Scholar]
  44. Vital M. Howe A.C. Tiedje J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 2014 5 2 e00889-14 10.1128/mBio.00889‑14 24757212
    [Google Scholar]
  45. Barcenilla A. Pryde S.E. Martin J.C. Duncan S.H. Stewart C.S. Henderson C. Flint H.J. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 2000 66 4 1654 1661 10.1128/AEM.66.4.1654‑1661.2000 10742256
    [Google Scholar]
  46. Duncan S.H. Hold G.L. Harmsen H.J.M. Stewart C.S. Flint H.J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2002 52 Pt 6 2141 2146 12508881
    [Google Scholar]
  47. Ahmad M.S. Krishnan S. Ramakrishna B.S. Mathan M. Pulimood A.B. Murthy S.N. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut 2000 46 4 493 499 10.1136/gut.46.4.493 10716678
    [Google Scholar]
  48. Geirnaert A. Calatayud M. Grootaert C. Laukens D. Devriese S. Smagghe G. De Vos M. Boon N. Van de Wiele T. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 2017 7 1 11450 10.1038/s41598‑017‑11734‑8 28904372
    [Google Scholar]
  49. Ghanim H. Batra M. Abuaysheh S. Green K. Makdissi A. Kuhadiya N.D. Chaudhuri A. Dandona P. Antiinflammatory and ROS Suppressive Effects of the Addition of Fiber to a High-Fat High-Calorie Meal. J. Clin. Endocrinol. Metab. 2017 102 3 858 869 10.1210/jc.2016‑2669 27906549
    [Google Scholar]
  50. Perraudeau F. McMurdie P. Bullard J. Cheng A. Cutcliffe C. Deo A. Eid J. Gines J. Iyer M. Justice N. Loo W.T. Nemchek M. Schicklberger M. Souza M. Stoneburner B. Tyagi S. Kolterman O. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care 2020 8 1 e001319 10.1136/bmjdrc‑2020‑001319 32675291
    [Google Scholar]
  51. Khan S. Jena G. Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: A comparative study with metformin. Chem. Biol. Interact. 2016 254 124 134 10.1016/j.cbi.2016.06.007 27270450
    [Google Scholar]
  52. Gao Z. Yin J. Zhang J. Ward R.E. Martin R.J. Lefevre M. Cefalu W.T. Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009 58 7 1509 1517 10.2337/db08‑1637 19366864
    [Google Scholar]
  53. Mollica M.P. Mattace Raso G. Cavaliere G. Trinchese G. De Filippo C. Aceto S. Prisco M. Pirozzi C. Di Guida F. Lama A. Crispino M. Tronino D. Di Vaio P. Berni Canani R. Calignano A. Meli R. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 2017 66 5 1405 1418 10.2337/db16‑0924 28223285
    [Google Scholar]
  54. Bramswig N.C. Kaestner K.H. Epigenetics and diabetes treatment: an unrealized promise? Trends Endocrinol. Metab. 2012 23 6 286 291 10.1016/j.tem.2012.02.002 22424897
    [Google Scholar]
  55. Lee H.B. Noh H. Seo J.Y. Yu M.R. Ha H. Histone deacetylase inhibitors: A novel class of therapeutic agents in diabetic nephropathy. Kidney Int. 2007 72 106 S61 S66 10.1038/sj.ki.5002388 17653213
    [Google Scholar]
  56. Khan S. Jena G.B. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: Study in juvenile diabetic rat. Chem. Biol. Interact. 2014 213 1 12 10.1016/j.cbi.2014.02.001 24530320
    [Google Scholar]
  57. Glozak M.A. Sengupta N. Zhang X. Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005 363 15 23 10.1016/j.gene.2005.09.010 16289629
    [Google Scholar]
  58. Christensen D.P. Dahllöf M. Lundh M. Rasmussen D.N. Nielsen M.D. Billestrup N. Grunnet L.G. Mandrup-Poulsen T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol. Med. 2011 17 5-6 378 390 10.2119/molmed.2011.00021 21274504
    [Google Scholar]
  59. Lenoir O. Flosseau K. Ma F.X. Blondeau B. Mai A. Bassel-Duby R. Ravassard P. Olson E.N. Haumaitre C. Scharfmann R. Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 2011 60 11 2861 2871 10.2337/db11‑0440 21953612
    [Google Scholar]
  60. Haumaitre C. Lenoir O. Scharfmann R. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol. Cell. Biol. 2008 28 20 6373 6383 10.1128/MCB.00413‑08 18710955
    [Google Scholar]
  61. Mihaylova M.M. Vasquez D.S. Ravnskjaer K. Denechaud P.D. Yu R.T. Alvarez J.G. Downes M. Evans R.M. Montminy M. Shaw R.J. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011 145 4 607 621 10.1016/j.cell.2011.03.043 21565617
    [Google Scholar]
  62. Szewczyk J. Giannone J. Marcuard S. Kindel T. Tso P. Nolan R. Colonic delivery of nutrients for management of blood glucose in type 2 diabetes patients. Funct. Food Health Dis. 2017 7 1 36 53 10.31989/ffhd.v7i1.283
    [Google Scholar]
  63. Abdul-Ghani M.A. Jayyousi A. DeFronzo R.A. Asaad N. Al-Suwaidi J. Insulin resistance the link between T2DM and CVD: basic mechanisms and clinical implications. Curr. Vasc. Pharmacol. 2019 17 2 153 163 10.2174/1570161115666171010115119 29032755
    [Google Scholar]
  64. Yan H. Ajuwon K.M. Mechanism of butyrate stimulation of triglyceride storage and adipokine expression during adipogenic differentiation of porcine stromovascular cells. PLoS One 2015 10 12 e0145940 10.1371/journal.pone.0145940 26713737
    [Google Scholar]
  65. Hafidi M.E. Buelna-Chontal M. Sánchez-Muñoz F. Carbó R. Adipogenesis: a necessary but harmful strategy. Int. J. Mol. Sci. 2019 20 15 3657 10.3390/ijms20153657 31357412
    [Google Scholar]
  66. Evans J.L. Maddux B.A. Goldfine I.D. The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox Signal. 2005 7 7-8 1040 1052 10.1089/ars.2005.7.1040 15998259
    [Google Scholar]
  67. Sun B. Jia Y. Yang S. Zhao N. Hu Y. Hong J. Gao S. Zhao R. Sodium butyrate protects against high-fat diet-induced oxidative stress in rat liver by promoting expression of nuclear factor E2-related factor 2. Br. J. Nutr. 2019 122 4 400 410 10.1017/S0007114519001399 31204637
    [Google Scholar]
  68. Swarovsky B. Eissele R. Eisenacher M. Trautmann M.E. Arnold R. Sodium butyrate induces neuroendocrine cytodifferentiation in the insulinoma cell line RINm5F. Pancreas 1994 9 4 460 468 10.1097/00006676‑199407000‑00008 7937695
    [Google Scholar]
  69. Chapman M.J. Ginsberg H.N. Amarenco P. Andreotti F. Borén J. Catapano A.L. Descamps O.S. Fisher E. Kovanen P.T. Kuivenhoven J.A. Lesnik P. Masana L. Nordestgaard B.G. Ray K.K. Reiner Z. Taskinen M.R. Tokgözoglu L. Tybjærg-Hansen A. Watts G.F. European Atherosclerosis Society Consensus Panel Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur. Heart J. 2011 32 11 1345 1361 10.1093/eurheartj/ehr112 21531743
    [Google Scholar]
  70. West K.M. Ahuja M.M.S. Bennett P.H. Czyzyk A. De Acosta O.M. Fuller J.H. Grab B. Grabauskas V. Jarrett R.J. Kosaka K. Keen H. Krolewski A.S. Miki E. Schliack V. Teuscher A. Watkins P.J. Stober J.A. The role of circulating glucose and triglyceride concentrations and their interactions with other “risk factors” as determinants of arterial disease in nine diabetic population samples from the WHO multinational study. Diabetes Care 1983 6 4 361 369 10.2337/diacare.6.4.361 6617413
    [Google Scholar]
  71. Howard B.V. Robbins D.C. Sievers M.L. Lee E.T. Rhoades D. Devereux R.B. Cowan L.D. Gray R.S. Welty T.K. Go O.T. Howard W.J. LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: The Strong Heart Study. Arterioscler. Thromb. Vasc. Biol. 2000 20 3 830 835 10.1161/01.ATV.20.3.830 10712410
    [Google Scholar]
  72. Mattace Raso G. Simeoli R. Russo R. Iacono A. Santoro A. Paciello O. Ferrante M.C. Canani R.B. Calignano A. Meli R. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PLoS One 2013 8 7 e68626 10.1371/journal.pone.0068626 23861927
    [Google Scholar]
  73. Zhao Y. Liu J. Hao W. Zhu H. Liang N. He Z. Ma K.Y. Chen Z.Y. Structure-specific effects of short-chain fatty acids on plasma cholesterol concentration in male syrian hamsters. J. Agric. Food Chem. 2017 65 50 10984 10992 10.1021/acs.jafc.7b04666 29190422
    [Google Scholar]
  74. Hu Y. Liu J. Yuan Y. Chen J. Cheng S. Wang H. Xu Y. Sodium butyrate mitigates type 2 diabetes by inhibiting PERK-CHOP pathway of endoplasmic reticulum stress. Environ. Toxicol. Pharmacol. 2018 64 112 121 10.1016/j.etap.2018.09.002 30342372
    [Google Scholar]
  75. Hong J. Jia Y. Pan S. Jia L. Li H. Han Z. Cai D. Zhao R. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 2016 7 35 56071 56082 10.18632/oncotarget.11267 27528227
    [Google Scholar]
  76. Du Y. Li X. Su C. Xi M. Zhang X. Jiang Z. Wang L. Hong B. Butyrate protects against high‐fat diet‐induced atherosclerosis via up‐regulating ABCA1 expression in apolipoprotein E‐deficiency mice. Br. J. Pharmacol. 2020 177 8 1754 1772 10.1111/bph.14933 31769014
    [Google Scholar]
  77. Toscani A. Soprano D.R. Soprano K.J. Sodium butyrate in combination with insulin or dexamethasone can terminally differentiate actively proliferating Swiss 3T3 cells into adipocytes. J. Biol. Chem. 1990 265 10 5722 5730 10.1016/S0021‑9258(19)39423‑2 2180933
    [Google Scholar]
  78. Rumberger J.M. Arch J.R.S. Green A. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ 2014 2 e611 10.7717/peerj.611 25320679
    [Google Scholar]
  79. Aguilar E.C. da Silva J.F. Navia-Pelaez J.M. Leonel A.J. Lopes L.G. Menezes-Garcia Z. Ferreira A.V.M. Capettini L.S.A. Teixeira L.G. Lemos V.S. Alvarez-Leite J.I. Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-γ in obese Apo E knockout mice. Nutrition 2018 47 75 82 10.1016/j.nut.2017.10.007 29429540
    [Google Scholar]
  80. Bauters D. Scroyen I. Van Hul M. Lijnen H.R. Gelatinase A. MMP-2) promotes murine adipogenesis. Biochimica et Biophysica Acta (BBA)-. General Subjects. 2015 1850 7 1449 1456 10.1016/j.bbagen.2015.04.003
    [Google Scholar]
  81. Blaut M. Clavel T. Metabolic diversity of the intestinal microbiota: implications for health and disease. J. Nutr. 2007 137 3 Suppl. 2 751S 755S 10.1093/jn/137.3.751S 17311972
    [Google Scholar]
  82. Li Z. Yi C.X. Katiraei S. Kooijman S. Zhou E. Chung C.K. Gao Y. van den Heuvel J.K. Meijer O.C. Berbée J.F.P. Heijink M. Giera M. Willems van Dijk K. Groen A.K. Rensen P.C.N. Wang Y. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018 67 7 1269 1279 10.1136/gutjnl‑2017‑314050 29101261
    [Google Scholar]
  83. Lin H.V. Frassetto A. Kowalik E.J. Jr Nawrocki A.R. Lu M.M. Kosinski J.R. Hubert J.A. Szeto D. Yao X. Forrest G. Marsh D.J. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012 7 4 e35240 10.1371/journal.pone.0035240 22506074
    [Google Scholar]
  84. Chang P.V. Hao L. Offermanns S. Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 2014 111 6 2247 2252 10.1073/pnas.1322269111 24390544
    [Google Scholar]
  85. Finnin M.S. Donigian J.R. Cohen A. Richon V.M. Rifkind R.A. Marks P.A. Breslow R. Pavletich N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999 401 6749 188 193 10.1038/43710 10490031
    [Google Scholar]
  86. Shakespear M.R. Halili M.A. Irvine K.M. Fairlie D.P. Sweet M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011 32 7 335 343 10.1016/j.it.2011.04.001 21570914
    [Google Scholar]
  87. Cleophas M.C.P. Ratter J.M. Bekkering S. Quintin J. Schraa K. Stroes E.S. Netea M.G. Joosten L.A.B. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci. Rep. 2019 9 1 775 10.1038/s41598‑018‑37246‑7 30692581
    [Google Scholar]
  88. Khan S. Maremanda K.P. Jena G. Butyrate, a short-chain fatty acid and histone deacetylases inhibitor: nutritional, physiological, and pharmacological aspects in diabetes. Handbook of nutrition, diet, and epigenetics. Springer International Publishing 2019 793 807
    [Google Scholar]
  89. Brown A.J. Goldsworthy S.M. Barnes A.A. Eilert M.M. Tcheang L. Daniels D. Muir A.I. Wigglesworth M.J. Kinghorn I. Fraser N.J. Pike N.B. Strum J.C. Steplewski K.M. Murdock P.R. Holder J.C. Marshall F.H. Szekeres P.G. Wilson S. Ignar D.M. Foord S.M. Wise A. Dowell S.J. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003 278 13 11312 11319 10.1074/jbc.M211609200 12496283
    [Google Scholar]
  90. Are A. Aronsson L. Wang S. Greicius G. Lee Y.K. Gustafsson J.Å. Pettersson S. Arulampalam V. Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells. Proc. Natl. Acad. Sci. USA 2008 105 6 1943 1948 10.1073/pnas.0711734105 18234854
    [Google Scholar]
  91. Korecka A. de Wouters T. Cultrone A. Lapaque N. Pettersson S. Doré J. Blottière H.M. Arulampalam V. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 2013 304 11 G1025 G1037 10.1152/ajpgi.00293.2012 23518684
    [Google Scholar]
  92. den Besten G. Bleeker A. Gerding A. van Eunen K. Havinga R. van Dijk T.H. Oosterveer M.H. Jonker J.W. Groen A.K. Reijngoud D.J. Bakker B.M. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015 64 7 2398 2408 10.2337/db14‑1213 25695945
    [Google Scholar]
  93. Chitrala K.N. Guan H. Singh N.P. Busbee B. Gandy A. Mehrpouya-Bahrami P. Ganewatta M.S. Tang C. Chatterjee S. Nagarkatti P. Nagarkatti M. CD44 deletion leading to attenuation of experimental autoimmune encephalomyelitis results from alterations in gut microbiome in mice. Eur. J. Immunol. 2017 47 7 1188 1199 10.1002/eji.201646792 28543188
    [Google Scholar]
  94. Oh H.Y.P. Visvalingam V. Wahli W. The PPAR–microbiota–metabolic organ trilogy to fine‐tune physiology. FASEB J. 2019 33 9 9706 9730 10.1096/fj.201802681RR 31237779
    [Google Scholar]
  95. Powers W.J. Derdeyn C.P. Biller J. Coffey C.S. Hoh B.L. Jauch E.C. AHA/ASA Guideline. Stroke 2015 46 10 3020 3035 10.1161/STR.0000000000000074 26123479
    [Google Scholar]
  96. Kajstura J. Fiordaliso F. Andreoli A.M. Li B. Chimenti S. Medow M.S. Limana F. Nadal-Ginard B. Leri A. Anversa P. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 2001 50 6 1414 1424 10.2337/diabetes.50.6.1414 11375343
    [Google Scholar]
  97. Linthout S. Seeland U. Riad A. Eckhardt O. Hohl M. Dhayat N. Richter U. Fischer J.W. Böhm M. Pauschinger M. Schultheiss H.P. Tschöpe C. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res. Cardiol. 2008 103 4 319 327 10.1007/s00395‑008‑0715‑2 18347835
    [Google Scholar]
  98. Shiomi T. Tsutsui H. Ikeuchi M. Matsusaka H. Hayashidani S. Suematsu N. Wen J. Kubota T. Takeshita A. Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J. Am. Coll. Cardiol. 2003 42 1 165 172 10.1016/S0735‑1097(03)00509‑6 12849678
    [Google Scholar]
  99. Dong B. Yu Q.T. Dai H.Y. Gao Y.Y. Zhou Z.L. Zhang L. Jiang H. Gao F. Li S.Y. Zhang Y.H. Bian H.J. Liu C.X. Wang N. Xu H. Pan C.M. Song H.D. Zhang C. Zhang Y. Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2012 59 8 739 747 10.1016/j.jacc.2011.09.071 22340266
    [Google Scholar]
  100. Davie J.R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 2003 133 7 Suppl. 2485S 2493S 10.1093/jn/133.7.2485S 12840228
    [Google Scholar]
  101. Chen Y. Du J. Zhao Y.T. Zhang L. Lv G. Zhuang S. Qin G. Zhao T.C. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc. Diabetol. 2015 14 1 99 10.1186/s12933‑015‑0262‑8 26245924
    [Google Scholar]
  102. Patel B.M. Sodium butyrate controls cardiac hypertrophy in experimental models of rats. Cardiovasc. Toxicol. 2018 18 1 1 8 10.1007/s12012‑017‑9406‑2 28389765
    [Google Scholar]
  103. Zhang L.T. Yao Y.M. Lu J.Q. Yan X.J. Yu Y. Sheng Z.Y. Sodium butyrate prevents lethality of severe sepsis in rats. Shock 2007 27 6 672 677 10.1097/SHK.0b013e31802e3f4c 17505308
    [Google Scholar]
  104. Kim H.J. Rowe M. Ren M. Hong J.S. Chen P.S. Chuang D.M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther. 2007 321 3 892 901 10.1124/jpet.107.120188 17371805
    [Google Scholar]
  105. Hu X. Zhang K. Xu C. Chen Z. Jiang H. Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion. Exp. Ther. Med. 2014 8 1 229 232 10.3892/etm.2014.1726 24944626
    [Google Scholar]
  106. Kasahara K. Krautkramer K.A. Org E. Romano K.A. Kerby R.L. Vivas E.I. Mehrabian M. Denu J.M. Bäckhed F. Lusis A.J. Rey F.E. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat. Microbiol. 2018 3 12 1461 1471 10.1038/s41564‑018‑0272‑x 30397344
    [Google Scholar]
  107. Xiao Y. Guo Z. Li Z. Ling H. Song C. Role and mechanism of action of butyrate in atherosclerotic diseases: a review. J. Appl. Microbiol. 2021 131 2 543 552 10.1111/jam.14906 33098194
    [Google Scholar]
  108. Wang Y. Xu Y. Yang M. Zhang M. Xiao M. Li X. Butyrate mitigates TNF-α-induced attachment of monocytes to endothelial cells. J. Bioenerg. Biomembr. 2020 52 4 247 256 10.1007/s10863‑020‑09841‑9 32588186
    [Google Scholar]
  109. Jin L. Shi X. Yang J. Zhao Y. Xue L. Xu L. Cai J. Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell 2021 12 5 346 359 10.1007/s13238‑020‑00785‑9 32989686
    [Google Scholar]
  110. Luedde M. Winkler T. Heinsen F.A. Rühlemann M.C. Spehlmann M.E. Bajrovic A. Lieb W. Franke A. Ott S.J. Frey N. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017 4 3 282 290 10.1002/ehf2.12155 28772054
    [Google Scholar]
  111. Ghoshal U.C. How to interpret hydrogen breath tests. J. Neurogastroenterol. Motil. 2011 17 3 312 317 10.5056/jnm.2011.17.3.312 21860825
    [Google Scholar]
  112. Mollar A. Marrachelli V.G. Núñez E. Monleon D. Bodí V. Sanchis J. Navarro D. Núñez J. Bacterial metabolites trimethylamine N-oxide and butyrate as surrogates of small intestinal bacterial overgrowth in patients with a recent decompensated heart failure. Sci. Rep. 2021 11 1 6110 10.1038/s41598‑021‑85527‑5 33731747
    [Google Scholar]
  113. Badejogbin C. Areola D.E. Olaniyi K.S. Adeyanju O.A. Adeosun I.O. Sodium butyrate recovers high-fat diet-fed female Wistar rats from glucose dysmetabolism and uric acid-associated cardiac tissue damage. Naunyn Schmiedebergs Arch. Pharmacol. 2019 392 11 1411 1419 10.1007/s00210‑019‑01679‑2 31256207
    [Google Scholar]
  114. Jiang X. Huang X. Tong Y. Gao H. Butyrate improves cardiac function and sympathetic neural remodeling following myocardial infarction in rats. Can. J. Physiol. Pharmacol. 2020 98 6 391 399 10.1139/cjpp‑2019‑0531 31999473
    [Google Scholar]
  115. Yu Z. Han J. Chen H. Wang Y. Zhou L. Wang M. Zhang R. Jin X. Zhang G. Wang C. Xu T. Xie M. Wang X. Zhou X. Jiang H. Oral supplementation with butyrate improves myocardial ischemia/reperfusion injury via a gut-brain neural circuit. Front. Cardiovasc. Med. 2021 8 718674 10.3389/fcvm.2021.718674 34631821
    [Google Scholar]
  116. Onyszkiewicz M. Gawrys-Kopczynska M. Konopelski P. Aleksandrowicz M. Sawicka A. Koźniewska E. Samborowska E. Ufnal M. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Arch. 2019 471 11-12 1441 1453 10.1007/s00424‑019‑02322‑y 31728701
    [Google Scholar]
  117. Muller PA Schneeberger M Matheis F Wang P Kerner Z Ilanges A Microbiota modulate sympathetic neuronsvia a gut-brain circuit 2020 46 479
    [Google Scholar]
  118. Yu C.D. Xu Q.J. Chang R.B. Vagal sensory neurons and gut-brain signaling. Curr. Opin. Neurobiol. 2020 62 133 140 10.1016/j.conb.2020.03.006 32380360
    [Google Scholar]
  119. Robles-Vera I. Toral M. de la Visitación N. Sánchez M. Gómez-Guzmán M. Romero M. Yang T. Izquierdo-Garcia J.L. Jiménez R. Ruiz-Cabello J. Guerra-Hernández E. Raizada M.K. Pérez-Vizcaíno F. Duarte J. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: Role of short‐chain fatty acids. Mol. Nutr. Food Res. 2020 64 6 1900616 10.1002/mnfr.201900616 31953983
    [Google Scholar]
  120. Wang L. Zhu Q. Lu A. Liu X. Zhang L. Xu C. Liu X. Li H. Yang T. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin–angiotensin system. J. Hypertens. 2017 35 9 1899 1908 10.1097/HJH.0000000000001378 28509726
    [Google Scholar]
  121. Zhang L. Deng M. Lu A. Chen Y. Chen Y. Wu C. Tan Z. Boini K.M. Yang T. Zhu Q. Wang L. Sodium butyrate attenuates angiotensin II‐induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6‐dependent mechanism. J. Cell. Mol. Med. 2019 23 12 8139 8150 10.1111/jcmm.14684 31565858
    [Google Scholar]
  122. Morikawa A. Sugiyama T. Koide N. Mori I. Mu M.M. Yoshida T. Hassan F. Islam S. Yokochi T. Butyrate enhances the production of nitric oxide in mouse vascular endothelial cells in response to gamma interferon. J. Endotoxin Res. 2004 10 1 32 37 10.1179/096805104225003852 15025822
    [Google Scholar]
  123. Napoli C. Lerman L.O. Balestrieri M.L. Ignarro L.J. Nitric oxide in vascular damage and regeneration. Nitric Oxide. Elsevier 2010 629 672
    [Google Scholar]
  124. Sarlak Z. Eidi A. Ghorbanzadeh V. Moghaddasi M. Mortazavi P. miR ‐34a/SIRT1/HIF ‐1α axis is involved in cardiac angiogenesis of type 2 diabetic rats: The protective effect of sodium butyrate combined with treadmill exercise. Biofactors 2023 49 5 1085 1098 10.1002/biof.1979 37560982
    [Google Scholar]
  125. Dariushnejad H. Pirzeh L. Roshanravan N. Ghorbanzadeh V. Sodium butyrate and voluntary exercise through activating VEGF-A downstream signaling pathway improve heart angiogenesis in type 2 diabetes. Microvasc. Res. 2023 147 104475 10.1016/j.mvr.2023.104475 36657710
    [Google Scholar]
  126. Remely M. Aumueller E. Merold C. Dworzak S. Hippe B. Zanner J. Pointner A. Brath H. Haslberger A.G. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 2014 537 1 85 92 10.1016/j.gene.2013.11.081 24325907
    [Google Scholar]
  127. Tarnowski W. Borycka-Kiciak K. Kiciak A. Outcome of treatment with butyric acid In irritable bowel syndrome–preliminary report. Gastroenterol Prakt. 2011 1 43 48
    [Google Scholar]
  128. de Groot P.F. Nikolic T. Imangaliyev S. Bekkering S. Duinkerken G. Keij F.M. Herrema H. Winkelmeijer M. Kroon J. Levin E. Hutten B. Kemper E.M. Simsek S. Levels J.H.M. van Hoorn F.A. Bindraban R. Berkvens A. Dallinga-Thie G.M. Davids M. Holleman F. Hoekstra J.B.L. Stroes E.S.G. Netea M. van Raalte D.H. Roep B.O. Nieuwdorp M. Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial. Diabetologia 2020 63 3 597 610 10.1007/s00125‑019‑05073‑8 31915895
    [Google Scholar]
  129. Patnaik A. Rowinsky E.K. Villalona M.A. Hammond L.A. Britten C.D. Siu L.L. Goetz A. Felton S.A. Burton S. Valone F.H. Eckhardt S.G. A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin. Cancer Res. 2002 8 7 2142 2148 12114414
    [Google Scholar]
  130. Conley B.A. Egorin M.J. Tait N. Rosen D.M. Sausville E.A. Dover G. Fram R.J. Van Echo D.A. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors. Clin. Cancer Res. 1998 4 3 629 634 9533530
    [Google Scholar]
  131. Edelman M.J. Bauer K. Khanwani S. Tait N. Trepel J. Karp J. Nemieboka N. Chung E.J. Van Echo D. Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug. Cancer Chemother. Pharmacol. 2003 51 5 439 444 10.1007/s00280‑003‑0580‑5 12736763
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257307380240820052940
Loading

  • Article Type:
    Review Article
Keywords: Type 2 diabetes ; sodium butyrate ; cardiovascular disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test