Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Worldwide, Hepatocellular carcinoma (HCC) is a frequently diagnosed cancer, having significant variations in its epidemiology. It ranks as the sixth prevailing neoplasm and is considered the third leading cause of mortality due to cancer. It accounts for 90% of primary liver cancers. Till date, an effective prevention or treatment is absent except for liver resection, chemotherapy and a frequently applied drug -sorafenib. Recently, various plant products and nutraceuticals are found to be effective in the treatment of HCC. ‘Nutraceuticals’ is a term that brings into light the two giants of health sciences - nutrient and pharmaceutical. Nutraceuticals provide medical or health benefits and include prevention or treatment of a disease. These are generally ‘functional foods’, which are whole, or ‘fortified, enriched and enhanced’ in nutritional value to satisfy the required amount of essential nutrients and to confer health benefits.

Objective

This study is based on the recent advancements achieved in the field of HCC treatment using a variety of emerging nutraceuticals that are effective, solely, or act as an adjuvant in its treatment. Nutraceuticals such as standardized extracts of ginger, fucoidan, curcumin, pro-anthocyanidins, epigallocatechin gallate, apigenin and other nutraceuticals are being studied extensively for their efficacy against HCC along with their proposed mechanism of action or potential targets for the treatment or prevention of HCC.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230215115849
2023-09-01
2025-01-24
Loading full text...

Full text loading...

References

  1. KumarA. KonarA. GargS. KaulS.C. WadhwaR. Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs.Neurochem. Int.2021149July10512410.1016/j.neuint.2021.10512434245808
    [Google Scholar]
  2. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  3. BodzinA.S. BusuttilR.W. Hepatocellular carcinoma: Advances in diagnosis, management, and long term outcome.World J. Hepatol.2015791157116710.4254/wjh.v7.i9.115726019732
    [Google Scholar]
  4. BhattacharyaS. MondalL. MukherjeeB. DuttaL. EhsanI. DebnathM.C. GaonkarR.H. PalM.M. MajumdarS. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats.Nanomedicine20181461905191710.1016/j.nano.2018.05.01129802937
    [Google Scholar]
  5. AkinyemijuT. AberaS. AhmedM. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease.Global Burden Liver Cancer20173121683169110.1001/jamaoncol.2017.305528983565
    [Google Scholar]
  6. RahibL. SmithB.D. AizenbergR. RosenzweigA.B. FleshmanJ.M. MatrisianL.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States.Cancer Res.201474112913292110.1158/0008‑5472.CAN‑14‑015524840647
    [Google Scholar]
  7. FerlayJ. ShinH.R. BrayF. FormanD. MathersC. ParkinD.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.Int. J. Cancer2010127122893291710.1002/ijc.2551621351269
    [Google Scholar]
  8. KovacJ.D. IvanovicA. MilovanovicT. MicevM. AlessandrinoF. GoreR.M. An overview of hepatocellular carcinoma with atypical enhancement pattern: Spectrum of magnetic resonance imaging findings with pathologic correlation.Radiol. Oncol.202155213014310.2478/raon‑2021‑000433544992
    [Google Scholar]
  9. FornerA. LlovetJ.M. BruixJ. Hepatocellular carcinoma.Lancet201237998221245125510.1016/S0140‑6736(11)61347‑022353262
    [Google Scholar]
  10. EstesC. RazaviH. LoombaR. YounossiZ. SanyalA.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.Hepatology201867112313310.1002/hep.2946628802062
    [Google Scholar]
  11. ZhouY. LiY. ZhouT. ZhengJ. LiS. NutrientsH.L. Dietary natural products for prevention and treatment of liver cancer.Nutrients20168315610.3390/nu8030156
    [Google Scholar]
  12. PlummerM. de MartelC. VignatJ. FerlayJ. BrayF. FranceschiS. Global burden of cancers attributable to infections in 2012: A synthetic analysis.Lancet Glob. Health201649e609e61610.1016/S2214‑109X(16)30143‑7
    [Google Scholar]
  13. LlovetJ.M. RicciS. MazzaferroV. HilgardP. GaneE. BlancJ.F. de OliveiraA.C. SantoroA. RaoulJ.L. FornerA. SchwartzM. PortaC. ZeuzemS. BolondiL. GretenT.F. GalleP.R. SeitzJ.F. BorbathI. HäussingerD. GiannarisT. ShanM. MoscoviciM. VoliotisD. BruixJ. Sorafenib in advanced hepatocellular carcinoma.N. Engl. J. Med.2008359437839010.1056/NEJMoa070885718650514
    [Google Scholar]
  14. BruixJ. QinS. MerleP. GranitoA. HuangY.H. BodokyG. PrachtM. YokosukaO. RosmorducO. BrederV. GerolamiR. MasiG. RossP.J. SongT. BronowickiJ.P. Ollivier-HourmandI. KudoM. ChengA.L. LlovetJ.M. FinnR.S. LeBerreM.A. BaumhauerA. MeinhardtG. HanG. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet201738910064566610.1016/S0140‑6736(16)32453‑927932229
    [Google Scholar]
  15. Abou-AlfaG.K. PuigO. DanieleB. KudoM. MerleP. ParkJ.W. RossP. PeronJ.M. EbertO. ChanS. PoonT.P. ColomboM. OkusakaT. RyooB.Y. MinguezB. TanakaT. OhtomoT. UkrainskyjS. BoisserieF. RutmanO. ChenY.C. XuC. ShochatE. JukofskyL. ReisB. ChenG. Di LaurenzioL. LeeR. YenC.J. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma.J. Hepatol.201665228929510.1016/j.jhep.2016.04.00427085251
    [Google Scholar]
  16. ChengA.L. ThongprasertS. LimH.Y. SukeepaisarnjaroenW. YangT.S. WuC.C. ChaoY. ChanS.L. KudoM. IkedaM. KangY.K. PanH. NumataK. HanG. BalsaraB. ZhangY. RodriguezA.M. ZhangY. WangY. PoonR.T.P. Randomized, open-label phase 2 study comparing frontline dovitinib versus sorafenib in patients with advanced hepatocellular carcinoma.Hepatology201664377478410.1002/hep.2860027082062
    [Google Scholar]
  17. ZhuA.X. RosmorducO. EvansT.R.J. RossP.J. SantoroA. CarrilhoF.J. BruixJ. QinS. ThuluvathP.J. LlovetJ.M. LeberreM.A. JensenM. MeinhardtG. KangY.K. SEARCH: A phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma.J. Clin. Oncol.201533655956610.1200/JCO.2013.53.774625547503
    [Google Scholar]
  18. ZhuA.X. KudoM. AssenatE. CattanS. KangY-K. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: The EVOLVE-1 randomized clinical trial.JAMA20143121576710.1001/jama.2014.7189
    [Google Scholar]
  19. ChengA. KangY. LinD. Sunitinib versus sorafenib in advanced hepatocellular cancer: Results of a randomized phase III trial.J. Clin. Oncol.201331324067407510.1200/JCO.2012.45.8372
    [Google Scholar]
  20. YenC.J. KimT.Y. FengY.H. ChaoY. LinD.Y. RyooB.Y. HuangD.C.L. SchnellD. HockeJ. LoembéA.B. ChengA.L. A phase I/Randomized Phase II study to evaluate the safety, pharmacokinetics, and efficacy of nintedanib versus sorafenib in asian patients with advanced hepatocellular carcinoma.Liver Cancer20187216517810.1159/00048646029888206
    [Google Scholar]
  21. HsuC. YangT. HuoT. HsiehR. Vandetanibin patients with inoperable hepatocellular carcinoma: A phase II, randomized, double-blind, placebo-controlled study.J. Hepatol.20125651097110310.1016/j.jhep.2011.12.01322245891
    [Google Scholar]
  22. KangY.K. YauT. ParkJ.W. LimH.Y. LeeT.Y. ObiS. ChanS.L. QinS.K. KimR.D. CaseyM. ChenC. BhattacharyyaH. WilliamsJ.A. ValotaO. ChakrabartiD. KudoM. Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma.Ann. Oncol.201526122457246310.1093/annonc/mdv38826386123
    [Google Scholar]
  23. JohnsonP.J. QinS. ParkJ-W. PoonR.T.P. RaoulJ-L. PhilipP.A. HsuC-H. HuT-H. HeoJ. XuJ. LuL. ChaoY. BoucherE. HanK-H. PaikS-W. Robles-AviñaJ. KudoM. YanL. SobhonslidsukA. KomovD. DecaensT. TakW-Y. JengL-B. LiuD. EzzeddineR. WaltersI. ChengA-L. John-SonP.J. Brivanib and FOLFOX in hepatocellular carcinoma: Finding the common themes among negative trials.J. Clin. Oncol.201331283483348610.1200/JCO.2013.49.7941
    [Google Scholar]
  24. LlovetJ.M. DecaensT. RaoulJ.L. BoucherE. KudoM. ChangC. KangY.K. AssenatE. LimH.Y. BoigeV. MathurinP. FartouxL. LinD.Y. BruixJ. PoonR.T. ShermanM. BlancJ.F. FinnR.S. TakW.Y. ChaoY. EzzeddineR. LiuD. WaltersI. ParkJ.W. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: Results from the randomized phase III BRISK-PS study.J. Clin. Oncol.201331283509351610.1200/JCO.2012.47.300923980090
    [Google Scholar]
  25. CainapC. QinS. HuangW.T. ChungI.J. PanH. ChengY. KudoM. KangY.K. ChenP.J. TohH.C. GorbunovaV. EskensF.A.L.M. QianJ. McKeeM.D. RickerJ.L. CarlsonD.M. El-NowiemS. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial.J. Clin. Oncol.201533217217910.1200/JCO.2013.54.329825488963
    [Google Scholar]
  26. SimH.W. KnoxJ. Hepatocellular carcinoma in the era of immunotherapy.Curr. Probl. Cancer2018421404810.1016/j.currproblcancer.2017.10.00729150141
    [Google Scholar]
  27. MarreroJ.A. KulikL.M. SirlinC.B. ZhuA.X. FinnR.S. AbecassisM.M. RobertsL.R. HeimbachJ.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the study of liver diseases.Hepatology201868272375010.1002/hep.2991329624699
    [Google Scholar]
  28. LiJ. WeiH. LiuY. LiQ. GuoH. GuoY. ChangZ. Curcumin inhibits hepatocellular carcinoma via regulating MiR-21/TIMP3 axis. Evidence-based Complement.Altern. Med.2020202010.1155/2020/289291732724322
    [Google Scholar]
  29. KyddJ. JadiaR. VelpurisivaP. GadA. PaliwalS. RaiP. Targeting strategies for the combination treatment of cancer using drug delivery systems.Pharmaceutics2017944610.3390/pharmaceutics904004629036899
    [Google Scholar]
  30. LlovetJ.M. MontalR. SiaD. FinnR.S. Molecular therapies and precision medicine for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.2018151059961610.1038/s41571‑018‑0073‑430061739
    [Google Scholar]
  31. ZhongX.Z. DengY. ChenG. YangH. Investigation of the clinical significance and molecular mechanism of miR-21-5p in hepatocellular carcinoma: A systematic review based on 24 studies and bioinformatics investigation.Oncol. Lett.201817123024610.3892/ol.2018.962730655760
    [Google Scholar]
  32. ZhouC. HuC. WangB. FanS. JinW. Curcumin suppresses cell proliferation, migration, and invasion through modulating miR-21-5p/ SOX6 axis in hepatocellular carcinoma.Cancer Biother. Radiopharm.2020cbr.2020.373410.1089/cbr.2020.373432757994
    [Google Scholar]
  33. WangL. ZhanJ. HuangW. Grape seed proanthocyanidins induce apoptosis and cell cycle arrest of HepG2 cells accompanied by induction of the MAPK pathway and NAG-1.Antioxidants2020912120010.3390/antiox912120033260632
    [Google Scholar]
  34. SundarrajK. RaghunathA. PanneerselvamL. PerumalE. Fisetin, a phytopolyphenol, targets apoptotic and necroptotic cell death in HepG2 cells.Biofactors202046111813510.1002/biof.157731634424
    [Google Scholar]
  35. LiuZ. LinY. ZhangJ. ZhangY. LiY. LiuZ. LiQ. LuoM. LiangR. YeJ. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma.J. Exp. Clin. Cancer Res.201938144710.1186/s13046‑019‑1412‑831684985
    [Google Scholar]
  36. MoennerM. PluquetO. BouchecareilhM. ChevetE. Integrated endoplasmic reticulum stress responses in cancer.Cancer Res.20076722106311063410.1158/0008‑5472.CAN‑07‑170518006802
    [Google Scholar]
  37. FeldmanD. ChauhanV. The Unfolded Protein Response: A Novel Component of the Hypoxic Stress Response in Tumors.AACR200510.1158/1541‑7786.MCR‑05‑0221
    [Google Scholar]
  38. HusseinR.H. KhalifaF.K. The protective role of ellagitannins flavonoids pretreatment against N-nitrosodiethylamine induced-hepatocellular carcinoma.Saudi J. Biol. Sci.201421658959610.1016/j.sjbs.2014.03.00425473368
    [Google Scholar]
  39. YapijakisC. Hippocrates of Kos, the father of clinical medicine, and Asclepiades of Bithynia, the father of molecular medicine.In Vivo2009234507514
    [Google Scholar]
  40. El SohaimyS. Functional foods and nutraceuticals-modern approach to food science.World Appl. Sci. J.201220569170810.5829/idosi.wasj.2012.20.05.66119
    [Google Scholar]
  41. WierzejskaR.E. Dietary supplements-for whom? The current state of knowledge about the health effects of selected supplement use.Int. J. Environ. Res. Public Health20211817889710.3390/ijerph1817889734501487
    [Google Scholar]
  42. HeberD. LiZ. Nutrition intervention in cancer.Med. Clin. North Am.201610061329134010.1016/j.mcna.2016.06.01127745597
    [Google Scholar]
  43. DeFeliceS.L. The nutraceutical revolution: Its impact on food industry R&D.Trends Food Sci. Technol.199562596110.1016/S0924‑2244(00)88944‑X
    [Google Scholar]
  44. KalraE.K. Nutraceutical-definition and introduction.AAPS PharmSci200353272810.1208/ps05032514621960
    [Google Scholar]
  45. Brzezińska-Rojek, J.; Rutkowska, M.; Brzezicha, J.; Konieczka, P.; Prokopowicz, M.; Grembecka, M. Mineral composition of dietary supplements-analytical and chemometric approach.Nutrients202114110610.3390/nu1401010635010980
    [Google Scholar]
  46. MelocchiA. PariettiF. MaccagnanS. OrtenziM.A. AntenucciS. Briatico-VangosaF. MaroniA. GazzanigaA. ZemaL. Industrial development of a 3D-printed nutraceutical delivery platform in the form of a multicompartment HPC capsule.AAPS PharmSciTech20181983343335410.1208/s12249‑018‑1029‑929872975
    [Google Scholar]
  47. NirmalaL. Plant Secondary Metabolites as Nutraceuticals. In: Plant Metabolites.Methods, Applications and Prospects202023925310.1007/978‑981‑15‑5136‑9_11
    [Google Scholar]
  48. SachdevaV. RoyA. BharadvajaN. Current prospects of nutraceuticals: A review.Curr. Pharm. Biotechnol.2020211088489610.2174/138920102166620013011344132000642
    [Google Scholar]
  49. SiriwardhanaN. KalupahanaN.S. Moustaid-MoussaN. Chapter 13 - Health Benefits of n-3 Polyunsaturated Fatty Acids: Eicosapentaenoic Acid and Docosahexaenoic Acid. In: Advances in Food and Nutrition Research1st ed; Elsevier Inc.201265pp. 21122210.1016/B978‑0‑12‑416003‑3.00013‑5
    [Google Scholar]
  50. MirzaK.A. PereiraS.L. EdensN.K. TisdaleM.J. Attenuation of muscle wasting in murine C2 C12 myotubes by epigallocatechin-3-gallate.J. Cachexia Sarcopenia Muscle20145433934510.1007/s13539‑014‑0139‑924647719
    [Google Scholar]
  51. KimH. KimW. NutrientsA.H. Effects of phytochemicals on blood pressure and neuroprotection mediated via brain renin-angiotensin system.Nutrients20191111276110.3390/nu11112761
    [Google Scholar]
  52. BennettB.T. MohamedJ.S. AlwayS.E. Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats.PLoS One2013812e8351810.1371/journal.pone.008351824349525
    [Google Scholar]
  53. CharlesA.L. MeyerA. Dal-RosS. AugerC. KellerN. RamamoorthyT.G. ZollJ. MetzgerD. Schini-KerthV. GenyB. Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production.Exp. Physiol.201398253654510.1113/expphysiol.2012.06749622903980
    [Google Scholar]
  54. AnnunziataG. Jimenez-GarcíaM. TejadaS. MorantaD. ArnoneA. CiampagliaR. TenoreG.C. SuredaA. NovellinoE. CapóX. Grape polyphenols ameliorate muscle decline reducing oxidative stress and oxidative damage in aged rats.Nutrients2020125128010.3390/nu1205128032365992
    [Google Scholar]
  55. LordanR. RandoH.M. GreeneC.S. Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment.mSystems202163e00122e2110.1128/mSystems.00122‑2133947804
    [Google Scholar]
  56. ZhangX. HouG. LiuA. XuH. GuanY. WuY. DengJ. CaoX. Matrine inhibits the development and progression of ovarian cancer by repressing cancer associated phosphorylation signaling pathways.Cell Death Dis.2019101077010.1038/s41419‑019‑2013‑331601793
    [Google Scholar]
  57. CvietusaP. MascaliJ.J. NegriJ. BorishL. Anti-inflammatory effects of theophylline: Modulation of cytokine production.Ann. Allergy Asthma Immunol.1996771343810.1016/S1081‑1206(10)63476‑X8705632
    [Google Scholar]
  58. CalicetiC. FrancoP. SpinozziS. RodaA. CiceroA.F. BerberineA. Berberine: New insights from pharmacological aspects to clinical evidences in the management of metabolic disorders.Curr. Med. Chem.201623141460147610.2174/092986732366616041114331427063256
    [Google Scholar]
  59. SeoD.Y. LeeS.R. HeoJ.W. NoM.H. RheeB.D. KoK.S. KwakH.B. HanJ. Ursolic acid in health and disease.Korean J. Physiol. Pharmacol.201822323524810.4196/kjpp.2018.22.3.23529719446
    [Google Scholar]
  60. KimY.J. ZhangD. YangD.C. Biosynthesis and biotechnological production of ginsenosides.Biotechnol. Adv.201533671773510.1016/j.biotechadv.2015.03.00125747290
    [Google Scholar]
  61. WangZ.Y. NixonD.W. Licorice and cancer.Nutr. Cancer200139111110.1207/S15327914nc391_111588889
    [Google Scholar]
  62. SharmaR. PadwadY. Nutraceuticals-based immunotherapeutic concepts and opportunities for the mitigation of cellular senescence and aging: A narrative review.Ageing Res. Rev.20206310114110.1016/j.arr.2020.10114132810647
    [Google Scholar]
  63. AquilaG. MarracinoL. MartinoV. CalabriaD. CampoG. CalicetiC. RizzoP. The use of nutraceuticals to counteract atherosclerosis: The role of the notch pathway.Oxid. Med. Cell. Longev.2019201913010.1155/2019/547047031915510
    [Google Scholar]
  64. RanzatoE. MartinottiS. Role of nutraceuticals in cancer therapy.J. Food Res.201434182510.5539/jfr.v3n4p18
    [Google Scholar]
  65. SoutoE.B. SilvaG.F. Dias-FerreiraJ. ZielinskaA. VenturaF. DurazzoA. LucariniM. NovellinoE. SantiniA. Nanopharmaceutics: Part I-clinical trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU.Pharmaceutics202012214610.3390/pharmaceutics1202014632053962
    [Google Scholar]
  66. GangadharK.N. RodriguesM.J. PereiraH. GasparH. MalcataF.X. BarreiraL. VarelaJ. Anti-Hepatocellular Carcinoma (HepG2) activities of monoterpene hydroxy lactones isolated from the marine microalga Tisochrysis Lutea.Mar. Drugs2020181156710.3390/md1811056733227960
    [Google Scholar]
  67. GiulittiF. PetrungaroS. MandatoriS. TomaipitincaL. de FranchisV. D’AmoreA. FilippiniA. GaudioE. ZiparoE. GiampietriC. Anti-tumor effect of oleic acid in hepatocellular carcinoma cell lines via autophagy reduction.Front. Cell Dev. Biol.2021962918210.3389/fcell.2021.62918233614661
    [Google Scholar]
  68. NogueiraM.L. LimaE.J.S.P. AdriãoA.A.X. FontesS.S. SilvaV.R. SantosL.S. SoaresM.B.P. DiasR.B. RochaC.A.G. CostaE.V. SilvaF.M.A. Vannier-SantosM.A. CardozoN.M.D. KoolenH.H.F. BezerraD.P. Cyperus articulatus L. (Cyperaceae) rhizome essential oil causes cell cycle arrest in the G2/M phase and cell death in HepG2 cells and inhibits the development of tumors in a xenograft model.Molecules20202511268710.3390/molecules2511268732527068
    [Google Scholar]
  69. MunakarmiS. ShresthaJ. ShinH.B. LeeG.H. JeongY.J. 3,3′-diindolylmethane suppresses the growth of hepatocellular carcinoma by regulating its invasion, migration, and ER stress-mediated mitochondrial apoptosis.Cells2021105117810.3390/cells1005117834066056
    [Google Scholar]
  70. LimaE.J.S.P. FontesS.S. NogueiraM.L. SilvaV.R. SantosL.S. D’EliaG.M.A. DiasR.B. SalesC.B.S. RochaC.A.G. Vannier-SantosM.A. SoaresM.B.P. CostaE.V. SilvaF.M.A. KoolenH.H.F. BezerraD.P. Essential oil from leaves of Conobea scoparioides (Cham. & Schltdl.) Benth. (Plantaginaceae) causes cell death in HepG2 cells and inhibits tumor development in a xenograft model.Biomed. Pharmacother.2020129March11040210.1016/j.biopha.2020.11040232574969
    [Google Scholar]
  71. CaiS. BiZ. BaiY. ZhangH. ZhaiD. XiaoC. TangY. YangL. ZhangX. LiK. YangR. LiuY. ChenS. SunT. LiuH. YangC. Glycyrrhizic acid-induced differentiation repressed stemness in hepatocellular carcinoma by targeting c-Jun N-Terminal Kinase 1.Front. Oncol.20209143110.3389/fonc.2019.01431
    [Google Scholar]
  72. HamzaA.A. HeebaG.H. HamzaS. AbdallaA. AminA. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway.Biomed. Pharmacother.202113411110210.1016/j.biopha.2020.11110233338743
    [Google Scholar]
  73. El-FarY.M. KhodirA.E. EmarahZ.A. EbrahimM.A. Al-GayyarM.M.H. Fucoidan ameliorates hepatocellular carcinoma induced in rats: Effect on miR143 and inflammation.Nutr. Cancer20217381498151010.1080/01635581.2020.179847832718197
    [Google Scholar]
  74. SojoodiM. WeiL. ErstadD.J. YamadaS. FujiiT. HirschfieldH. KimR.S. LauwersG.Y. LanutiM. HoshidaY. TanabeK.K. FuchsB.C. Epigallocatechin gallate induces hepatic stellate cell senescence and attenuates development of hepatocellular carcinoma.Cancer Prev. Res. (Phila.)202013649750810.1158/1940‑6207.CAPR‑19‑038332253266
    [Google Scholar]
  75. BadroonN.A. Abdul MajidN. AlshawshM.A. Antiproliferative and apoptotic effects of cardamonin against hepatocellular carcinoma HepG2 cells.Nutrients2020126175710.3390/nu1206175732545423
    [Google Scholar]
  76. LiY. ChengX. ChenC. HuijuanW. ZhaoH. LiuW. XiangZ. WangQ. Apigenin, a flavonoid constituent derived from P. villosa, inhibits hepatocellular carcinoma cell growth by CyclinD1/CDK4 regulation via p38 MAPK-p21 signaling.Pathol. Res. Pract.2020216115270110.1016/j.prp.2019.15270131780054
    [Google Scholar]
  77. KumarY. PhaniendraA. PeriyasamyL. Bixin triggers apoptosis of human Hep3B hepatocellular carcinoma cells: An insight to molecular and in silico approach.Nutr. Cancer201870697198310.1080/01635581.2018.149044530204479
    [Google Scholar]
  78. ZhangX. ChenY. CaiG. LiX. WangD. Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial pathway.Chem. Biol. Interact.20172779110010.1016/j.cbi.2017.09.00528918123
    [Google Scholar]
  79. YanY. LiuN. HouN. DongL. LiJ. Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo.J. Nutr. Biochem.201746687310.1016/j.jnutbio.2017.04.00728458139
    [Google Scholar]
  80. XiaH. LiuC. LiC.C. FuM. TakahashiS. HuK.Q. AizawaK. HiroyukiS. WuG. ZhaoL. WangX.D. Dietary tomato powder inhibits high-fat diet-promoted hepatocellular carcinoma with alteration of gut microbiota in mice lacking carotenoid cleavage enzymes.Cancer Prev. Res.2018111279781010.1158/1940‑6207.CAPR‑18‑018830446518
    [Google Scholar]
  81. LimJ.Y. LiuC. HuK.Q. SmithD.E. WuD. Lamon-FavaS. AusmanL.M. WangX.D. Xanthophyll β-cryptoxanthin inhibits highly refined carbohydrate diet-promoted hepatocellular carcinoma progression in mice.Mol. Nutr. Food Res.2020643190094910.1002/mnfr.20190094931891208
    [Google Scholar]
  82. Al-SheddiE.S. Al-ZaidN.A. Al-OqailM.M. Al-MassaraniS.M. El-GamalA.A. FarshoriN.N. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line.Saudi Pharm. J.20192771053106010.1016/j.jsps.2019.09.00131997913
    [Google Scholar]
  83. EmamM.A. KhattabH.I. HegazyM.G.A. Assessment of anticancer activity of Pulicaria undulata on hepatocellular carcinoma HepG2 cell line.Tumour Biol.20194110101042831988008010.1177/101042831988008031603389
    [Google Scholar]
  84. RanasingheK.N.K. PremarathnaA.D. MahakapugeT.A.N. WijesunderaK.K. AmbagaspitiyaA.T. JayasooriyaA.P. KularatneS.A.M. RajapakseR.P.V.J. In vivo anticancer effects of Momordica charantia seed fat on hepatocellular carcinoma in a rat model.J. Ayurveda Integr. Med.202112343544210.1016/j.jaim.2021.03.00134275705
    [Google Scholar]
  85. YuS.H. LeeC.M. HaS.H. LeeJ. JangK.Y. ParkS.H. Induction of cell cycle arrest and apoptosis by tomentosin in hepatocellular carcinoma HepG2 and Huh7 cells.Hum. Exp. Toxicol.202140223124410.1177/096032712094393532787465
    [Google Scholar]
  86. TianL. LiC.M. LiY.F. HuangT.M. ChaoN.X. LuoG.R. MoF.R. Laminarin from seaweed (Laminaria japonica) inhibits hepatocellular carcinoma through upregulating senescence marker protein-30.Cancer Biother. Radiopharm.202035427728310.1089/cbr.2019.317932159381
    [Google Scholar]
  87. QiS.Z. ZhangX.X. JinY. WangM. LongL.P. JingW.H. SongK.R. WangD. GaoH.Y. Phenylpropanoid-conjugated pentacyclic triterpenoids from the whole plants of Leptopus lolonum induced cell apoptosis via MAPK and Akt pathways in human hepatocellular carcinoma cells.Bioorg. Chem.202111110488610.1016/j.bioorg.2021.10488633836342
    [Google Scholar]
  88. ChangZ. JianP. ZhangQ. LiangW. ZhouK. HuQ. LiuY. LiuR. ZhangL. Tannins in Terminalia bellirica inhibit hepatocellular carcinoma growth by regulating EGFR-signaling and tumor immunity.Food Funct.20211283720373910.1039/D1FO00203A33900343
    [Google Scholar]
  89. ZeinN. The effect of Saffron. Aqueous. extract on hepatocellular carcinoma rat model.Biochemistry Letters2017121496310.21608/blj.2017.47596
    [Google Scholar]
  90. AlyS.M. FetaihH.A. HassaninA.A.I. AbomughaidM.M. IsmailA.A. Protective effects of garlic and cinnamon oils on hepatocellular carcinoma in albino rats.Anal. Cell. Pathol.20192019989548510.1155/2019/989548531781479
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230215115849
Loading
/content/journals/cff/10.2174/2666862901666230215115849
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; cell signaling; curcumin; cytokines; hepatocellular carcinoma; Nutraceuticals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test