Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Worldwide, cereals are staple foods and are needed for proper growth and development of humans. In the food industry, coloured cereals have gained popularity as potential nutraceuticals. These are high in phytochemicals, which are crucial in protecting the body from allergies, cancer, diabetes, and cardiovascular disease. Due to their strong antioxidant effects, phenolic compounds have sparked a lot of interest in many scientific fields. Anthocyanins have the potential of functional food ingredient. Anthocyanins are the ubiquitous family of natural pigments which are found in large quantities in various cereals such as corn, wheat, barley, rice, sorghum and its varieties and various colored cereals like black, red, and pink cereals. Cereals contain phenolic compounds which are found in either bound or Free State, which is called the total phenolic compound content. The present review provides health benefits properties of various photochemical of cereals, including phenolics, flavonoids, anthocyanin, proanthocyanidins, tocopherols and phytates.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230726164551
2023-10-04
2025-01-24
Loading full text...

Full text loading...

References

  1. ReisJ.F. MonteiroV.V.S. de Souza GomesR. Action mechanism and cardiovascular effect of anthocyanins: A systematic review of animal and human studies.J. Transl. Med.201614131510.1186/s12967‑016‑1076‑527846846
    [Google Scholar]
  2. KhooH.E. AzlanA. TangS.T. LimS.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits.Food Nutr. Res.2017611136177910.1080/16546628.2017.136177928970777
    [Google Scholar]
  3. MartínJ. NavasM.J. Jiménez-MorenoA.M. AsueroA.G. Anthocyanin pigments: Importance, sample preparation and extraction.Phenolic Compounds2017
    [Google Scholar]
  4. ChanocaA. KovinichN. BurkelB. Anthocyanin vacuolar inclusions form by a microautophagy mechanism.Plant Cell20152792545255910.1105/tpc.15.0058926342015
    [Google Scholar]
  5. WallaceT.C. Anthocyanins in cardiovascular disease.Adv. Nutr.2011211710.3945/an.110.00004222211184
    [Google Scholar]
  6. PetroniK. PiluR. TonelliC. Anthocyanins in corn: A wealth of genes for human health.Planta2014240590191110.1007/s00425‑014‑2131‑125106530
    [Google Scholar]
  7. JayarathneS. KobozievI. ParkO.H. Oldewage-TheronW. ShenC.L. Moustaid-MoussaN. Anti-inflammatory and anti-obesity properties of food bioactive components: Effects on adipose tissue.Prev. Nutr. Food Sci.201722425126210.3746/pnf.2017.22.4.25129333376
    [Google Scholar]
  8. VeliogluY.S. MazzaG. GaoL. OomahB.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products.J. Agric. Food Chem.199846104113411710.1021/jf9801973
    [Google Scholar]
  9. DiaconeasaZ. LeopoldL. RuginăD. AyvazH. SocaciuC. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice.Int. J. Mol. Sci.20151622352236510.3390/ijms16022352
    [Google Scholar]
  10. RadiE. FormichiP. BattistiC. FedericoA. Apoptosis and oxidative stress in neurodegenerative diseases.J. Alzheimers Dis.201442s3Suppl. 3S125S15210.3233/JAD‑13273825056458
    [Google Scholar]
  11. TangY. LiX. ChenP.X. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes.Food Chem.201517450250810.1016/j.foodchem.2014.11.04025529712
    [Google Scholar]
  12. VebericR. JakopicJ. StamparF. SchmitzerV. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols.Food Chem.2009114251151510.1016/j.foodchem.2008.09.080
    [Google Scholar]
  13. WinterA.N. BrennerM.C. PunessenN. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid.Oxid. Med. Cell. Longev.2017201711310.1155/2017/629708028740571
    [Google Scholar]
  14. TianS. SunY. ChenZ. YangY. WangY. Functional properties of polyphenols in grains and effects of physicochemical processing on polyphenols.J. Food Qual.201920191810.1155/2019/2793973
    [Google Scholar]
  15. KnievelD.C. Abdel-AalE.S.M. RabalskiI. NakamuraT. HuclP. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.).J. Cereal Sci.200950111312010.1016/j.jcs.2009.03.007
    [Google Scholar]
  16. PasseriV. KoesR. QuattrocchioF.M. New challenges for the design of high value plant products: Stabilization of anthocyanins in plant vacuoles.Front Plant Sci2016715310.3389/fpls.2016.0015326909096
    [Google Scholar]
  17. SemamingY. PannengpetchP. ChattipakornS.C. ChattipakornN. Pharmacological properties of protocatechuic Acid and its potential roles as complementary medicine.Evid. Based Complement. Alternat. Med.201520151111110.1155/2015/59390225737736
    [Google Scholar]
  18. RobbinsR.J. Phenolic acids in foods: An overview of analytical methodology.J. Agric. Food Chem.200351102866288710.1021/jf026182t12720366
    [Google Scholar]
  19. Van HungP. Phenolic compounds of cereals and their antioxidant capacity.Crit. Rev. Food Sci. Nutr.2016561253510.1080/10408398.2012.70890925075608
    [Google Scholar]
  20. SaikiaS. DuttaH. SaikiaD. MahantaC.L. Quality characterisation and estimation of phytochemicals content and antioxidant capacity of aromatic pigmented and non-pigmented rice varieties.Food Res. Int.201246133434010.1016/j.foodres.2011.12.021
    [Google Scholar]
  21. PojerE. MattiviF. JohnsonD. StockleyC.S. The case for anthocyanin consumption to promote human health: A review.Compr. Rev. Food Sci. Food Saf.201312548350810.1111/1541‑4337.1202433412667
    [Google Scholar]
  22. CălinoiuL.F. VodnarD.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability.Nutrients20181011161510.3390/nu1011161530388881
    [Google Scholar]
  23. SalwanR. RialchN. SharmaV. Bioactive volatile metabolites of Trichoderma: An overview.Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms2019
    [Google Scholar]
  24. ChawlaS. MittalM. ChawlaM. GoyalL. Corona virus-SARS-CoV-2: An insight to another way of natural disaster.EAI Endorsed Trans. Pervasive Health Technol.202062216482310.4108/eai.28‑5‑2020.164823
    [Google Scholar]
  25. MilburyP.E. CaoG. PriorR.L. BlumbergJ. Bioavailablility of elderberry anthocyanins.Mech. Ageing Dev.20021238997100610.1016/S0047‑6374(01)00383‑912044949
    [Google Scholar]
  26. TanakaY. SasakiN. OhmiyaA. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids.Plant J.200854473374910.1111/j.1365‑313X.2008.03447.x18476875
    [Google Scholar]
  27. FloraS.J.S. MittalM. MehtaA. Heavy metal induced oxidative stress & its possible reversal by chelation therapy.Indian J. Med. Res.2008128450152319106443
    [Google Scholar]
  28. FurmanD. CampisiJ. VerdinE. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
  29. ZhuF. DuB. XuB. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review.Crit. Rev. Food Sci. Nutr.20185881260127010.1080/10408398.2016.125139028605204
    [Google Scholar]
  30. RahatU. MehtabK. ShahidA.S. KamranS. Myeong. Natural antioxidant anthocyanins—A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration.Nutrients20191161195
    [Google Scholar]
  31. LiD. ZhangY. LiuY. SunR. XiaM. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients.J. Nutr.2015145474274810.3945/jn.114.20567425833778
    [Google Scholar]
  32. PriyaR. Nutritional and functional properties of coloured rice varieties of South India: A review.Journal of Ethnic Foods201961111
    [Google Scholar]
  33. BickerJ. PetereitF. HenselA. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L.Fitoterapia200980848349510.1016/j.fitote.2009.08.01519695312
    [Google Scholar]
  34. LvJ.M. GoudaM. El-Din BekhitA. HeY-K. YeX-Q. ChenJ-C. Identification of novel bioactive proanthocyanidins with potent antioxidant and anti-proliferative activities from kiwifruit leaves.Food Biosci.20224610155410.1016/j.fbio.2022.101554
    [Google Scholar]
  35. AnunciaçãoP.C. CardosoL.M. GomesJ.V.P. Comparing sorghum and wheat whole grain breakfast cereals: Sensorial acceptance and bioactive compound content.Food Chem.201722198498910.1016/j.foodchem.2016.11.06527979303
    [Google Scholar]
  36. KaurR. SharmaN. KaurR. Antioxidant Constituents and Properties of Bran from Selected Rice Genotypes Available in North- West India.International Journal of Pharmacognosy and Phytochemical Research20181012367375
    [Google Scholar]
  37. PuriV. NagpalM. SinghI. A comprehensive review on nutraceuticals: Therapy support and formulation challenges.Nutrients20221421463710.3390/nu1421463736364899
    [Google Scholar]
  38. RawatM. VarshneyA. RaiM. A comprehensive review on nutraceutical potential of underutilized cereals and cereal-based products.J Agric Food Res202312100619
    [Google Scholar]
  39. GangopadhyayN. HossainM. RaiD. BruntonN. A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies.Molecules2015206108841090910.3390/molecules20061088426076110
    [Google Scholar]
  40. ViswanathV. UroojA. MalleshiN.G. Evaluation of antioxidant and antimicrobial properties of finger millet polyphenols (Eleusine coracana).Food Chem.2009114134034610.1016/j.foodchem.2008.09.053
    [Google Scholar]
  41. AlamgirANM Therapeutic use of medicinal plants and their extracts201710.1007/978‑3‑319‑63862‑1
    [Google Scholar]
  42. SrikaeoK. Cereal grain-based milks and their potential health properties.Functional cereals and cereal foods: Properties, functionality and applications20222518810.1007/978‑3‑031‑05611‑6_10
    [Google Scholar]
  43. CabralC.E. KleinM.R.S.T. Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases.Arq. Bras. Cardiol.2017109547548210.5935/abc.2017015829267628
    [Google Scholar]
  44. FukagawaN.K. ZiskaL.H. Rice: Importance for Global Nutrition.J. Nutr. Sci. Vitaminol.201965Suppl.S2S310.3177/jnsv.65.S231619630
    [Google Scholar]
  45. RuthO.N. UnathiK. NomaliN. ChinsamyM. Underutilization versus nutritional-nutraceutical potential of the amaranthus food plant: A mini-review.Appl. Sci.20211115687910.3390/app11156879
    [Google Scholar]
  46. PoutanenK.S. KårlundA.O. Gómez-GallegoC. Grains – a major source of sustainable protein for health.Nutr. Rev.20228061648166310.1093/nutrit/nuab08434741520
    [Google Scholar]
  47. FrancavillaA. JoyeI.J. Anthocyanins in whole grain cereals and their potential effect on health.Nutrients20201210292210.3390/nu1210292232987758
    [Google Scholar]
  48. GaruttiM. NevolaG. MazzeoR. The impact of cereal grain composition on the health and disease outcomes.Front. Nutr.2022988897410.3389/fnut.2022.88897435711559
    [Google Scholar]
  49. JoyeI. Protein Digestibility of Cereal Products.Foods20198619910.3390/foods806019931181787
    [Google Scholar]
  50. DahiyaD. NigamP.S. Therapeutic and dietary support for gastrointestinal tract using kefir as a nutraceutical beverage: Dairy-milk-based or plant-sourced kefir probiotic products for vegan and lactose-intolerant populations.Fermentation20239438810.3390/fermentation9040388
    [Google Scholar]
  51. TsafrakidouP. MichaelidouA.M. G Biliaderis C. Fermented cereal-based products: Nutritional aspects, possible impact on gut microbiota and health implications.Foods20209673410.3390/foods906073432503142
    [Google Scholar]
  52. LeonciniE. PrataC. MalagutiM. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars.PLoS One201279e4599710.1371/journal.pone.0045997
    [Google Scholar]
  53. LachmanJ. MartinekP. KotíkováZ. OrsákM. ŠulcM. Genetics and chemistry of pigments in wheat grain – A review.J. Cereal Sci.20177414515410.1016/j.jcs.2017.02.007
    [Google Scholar]
  54. LiY. MaD. SunD. Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods.Crop J.20153432833410.1016/j.cj.2015.04.004
    [Google Scholar]
  55. LiuR.H. Whole grain phytochemicals and health.J. Cereal Sci.200746320721910.1016/j.jcs.2007.06.010
    [Google Scholar]
  56. AlhasyimiA.A. RosyidaN.F. RihadiniM.S. Postorthodontic relapse prevention by administration of grape seed (vitis vinifera) extract containing cyanidine in rats.Eur. J. Dent.201913462963410.1055/s‑0039‑340144031891981
    [Google Scholar]
  57. PraveenaR. BalasankarA. AruchamyK. Structural activity and HAD inhibition efficiency of pelargonidin and its Glucoside—A theoretical approach.Molecules20222722801610.3390/molecules2722801636432125
    [Google Scholar]
  58. XueF. LiC. AdhikariB. Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound.Ultrason. Sonochem.20206410499010.1016/j.ultsonch.2020.10499032018136
    [Google Scholar]
  59. SunH. ZhangP. ZhuY. LouQ. HeS. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.).Sci. Rep.201881501810.1038/s41598‑018‑23397‑029568082
    [Google Scholar]
  60. RajanV.K. RagiC. MuraleedharanK. A computational exploration into the structure, antioxidant capacity, toxicity and drug-like activity of the anthocyanidin “Petunidin”.Heliyon201957e0211510.1016/j.heliyon.2019.e0211532346622
    [Google Scholar]
  61. NaveF. PetrovV. PinaF. TeixeiraN. MateusN. de FreitasV. Thermodynamic and kinetic properties of a red wine pigment: Catechin-(4,8)-malvidin-3-O-glucoside.J. Phys. Chem. B201011442134871349610.1021/jp104749f20925351
    [Google Scholar]
  62. DorschJ.A. CookA. YoungK.A. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes.Phytochemistry200362569170610.1016/S0031‑9422(02)00610‑612620321
    [Google Scholar]
  63. LiH. QiuJ. LiuC. RenC. LiZ. Milling characteristics and distribution of phytic acid, minerals, and some nutrients in oat (Avena sativa L.).J. Cereal Sci.201460354955410.1016/j.jcs.2014.08.004
    [Google Scholar]
  64. ShallanM.A. El-BeltagiH.S. MonaA.M. AmeraT.M. Chemical Evaluation of Pre-germinated Brown Rice and Whole Grain Rice Bread. Electronic Journal of Environmental, Agricultural &.Food Chem.201095
    [Google Scholar]
  65. MakokhaAO Oniang’oRK NjorogeSM KamarOK Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya.Food Nutr Bull200223(3_suppl1)(Suppl.)241510.1177/15648265020233S14712362804
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230726164551
Loading
/content/journals/cff/10.2174/2666862901666230726164551
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anthocyanin; antioxidant; cereals; flavonoids; phenolics; proanthocyanidins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test