Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Type 2 diabetes is characterized by elevated blood glucose levels, leading to an increased risk of cardiovascular diseases. Sodium butyrate, the sodium salt of the short-chain fatty acid butyric acid produced by gut microbiota fermentation, has shown promising effects on metabolic diseases, including type 2 diabetes and cardiovascular diseases. Sodium butyrate demonstrates anti-inflammatory, anti-oxidative, and lipid-lowering properties and can improve insulin sensitivity and reduce hepatic steatosis. In this review, we investigate how sodium butyrate influences cardiovascular complications of type 2 diabetes, including atherosclerosis (AS), heart failure (HF), hypertension, and angiogenesis. Moreover, we explore the pathophysiology of cardiovascular disease in type 2 diabetes, focusing on hyperglycemia, oxidative stress, inflammation, and genetic factors playing crucial roles. The review suggests that sodium butyrate can be a potential preventive and therapeutic agent for cardiovascular complications in individuals with type 2 diabetes.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257307380240820052940
2024-08-28
2025-04-03
Loading full text...

Full text loading...

References

  1. StevenS. DibM. HausdingM. KashaniF. OelzeM. Kröller-SchönS. HanfA. DaubS. RoohaniS. GramlichY. LutgensE. SchulzE. BeckerC. LacknerK.J. KleinertH. KnosallaC. NieslerB. WildP.S. MünzelT. DaiberA. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice.Cardiovasc. Res.2018114231232310.1093/cvr/cvx19729036612
    [Google Scholar]
  2. WrightA.K. Suarez-OrtegonM.F. ReadS.H. KontopantelisE. BuchanI. EmsleyR. SattarN. AshcroftD.M. WildS.H. RutterM.K. Risk factor control and cardiovascular event risk in people with type 2 diabetes in primary and secondary prevention settings.Circulation2020142201925193610.1161/CIRCULATIONAHA.120.04678333196309
    [Google Scholar]
  3. AhmadA.F. DwivediG. O’GaraF. Caparros-MartinJ. WardN.C. The gut microbiome and cardiovascular disease: current knowledge and clinical potential.Am. J. Physiol. Heart Circ. Physiol.20193175H923H93810.1152/ajpheart.00376.201931469291
    [Google Scholar]
  4. EinarsonT.R. AcsA. LudwigC. PantonU.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017.Cardiovasc. Diabetol.20181718310.1186/s12933‑018‑0728‑629884191
    [Google Scholar]
  5. ZhangL. DuJ. YanoN. WangH. ZhaoY.T. DubieleckaP.M. ZhuangS. ChinY.E. QinG. ZhaoT.C. Sodium butyrate protects against high fat diet-induced cardiac dysfunction and metabolic disorders in type II diabetic mice.J. Cell. Biochem.201711882395240810.1002/jcb.2590228109123
    [Google Scholar]
  6. MatheusV.A. MonteiroL.C.S. OliveiraR.B. MaschioD.A. Collares-BuzatoC.B. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice.Exp. Biol. Med. (Maywood)2017242121214122610.1177/153537021770818828504618
    [Google Scholar]
  7. Kaźmierczak-SiedleckaK. MaranoL. MerolaE. RovielloF. PołomK. Sodium butyrate in both prevention and supportive treatment of colorectal cancer.Front. Cell. Infect. Microbiol.202212102380610.3389/fcimb.2022.102380636389140
    [Google Scholar]
  8. AdeyanjuO.A. BadejogbinO.C. AreolaD.E. OlaniyiK.S. DibiaC. SoetanO.A. OniyideA.A. MichaelO.S. OlatunjiL.A. SoladoyeA.O. Sodium butyrate arrests pancreato-hepatic synchronous uric acid and lipid dysmetabolism in high fat diet fed Wistar rats.Biomed. Pharmacother.202113311099410.1016/j.biopha.2020.11099433197764
    [Google Scholar]
  9. AmiriP. HosseiniS.A. GhaffariS. TutunchiH. GhaffariS. MosharkeshE. AsghariS. RoshanravanN. Role of butyrate, a gut microbiota derived metabolite, in cardiovascular diseases: A comprehensive narrative review.Front. Pharmacol.20221283750910.3389/fphar.2021.83750935185553
    [Google Scholar]
  10. Rodriguez-AraujoG. NakagamiH. Pathophysiology of cardiovascular disease in diabetes mellitus.Cardiovasc. Endocrinol. Metab.2018714910.1097/XCE.000000000000014131646271
    [Google Scholar]
  11. ChyunD.A. YoungL.H. Diabetes mellitus and cardiovascular disease.Nurs. Clin. North Am.2006414681695, viii-ix10.1016/j.cnur.2006.07.00717059982
    [Google Scholar]
  12. PatelT.P. RawalK. BagchiA.K. AkolkarG. BernardesN. DiasD.S. GuptaS. SingalP.K. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes.Heart Fail. Rev.2016211112310.1007/s10741‑015‑9515‑626542377
    [Google Scholar]
  13. MarksJ.B. RaskinP. Cardiovascular risk in diabetes.J. Diabetes Complications200014210811510.1016/S1056‑8727(00)00065‑910959073
    [Google Scholar]
  14. CerielloA. Postprandial hyperglycemia and diabetes complications: is it time to treat?Diabetes20055411710.2337/diabetes.54.1.115616004
    [Google Scholar]
  15. CerielloA. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy.Diabetes Care20032651589159610.2337/diacare.26.5.158912716823
    [Google Scholar]
  16. FarahmandF. LouH. SingalP.K. Oxidative stress in cardiovascular complications of diabetes. Atherosclerosis, hypertension and diabetes.Cardiovasc. Res.2003427437
    [Google Scholar]
  17. MadonnaR. PieragostinoD. BalistreriC.R. RossiC. GengY.J. Del BoccioP. De CaterinaR. Diabetic macroangiopathy: Pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage.Vascul. Pharmacol.2018107273410.1016/j.vph.2018.01.00929425894
    [Google Scholar]
  18. HinkelR. HoweA. RennerS. NgJ. LeeS. KlettK. KaczmarekV. MorettiA. LaugwitzK.L. SkroblinP. MayrM. MiltingH. DendorferA. ReichartB. WolfE. KupattC. Diabetes mellitus–induced microvascular destabilization in the myocardium.J. Am. Coll. Cardiol.201769213114310.1016/j.jacc.2016.10.05828081822
    [Google Scholar]
  19. LumH. RoebuckK.A. Oxidant stress and endothelial cell dysfunction.Am. J. Physiol. Cell Physiol.20012804C719C74110.1152/ajpcell.2001.280.4.C71911245588
    [Google Scholar]
  20. VersariD. DaghiniE. VirdisA. GhiadoniL. TaddeiS. Endothelial dysfunction as a target for prevention of cardiovascular disease.Diabetes Care200932Suppl 2Suppl. 2S314S32110.2337/dc09‑S33019875572
    [Google Scholar]
  21. SchramM.T. ChaturvediN. SchalkwijkC. GiorginoF. EbelingP. FullerJ.H. StehouwerC.D. EURODIAB Prospective Complications Study Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study.Diabetes Care20032672165217310.2337/diacare.26.7.216512832330
    [Google Scholar]
  22. El-OstaA. BrasacchioD. YaoD. PocaiA. JonesP.L. RoederR.G. CooperM.E. BrownleeM. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.J. Exp. Med.2008205102409241710.1084/jem.2008118818809715
    [Google Scholar]
  23. HinkU. LiH. MollnauH. OelzeM. MatheisE. HartmannM. SkatchkovM. ThaissF. StahlR.A.K. WarnholtzA. MeinertzT. GriendlingK. HarrisonD.G. ForstermannU. MunzelT. Mechanisms underlying endothelial dysfunction in diabetes mellitus.Circ. Res.2001882E14E2210.1161/01.RES.88.2.e1411157681
    [Google Scholar]
  24. SedighiM. BahmaniM. AsgaryS. BeyranvandF. Rafieian-KopaeiM. A review of plant-based compounds and medicinal plants effective on atherosclerosis. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences.Cardiovasc. Res.201722
    [Google Scholar]
  25. ZhangX-G. ZhangY-Q. ZhaoD-K. WuJ-X. ZhaoJ. JiaoX-M. ChenB. LvX.F. Relationship between blood glucose fluctuation and macrovascular endothelial dysfunction in type 2 diabetic patients with coronary heart disease.Eur. Rev. Med. Pharmacol. Sci.201418233593360025535128
    [Google Scholar]
  26. StamlerJ. VaccaroO. NeatonJ.D. WentworthD. GroupM.R.F.I.T.R. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial.Diabetes Care199316243444410.2337/diacare.16.2.4348432214
    [Google Scholar]
  27. Barrett-ConnorE.L. CohnB.A. WingardD.L. EdelsteinS.L. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study.JAMA1991265562763110.1001/jama.1991.034600500810251987413
    [Google Scholar]
  28. ConnellyP.W. PetrasovitsA. StachenkoS. MacLeanD.R. LittleJ.A. ChockalingamA. Canadian Heart Health Surveys Research Group Prevalence of high plasma triglyceride combined with low HDL-C levels and its association with smoking, hypertension, obesity, diabetes, sedentariness and LDL-C levels in the Canadian population.Can. J. Cardiol.199915442843310322252
    [Google Scholar]
  29. HamedS. BrennerB. RoguinA. Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2.Cardiovasc. Res.201191191510.1093/cvr/cvq41221186243
    [Google Scholar]
  30. BerbudiA. RahmadikaN. TjahjadiA.I. RuslamiR. Type 2 diabetes and its impact on the immune system.Curr. Diabetes Rev.202016544244910.2174/18756417MTAxgODQqy31657690
    [Google Scholar]
  31. LibbyP. RidkerP.M. MaseriA. Inflammation and Atherosclerosis.Circulation200210591135114310.1161/hc0902.10435311877368
    [Google Scholar]
  32. MooreK.J. FreemanM.W. Scavenger receptors in atherosclerosis: beyond lipid uptake.Arterioscler. Thromb. Vasc. Biol.20062681702171110.1161/01.ATV.0000229218.97976.4316728653
    [Google Scholar]
  33. van BerkelT.J.C. OutR. HoekstraM. KuiperJ. BiessenE. van EckM. Scavenger receptors: friend or foe in atherosclerosis?Curr. Opin. Lipidol.200516552553510.1097/01.mol.0000183943.20277.2616148537
    [Google Scholar]
  34. DeguchiJ. AikawaM. TungC.H. AikawaE. KimD.E. NtziachristosV. WeisslederR. LibbyP. Inflammation in Atherosclerosis.Circulation20061141556210.1161/CIRCULATIONAHA.106.61905616801460
    [Google Scholar]
  35. ShahP.K. FalkE. BadimonJ.J. Fernandez-OrtizA. MailhacA. Villareal-LevyG. FallonJ.T. RegnstromJ. FusterV. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture.Circulation1995926156515697664441
    [Google Scholar]
  36. GeovaniniG.R. LibbyP. Atherosclerosis and inflammation: overview and updates.Clin. Sci. (Lond.)2018132121243125210.1042/CS2018030629930142
    [Google Scholar]
  37. OmerovicE. BrohallG. MüllerM. RåmunddalT. MatejkaG. WaagsteinF. FagerbergB. Silent myocardial infarction in women with type II diabetes mellitus and microalbuminuria.Ther. Clin. Risk Manag.20084470571110.2147/TCRM.S282619209251
    [Google Scholar]
  38. HeydariB. ShahR. AbbasiS. FengJ.H. FarhadH. NeilanT.G. BlanksteinR. van der GeestR.J. AbdullahS. FrancisS. HoffmannU. Jerosch-HeroldM. KwongR.Y. Diabetes remains an independent risk factor for adverse remodeling following acute myocardial infarction even with quantification of total infarct size and change in myocardial extracellular volume fraction by CMR.J. Cardiovasc. Magn. Reson.2013151P18510.1186/1532‑429X‑15‑S1‑P18523324167
    [Google Scholar]
  39. StoneP.H. MullerJ.E. HartwellT. YorkB.J. RutherfordJ.D. ParkerC.B. TuriZ.G. StraussH.W. WillersonJ.T. RobertsonT. BraunwaldE. JaffeA.S. The MILIS Study Group The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: Contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis.J. Am. Coll. Cardiol.1989141495710.1016/0735‑1097(89)90053‑32661630
    [Google Scholar]
  40. FilippoC.D. CuzzocreaS. RossiF. MarfellaR. D’AmicoM. Oxidative stress as the leading cause of acute myocardial infarction in diabetics.Cardiovasc. Drug Rev.2006242778710.1111/j.1527‑3466.2006.00077.x16961722
    [Google Scholar]
  41. LouisP. FlintH.J. Formation of propionate and butyrate by the human colonic microbiota.Environ. Microbiol.2017191294110.1111/1462‑2920.1358927928878
    [Google Scholar]
  42. CananiR.B. CostanzoM.D. LeoneL. PedataM. MeliR. CalignanoA. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases.World J. Gastroenterol.201117121519152810.3748/wjg.v17.i12.151921472114
    [Google Scholar]
  43. LouisP. FlintH.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.FEMS Microbiol. Lett.200929411810.1111/j.1574‑6968.2009.01514.x19222573
    [Google Scholar]
  44. VitalM. HoweA.C. TiedjeJ.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data.MBio201452e00889-1410.1128/mBio.00889‑1424757212
    [Google Scholar]
  45. BarcenillaA. PrydeS.E. MartinJ.C. DuncanS.H. StewartC.S. HendersonC. FlintH.J. Phylogenetic relationships of butyrate-producing bacteria from the human gut.Appl. Environ. Microbiol.20006641654166110.1128/AEM.66.4.1654‑1661.200010742256
    [Google Scholar]
  46. DuncanS.H. HoldG.L. HarmsenH.J.M. StewartC.S. FlintH.J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov.Int. J. Syst. Evol. Microbiol.200252Pt 62141214612508881
    [Google Scholar]
  47. AhmadM.S. KrishnanS. RamakrishnaB.S. MathanM. PulimoodA.B. MurthyS.N. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice.Gut200046449349910.1136/gut.46.4.49310716678
    [Google Scholar]
  48. GeirnaertA. CalatayudM. GrootaertC. LaukensD. DevrieseS. SmaggheG. De VosM. BoonN. Van de WieleT. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity.Sci. Rep.2017711145010.1038/s41598‑017‑11734‑828904372
    [Google Scholar]
  49. GhanimH. BatraM. AbuayshehS. GreenK. MakdissiA. KuhadiyaN.D. ChaudhuriA. DandonaP. Antiinflammatory and ROS Suppressive Effects   of   the Addition of Fiber to a High-Fat High-Calorie Meal.J. Clin. Endocrinol. Metab.2017102385886910.1210/jc.2016‑266927906549
    [Google Scholar]
  50. PerraudeauF. McMurdieP. BullardJ. ChengA. CutcliffeC. DeoA. EidJ. GinesJ. IyerM. JusticeN. LooW.T. NemchekM. SchicklbergerM. SouzaM. StoneburnerB. TyagiS. KoltermanO. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation.BMJ Open Diabetes Res. Care202081e00131910.1136/bmjdrc‑2020‑00131932675291
    [Google Scholar]
  51. KhanS. JenaG. Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: A comparative study with metformin.Chem. Biol. Interact.201625412413410.1016/j.cbi.2016.06.00727270450
    [Google Scholar]
  52. GaoZ. YinJ. ZhangJ. WardR.E. MartinR.J. LefevreM. CefaluW.T. YeJ. Butyrate improves insulin sensitivity and increases energy expenditure in mice.Diabetes20095871509151710.2337/db08‑163719366864
    [Google Scholar]
  53. MollicaM.P. Mattace RasoG. CavaliereG. TrincheseG. De FilippoC. AcetoS. PriscoM. PirozziC. Di GuidaF. LamaA. CrispinoM. TroninoD. Di VaioP. Berni CananiR. CalignanoA. MeliR. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice.Diabetes20176651405141810.2337/db16‑092428223285
    [Google Scholar]
  54. BramswigN.C. KaestnerK.H. Epigenetics and diabetes treatment: an unrealized promise?Trends Endocrinol. Metab.201223628629110.1016/j.tem.2012.02.00222424897
    [Google Scholar]
  55. LeeH.B. NohH. SeoJ.Y. YuM.R. HaH. Histone deacetylase inhibitors: A novel class of therapeutic agents in diabetic nephropathy.Kidney Int.200772106S61S6610.1038/sj.ki.500238817653213
    [Google Scholar]
  56. KhanS. JenaG.B. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: Study in juvenile diabetic rat.Chem. Biol. Interact.201421311210.1016/j.cbi.2014.02.00124530320
    [Google Scholar]
  57. GlozakM.A. SenguptaN. ZhangX. SetoE. Acetylation and deacetylation of non-histone proteins.Gene2005363152310.1016/j.gene.2005.09.01016289629
    [Google Scholar]
  58. ChristensenD.P. DahllöfM. LundhM. RasmussenD.N. NielsenM.D. BillestrupN. GrunnetL.G. Mandrup-PoulsenT. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus.Mol. Med.2011175-637839010.2119/molmed.2011.0002121274504
    [Google Scholar]
  59. LenoirO. FlosseauK. MaF.X. BlondeauB. MaiA. Bassel-DubyR. RavassardP. OlsonE.N. HaumaitreC. ScharfmannR. Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9.Diabetes201160112861287110.2337/db11‑044021953612
    [Google Scholar]
  60. HaumaitreC. LenoirO. ScharfmannR. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors.Mol. Cell. Biol.200828206373638310.1128/MCB.00413‑0818710955
    [Google Scholar]
  61. MihaylovaM.M. VasquezD.S. RavnskjaerK. DenechaudP.D. YuR.T. AlvarezJ.G. DownesM. EvansR.M. MontminyM. ShawR.J. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis.Cell2011145460762110.1016/j.cell.2011.03.04321565617
    [Google Scholar]
  62. SzewczykJ. GiannoneJ. MarcuardS. KindelT. TsoP. NolanR. Colonic delivery of nutrients for management of blood glucose in type 2 diabetes patients.Funct. Food Health Dis.201771365310.31989/ffhd.v7i1.283
    [Google Scholar]
  63. Abdul-GhaniM.A. JayyousiA. DeFronzoR.A. AsaadN. Al-SuwaidiJ. Insulin resistance the link between T2DM and CVD: basic mechanisms and clinical implications.Curr. Vasc. Pharmacol.201917215316310.2174/157016111566617101011511929032755
    [Google Scholar]
  64. YanH. AjuwonK.M. Mechanism of butyrate stimulation of triglyceride storage and adipokine expression during adipogenic differentiation of porcine stromovascular cells.PLoS One20151012e014594010.1371/journal.pone.014594026713737
    [Google Scholar]
  65. HafidiM.E. Buelna-ChontalM. Sánchez-MuñozF. CarbóR. Adipogenesis: a necessary but harmful strategy.Int. J. Mol. Sci.20192015365710.3390/ijms2015365731357412
    [Google Scholar]
  66. EvansJ.L. MadduxB.A. GoldfineI.D. The molecular basis for oxidative stress-induced insulin resistance.Antioxid. Redox Signal.200577-81040105210.1089/ars.2005.7.104015998259
    [Google Scholar]
  67. SunB. JiaY. YangS. ZhaoN. HuY. HongJ. GaoS. ZhaoR. Sodium butyrate protects against high-fat diet-induced oxidative stress in rat liver by promoting expression of nuclear factor E2-related factor 2.Br. J. Nutr.2019122440041010.1017/S000711451900139931204637
    [Google Scholar]
  68. SwarovskyB. EisseleR. EisenacherM. TrautmannM.E. ArnoldR. Sodium butyrate induces neuroendocrine cytodifferentiation in the insulinoma cell line RINm5F.Pancreas19949446046810.1097/00006676‑199407000‑000087937695
    [Google Scholar]
  69. ChapmanM.J. GinsbergH.N. AmarencoP. AndreottiF. BorénJ. CatapanoA.L. DescampsO.S. FisherE. KovanenP.T. KuivenhovenJ.A. LesnikP. MasanaL. NordestgaardB.G. RayK.K. ReinerZ. TaskinenM.R. TokgözogluL. Tybjærg-HansenA. WattsG.F. European Atherosclerosis Society Consensus Panel Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management.Eur. Heart J.201132111345136110.1093/eurheartj/ehr11221531743
    [Google Scholar]
  70. WestK.M. AhujaM.M.S. BennettP.H. CzyzykA. De AcostaO.M. FullerJ.H. GrabB. GrabauskasV. JarrettR.J. KosakaK. KeenH. KrolewskiA.S. MikiE. SchliackV. TeuscherA. WatkinsP.J. StoberJ.A. The role of circulating glucose and triglyceride concentrations and their interactions with other “risk factors” as determinants of arterial disease in nine diabetic population samples from the WHO multinational study.Diabetes Care19836436136910.2337/diacare.6.4.3616617413
    [Google Scholar]
  71. HowardB.V. RobbinsD.C. SieversM.L. LeeE.T. RhoadesD. DevereuxR.B. CowanL.D. GrayR.S. WeltyT.K. GoO.T. HowardW.J. LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: The Strong Heart Study.Arterioscler. Thromb. Vasc. Biol.200020383083510.1161/01.ATV.20.3.83010712410
    [Google Scholar]
  72. Mattace RasoG. SimeoliR. RussoR. IaconoA. SantoroA. PacielloO. FerranteM.C. CananiR.B. CalignanoA. MeliR. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet.PLoS One201387e6862610.1371/journal.pone.006862623861927
    [Google Scholar]
  73. ZhaoY. LiuJ. HaoW. ZhuH. LiangN. HeZ. MaK.Y. ChenZ.Y. Structure-specific effects of short-chain fatty acids on plasma cholesterol concentration in male syrian hamsters.J. Agric. Food Chem.20176550109841099210.1021/acs.jafc.7b0466629190422
    [Google Scholar]
  74. HuY. LiuJ. YuanY. ChenJ. ChengS. WangH. XuY. Sodium butyrate mitigates type 2 diabetes by inhibiting PERK-CHOP pathway of endoplasmic reticulum stress.Environ. Toxicol. Pharmacol.20186411212110.1016/j.etap.2018.09.00230342372
    [Google Scholar]
  75. HongJ. JiaY. PanS. JiaL. LiH. HanZ. CaiD. ZhaoR. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice.Oncotarget2016735560715608210.18632/oncotarget.1126727528227
    [Google Scholar]
  76. DuY. LiX. SuC. XiM. ZhangX. JiangZ. WangL. HongB. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice.Br. J. Pharmacol.202017781754177210.1111/bph.1493331769014
    [Google Scholar]
  77. ToscaniA. SopranoD.R. SopranoK.J. Sodium butyrate in combination with insulin or dexamethasone can terminally differentiate actively proliferating Swiss 3T3 cells into adipocytes.J. Biol. Chem.1990265105722573010.1016/S0021‑9258(19)39423‑22180933
    [Google Scholar]
  78. RumbergerJ.M. ArchJ.R.S. GreenA. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes.PeerJ20142e61110.7717/peerj.61125320679
    [Google Scholar]
  79. AguilarE.C. da SilvaJ.F. Navia-PelaezJ.M. LeonelA.J. LopesL.G. Menezes-GarciaZ. FerreiraA.V.M. CapettiniL.S.A. TeixeiraL.G. LemosV.S. Alvarez-LeiteJ.I. Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-γ in obese Apo E knockout mice.Nutrition201847758210.1016/j.nut.2017.10.00729429540
    [Google Scholar]
  80. BautersD. ScroyenI. Van HulM. LijnenH.R. GelatinaseA. MMP-2) promotes murine adipogenesis. Biochimica et Biophysica Acta (BBA)-.General Subjects.2015185071449145610.1016/j.bbagen.2015.04.003
    [Google Scholar]
  81. BlautM. ClavelT. Metabolic diversity of the intestinal microbiota: implications for health and disease.J. Nutr.20071373Suppl. 2751S755S10.1093/jn/137.3.751S17311972
    [Google Scholar]
  82. LiZ. YiC.X. KatiraeiS. KooijmanS. ZhouE. ChungC.K. GaoY. van den HeuvelJ.K. MeijerO.C. BerbéeJ.F.P. HeijinkM. GieraM. Willems van DijkK. GroenA.K. RensenP.C.N. WangY. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.Gut20186771269127910.1136/gutjnl‑2017‑31405029101261
    [Google Scholar]
  83. LinH.V. FrassettoA. KowalikE.J.Jr NawrockiA.R. LuM.M. KosinskiJ.R. HubertJ.A. SzetoD. YaoX. ForrestG. MarshD.J. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms.PLoS One201274e3524010.1371/journal.pone.003524022506074
    [Google Scholar]
  84. ChangP.V. HaoL. OffermannsS. MedzhitovR. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.Proc. Natl. Acad. Sci. USA201411162247225210.1073/pnas.132226911124390544
    [Google Scholar]
  85. FinninM.S. DonigianJ.R. CohenA. RichonV.M. RifkindR.A. MarksP.A. BreslowR. PavletichN.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors.Nature1999401674918819310.1038/4371010490031
    [Google Scholar]
  86. ShakespearM.R. HaliliM.A. IrvineK.M. FairlieD.P. SweetM.J. Histone deacetylases as regulators of inflammation and immunity.Trends Immunol.201132733534310.1016/j.it.2011.04.00121570914
    [Google Scholar]
  87. CleophasM.C.P. RatterJ.M. BekkeringS. QuintinJ. SchraaK. StroesE.S. NeteaM.G. JoostenL.A.B. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males.Sci. Rep.20199177510.1038/s41598‑018‑37246‑730692581
    [Google Scholar]
  88. KhanS. MaremandaK.P. JenaG. Butyrate, a short-chain fatty acid and histone deacetylases inhibitor: nutritional, physiological, and pharmacological aspects in diabetes. Handbook of nutrition, diet, and epigenetics.Springer International Publishing2019793807
    [Google Scholar]
  89. BrownA.J. GoldsworthyS.M. BarnesA.A. EilertM.M. TcheangL. DanielsD. MuirA.I. WigglesworthM.J. KinghornI. FraserN.J. PikeN.B. StrumJ.C. SteplewskiK.M. MurdockP.R. HolderJ.C. MarshallF.H. SzekeresP.G. WilsonS. IgnarD.M. FoordS.M. WiseA. DowellS.J. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids.J. Biol. Chem.200327813113121131910.1074/jbc.M21160920012496283
    [Google Scholar]
  90. AreA. AronssonL. WangS. GreiciusG. LeeY.K. GustafssonJ.Å. PetterssonS. ArulampalamV. Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells.Proc. Natl. Acad. Sci. USA200810561943194810.1073/pnas.071173410518234854
    [Google Scholar]
  91. KoreckaA. de WoutersT. CultroneA. LapaqueN. PetterssonS. DoréJ. BlottièreH.M. ArulampalamV. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways.Am. J. Physiol. Gastrointest. Liver Physiol.201330411G1025G103710.1152/ajpgi.00293.201223518684
    [Google Scholar]
  92. den BestenG. BleekerA. GerdingA. van EunenK. HavingaR. van DijkT.H. OosterveerM.H. JonkerJ.W. GroenA.K. ReijngoudD.J. BakkerB.M. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation.Diabetes20156472398240810.2337/db14‑121325695945
    [Google Scholar]
  93. ChitralaK.N. GuanH. SinghN.P. BusbeeB. GandyA. Mehrpouya-BahramiP. GanewattaM.S. TangC. ChatterjeeS. NagarkattiP. NagarkattiM. CD44 deletion leading to attenuation of experimental autoimmune encephalomyelitis results from alterations in gut microbiome in mice.Eur. J. Immunol.20174771188119910.1002/eji.20164679228543188
    [Google Scholar]
  94. OhH.Y.P. VisvalingamV. WahliW. The PPAR–microbiota–metabolic organ trilogy to fine-tune physiology.FASEB J.20193399706973010.1096/fj.201802681RR31237779
    [Google Scholar]
  95. PowersW.J. DerdeynC.P. BillerJ. CoffeyC.S. HohB.L. JauchE.C. AHA/ASA Guideline.Stroke201546103020303510.1161/STR.000000000000007426123479
    [Google Scholar]
  96. KajsturaJ. FiordalisoF. AndreoliA.M. LiB. ChimentiS. MedowM.S. LimanaF. Nadal-GinardB. LeriA. AnversaP. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress.Diabetes20015061414142410.2337/diabetes.50.6.141411375343
    [Google Scholar]
  97. LinthoutS. SeelandU. RiadA. EckhardtO. HohlM. DhayatN. RichterU. FischerJ.W. BöhmM. PauschingerM. SchultheissH.P. TschöpeC. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy.Basic Res. Cardiol.2008103431932710.1007/s00395‑008‑0715‑218347835
    [Google Scholar]
  98. ShiomiT. TsutsuiH. IkeuchiM. MatsusakaH. HayashidaniS. SuematsuN. WenJ. KubotaT. TakeshitaA. Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction.J. Am. Coll. Cardiol.200342116517210.1016/S0735‑1097(03)00509‑612849678
    [Google Scholar]
  99. DongB. YuQ.T. DaiH.Y. GaoY.Y. ZhouZ.L. ZhangL. JiangH. GaoF. LiS.Y. ZhangY.H. BianH.J. LiuC.X. WangN. XuH. PanC.M. SongH.D. ZhangC. ZhangY. Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy.J. Am. Coll. Cardiol.201259873974710.1016/j.jacc.2011.09.07122340266
    [Google Scholar]
  100. DavieJ.R. Inhibition of histone deacetylase activity by butyrate.J. Nutr.20031337Suppl.2485S2493S10.1093/jn/133.7.2485S12840228
    [Google Scholar]
  101. ChenY. DuJ. ZhaoY.T. ZhangL. LvG. ZhuangS. QinG. ZhaoT.C. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice.Cardiovasc. Diabetol.20151419910.1186/s12933‑015‑0262‑826245924
    [Google Scholar]
  102. PatelB.M. Sodium butyrate controls cardiac hypertrophy in experimental models of rats.Cardiovasc. Toxicol.20181811810.1007/s12012‑017‑9406‑228389765
    [Google Scholar]
  103. ZhangL.T. YaoY.M. LuJ.Q. YanX.J. YuY. ShengZ.Y. Sodium butyrate prevents lethality of severe sepsis in rats.Shock200727667267710.1097/SHK.0b013e31802e3f4c17505308
    [Google Scholar]
  104. KimH.J. RoweM. RenM. HongJ.S. ChenP.S. ChuangD.M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action.J. Pharmacol. Exp. Ther.2007321389290110.1124/jpet.107.12018817371805
    [Google Scholar]
  105. HuX. ZhangK. XuC. ChenZ. JiangH. Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion.Exp. Ther. Med.20148122923210.3892/etm.2014.172624944626
    [Google Scholar]
  106. KasaharaK. KrautkramerK.A. OrgE. RomanoK.A. KerbyR.L. VivasE.I. MehrabianM. DenuJ.M. BäckhedF. LusisA.J. ReyF.E. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model.Nat. Microbiol.20183121461147110.1038/s41564‑018‑0272‑x30397344
    [Google Scholar]
  107. XiaoY. GuoZ. LiZ. LingH. SongC. Role and mechanism of action of butyrate in atherosclerotic diseases: a review.J. Appl. Microbiol.2021131254355210.1111/jam.1490633098194
    [Google Scholar]
  108. WangY. XuY. YangM. ZhangM. XiaoM. LiX. Butyrate mitigates TNF-α-induced attachment of monocytes to endothelial cells.J. Bioenerg. Biomembr.202052424725610.1007/s10863‑020‑09841‑932588186
    [Google Scholar]
  109. JinL. ShiX. YangJ. ZhaoY. XueL. XuL. CaiJ. Gut microbes in cardiovascular diseases and their potential therapeutic applications.Protein Cell202112534635910.1007/s13238‑020‑00785‑932989686
    [Google Scholar]
  110. LueddeM. WinklerT. HeinsenF.A. RühlemannM.C. SpehlmannM.E. BajrovicA. LiebW. FrankeA. OttS.J. FreyN. Heart failure is associated with depletion of core intestinal microbiota.ESC Heart Fail.20174328229010.1002/ehf2.1215528772054
    [Google Scholar]
  111. GhoshalU.C. How to interpret hydrogen breath tests.J. Neurogastroenterol. Motil.201117331231710.5056/jnm.2011.17.3.31221860825
    [Google Scholar]
  112. MollarA. MarrachelliV.G. NúñezE. MonleonD. BodíV. SanchisJ. NavarroD. NúñezJ. Bacterial metabolites trimethylamine N-oxide and butyrate as surrogates of small intestinal bacterial overgrowth in patients with a recent decompensated heart failure.Sci. Rep.2021111611010.1038/s41598‑021‑85527‑533731747
    [Google Scholar]
  113. BadejogbinC. AreolaD.E. OlaniyiK.S. AdeyanjuO.A. AdeosunI.O. Sodium butyrate recovers high-fat diet-fed female Wistar rats from glucose dysmetabolism and uric acid-associated cardiac tissue damage.Naunyn Schmiedebergs Arch. Pharmacol.2019392111411141910.1007/s00210‑019‑01679‑231256207
    [Google Scholar]
  114. JiangX. HuangX. TongY. GaoH. Butyrate improves cardiac function and sympathetic neural remodeling following myocardial infarction in rats.Can. J. Physiol. Pharmacol.202098639139910.1139/cjpp‑2019‑053131999473
    [Google Scholar]
  115. YuZ. HanJ. ChenH. WangY. ZhouL. WangM. ZhangR. JinX. ZhangG. WangC. XuT. XieM. WangX. ZhouX. JiangH. Oral supplementation with butyrate improves myocardial ischemia/reperfusion injury via a gut-brain neural circuit.Front. Cardiovasc. Med.2021871867410.3389/fcvm.2021.71867434631821
    [Google Scholar]
  116. OnyszkiewiczM. Gawrys-KopczynskaM. KonopelskiP. AleksandrowiczM. SawickaA. KoźniewskaE. SamborowskaE. UfnalM. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors.Pflugers Arch.201947111-121441145310.1007/s00424‑019‑02322‑y31728701
    [Google Scholar]
  117. MullerPA SchneebergerM MatheisF WangP KernerZ IlangesA Microbiota modulate sympathetic neurons via a gut-brain circuit202046479
    [Google Scholar]
  118. YuC.D. XuQ.J. ChangR.B. Vagal sensory neurons and gut-brain signaling.Curr. Opin. Neurobiol.20206213314010.1016/j.conb.2020.03.00632380360
    [Google Scholar]
  119. Robles-VeraI. ToralM. de la VisitaciónN. SánchezM. Gómez-GuzmánM. RomeroM. YangT. Izquierdo-GarciaJ.L. JiménezR. Ruiz-CabelloJ. Guerra-HernándezE. RaizadaM.K. Pérez-VizcaínoF. DuarteJ. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: Role of short-chain fatty acids.Mol. Nutr. Food Res.2020646190061610.1002/mnfr.20190061631953983
    [Google Scholar]
  120. WangL. ZhuQ. LuA. LiuX. ZhangL. XuC. LiuX. LiH. YangT. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin–angiotensin system.J. Hypertens.20173591899190810.1097/HJH.000000000000137828509726
    [Google Scholar]
  121. ZhangL. DengM. LuA. ChenY. ChenY. WuC. TanZ. BoiniK.M. YangT. ZhuQ. WangL. Sodium butyrate attenuates angiotensin II-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism.J. Cell. Mol. Med.201923128139815010.1111/jcmm.1468431565858
    [Google Scholar]
  122. MorikawaA. SugiyamaT. KoideN. MoriI. MuM.M. YoshidaT. HassanF. IslamS. YokochiT. Butyrate enhances the production of nitric oxide in mouse vascular endothelial cells in response to gamma interferon.J. Endotoxin Res.2004101323710.1179/09680510422500385215025822
    [Google Scholar]
  123. NapoliC. LermanL.O. BalestrieriM.L. IgnarroL.J. Nitric oxide in vascular damage and regeneration. Nitric Oxide.Elsevier2010629672
    [Google Scholar]
  124. SarlakZ. EidiA. GhorbanzadehV. MoghaddasiM. MortazaviP. miR-34a/SIRT1/HIF-1α axis is involved in cardiac angiogenesis of type 2 diabetic rats: The protective effect of sodium butyrate combined with treadmill exercise.Biofactors20234951085109810.1002/biof.197937560982
    [Google Scholar]
  125. DariushnejadH. PirzehL. RoshanravanN. GhorbanzadehV. Sodium butyrate and voluntary exercise through activating VEGF-A downstream signaling pathway improve heart angiogenesis in type 2 diabetes.Microvasc. Res.202314710447510.1016/j.mvr.2023.10447536657710
    [Google Scholar]
  126. RemelyM. AumuellerE. MeroldC. DworzakS. HippeB. ZannerJ. PointnerA. BrathH. HaslbergerA.G. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity.Gene20145371859210.1016/j.gene.2013.11.08124325907
    [Google Scholar]
  127. TarnowskiW. Borycka-KiciakK. KiciakA. Outcome of treatment with butyric acid In irritable bowel syndrome–preliminary report.Gastroenterol Prakt.201114348
    [Google Scholar]
  128. de GrootP.F. NikolicT. ImangaliyevS. BekkeringS. DuinkerkenG. KeijF.M. HerremaH. WinkelmeijerM. KroonJ. LevinE. HuttenB. KemperE.M. SimsekS. LevelsJ.H.M. van HoornF.A. BindrabanR. BerkvensA. Dallinga-ThieG.M. DavidsM. HollemanF. HoekstraJ.B.L. StroesE.S.G. NeteaM. van RaalteD.H. RoepB.O. NieuwdorpM. Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial.Diabetologia202063359761010.1007/s00125‑019‑05073‑831915895
    [Google Scholar]
  129. PatnaikA. RowinskyE.K. VillalonaM.A. HammondL.A. BrittenC.D. SiuL.L. GoetzA. FeltonS.A. BurtonS. ValoneF.H. EckhardtS.G. A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies.Clin. Cancer Res.2002872142214812114414
    [Google Scholar]
  130. ConleyB.A. EgorinM.J. TaitN. RosenD.M. SausvilleE.A. DoverG. FramR.J. Van EchoD.A. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors.Clin. Cancer Res.1998436296349533530
    [Google Scholar]
  131. EdelmanM.J. BauerK. KhanwaniS. TaitN. TrepelJ. KarpJ. NemiebokaN. ChungE.J. Van EchoD. Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug.Cancer Chemother. Pharmacol.200351543944410.1007/s00280‑003‑0580‑512736763
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257307380240820052940
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test