Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Backgrounds

Herbal medicines have been used in medicine over the last three decades, and the demand for herbal drugs has been increasing in modern medicine due to their health benefits and pharmacological activities. Herbal medicines are mainly derived from plants and their derived products, which have a significant role in the traditional and modern systems of medicine. Plant-based products have been used in the preparation of numerous health products, including some of the modern pharmaceutical preparation. is one of the important medicinal plants of herbal medicine, which contains a significant amount of sciadopitysin.

Methods

Biological importance and therapeutic benefit of sciadopitysin have been investigated in the present investigation through scientific data analysis of different scientific research work in order to know the therapeutic potential of sciadopitysin in medicine. Pharmacological activities of sciadopitysin have been searched and analyzed in the present work through different literature databases. Modern analytical tools for the isolation and quantification of sciadopitysin have also been discussed in the present work to know the therapeutic value of sciadopitysin in medicine.

Results

Scientific data analysis of different research work revealed the biological importance and therapeutic benefit of sciadopitysin, which is a biflavonoids class phytochemical present in the . Scientific data analysis of present work revealed the biological importance of sciadopitysin in medicine for the treatments of human health complications against diabetes and its complications, osteoclastogenesis, myocardial infarction, Alzheimer’s disease, hepatic and renal toxicity, inflammatory disorders, osteoporosis, human skin disorders, lymphocyte proliferation, and fungal diseases. Further scientific data analysis revealed the importance of standardization of plant materials and their derived products through sciadopitysin in medicine.

Conclusion

Scientific data analysis of collected research work revealed the biological importance of sciadopitysin in medicine for its effectiveness against human health complications.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666220901122326
2023-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. MohottiS. RajendranS. MuhammadT. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens.J. Ethnopharmacol.202024611215810.1016/j.jep.2019.11215831421182
    [Google Scholar]
  2. PatelK. KumarV. VermaA. RahmanM. PatelD.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A Concise Report of its Phytopharmaceutical Importance”.Curr. Tradit. Med.20173316817710.2174/2215083803666170615111759
    [Google Scholar]
  3. ZenginG. MahomoodallyM.F. SinanK.I. Evaluation of chemical constituents and biological properties of two endemic Verbascum species.Process Biochem.202110811012010.1016/j.procbio.2021.06.007
    [Google Scholar]
  4. RehmanM.N. AhmadM. SultanaS. ZafarM. EdwardsS. Relative popularity level of medicinal plants in Talagang, Punjab Province, Pakistan.Rev. Bras. Farmacogn.201727675177510.1016/j.bjp.2017.09.004
    [Google Scholar]
  5. NazarS. HussainM.A. KhanA. MuhammadG. BukhariS.N.A. Alkaloid-rich plant Tylophora indica; current trends in isolation strategies, chemical profiling and medicinal applications.Arab. J. Chem.20201386348636510.1016/j.arabjc.2020.05.037
    [Google Scholar]
  6. AlshambatyK. YagiS. ElbashirA.A. Chemical constituents and biological activities of African medicinal tree Sterculia setigera Delile stem bark.S. Afr. J. Bot.202114327428110.1016/j.sajb.2020.10.008
    [Google Scholar]
  7. KrupaJ. SureshkumarJ. SilambarasanR. PriyadarshiniK. AyyanarM. Integration of traditional herbal medicines among the indigenous communities in Thiruvarur district of Tamil Nadu, India.J. Ayurveda Integr. Med.2019101323710.1016/j.jaim.2017.07.01330120054
    [Google Scholar]
  8. PatelK. KumarV. RahmanM. VermaA. PatelD.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine.Curr. Tradit. Med.20184212012710.2174/2215083804666180416124949
    [Google Scholar]
  9. SiriangkhawutW. SittichanP. PonhongK. ChantiratikulP. Quality assessment of trace Cd and Pb contaminants in Thai herbal medicines using ultrasound-assisted digestion prior to flame atomic absorption spectrometry.Yao Wu Shi Pin Fen Xi201725496096728987373
    [Google Scholar]
  10. ChaachouayN. BenkhnigueO. FadliM. El IbaouiH. ZidaneL. Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif.Heliyon2019510e0219110.1016/j.heliyon.2019.e0219131720440
    [Google Scholar]
  11. PatelK. GadewarM. TripathiR. PrasadS.K. PatelD.K. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”.Asian Pac. J. Trop. Biomed.20122866066410.1016/S2221‑1691(12)60116‑623569990
    [Google Scholar]
  12. AlabiM.A. MuthusamyA. KabekkoduS.P. AdebawoO.O. SatyamoorthyK. Anticancer properties of recipes derived from nigeria and african medicinal plants on breast cancer cells in vitro.Sci. Am.20208e0044610.1016/j.sciaf.2020.e00446
    [Google Scholar]
  13. PatelK. KumarV. VermaA. RahmanM. PatelD.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery.Recent Patents Anti-Infect. Drug Disc.201914171510.2174/1574891X1366618091315435530210007
    [Google Scholar]
  14. GuQ. LiY. ChenY. YaoP. OuT. Sciadopitysin: Active component from Taxus chinensis for anti-Alzheimer’s disease.Nat. Prod. Res.201327222157216010.1080/14786419.2013.79003123627438
    [Google Scholar]
  15. PatelK. KumarV. VermaA. RahmanM. Kumar PatelD. Health benefits of Furanocoumarins ‘Psoralidin’ an active phytochemical of Psoralea corylifolia: The present, past and future scenario.Curr. Bioact. Compd.201915436937610.2174/1573407214666180511153438
    [Google Scholar]
  16. XuY. WeiZ. XueC. HuangQ. Assembly of zein–polyphenol conjugates via carbodiimide method: Evaluation of physicochemical and functional properties.Lebensm. Wiss. Technol.202215411270810.1016/j.lwt.2021.112708
    [Google Scholar]
  17. Jiménez-RosadoM. Gomez-ZavagliaA. GuerreroA. RomeroA. Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum).J. Clean. Prod.202235013154110.1016/j.jclepro.2022.131541
    [Google Scholar]
  18. MollicaA. ScioliG. Della ValleA. Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo.Antioxidants20211011170410.3390/antiox1011170434829574
    [Google Scholar]
  19. Tapia-QuirósP. Montenegro-LandívarM.F. ReigM. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing.J. Environ. Manage.202230711455510.1016/j.jenvman.2022.11455535085965
    [Google Scholar]
  20. BahunM JukićM OblakD Inhibition of the SARS-CoV-2 3CL pro main protease by plant polyphenols.Food Chem2022373Pt B13159410.1016/j.foodchem.2021.13159434838409
    [Google Scholar]
  21. BehlT. RanaT. AlotaibiG.H. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression.Biomed. Pharmacother.202214611254510.1016/j.biopha.2021.11254534922112
    [Google Scholar]
  22. SzékelyhidiR. LakatosE. SikB. The beneficial effect of peppermint (Mentha X Piperita L.) and lemongrass (Melissa officinalis L.) dosage on total antioxidant and polyphenol content during alcoholic fermentation.Food Chem. X20221310022610.1016/j.fochx.2022.10022635499003
    [Google Scholar]
  23. ChuffaL.G.A. de SouzaM.C. CruzE.M.S. FerreiraF.B. de MoraisJ.M.B. SeivaF.R.F. Hepatocellular carcinoma and miRNAs: An in silico approach revealing potential therapeutic targets for polyphenols.Phytomedicine Plus20222210025910.1016/j.phyplu.2022.100259
    [Google Scholar]
  24. TamargoA. CuevaC. SilvaM. Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota.Food Res. Int.202215511101010.1016/j.foodres.2022.11101035400421
    [Google Scholar]
  25. PatelK. KumarV. RahmanM. VermaA. PatelD.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future.Beni. Suef Univ. J. Basic Appl. Sci.201871314210.1016/j.bjbas.2017.05.009
    [Google Scholar]
  26. PatelK. GadewarM. TahilyaniV. PatelD.K. A review on pharmacological and analytical aspects of diosmetin: A concise report.Chin. J. Integr. Med.2013191079280010.1007/s11655‑013‑1595‑324092244
    [Google Scholar]
  27. FotieJ. The antiprotozoan potential of flavonoids.Pharmacogn. Rev.20082619
    [Google Scholar]
  28. PatelK. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report.J. Tradit. Complement. Med.20177336036610.1016/j.jtcme.2016.11.00328725632
    [Google Scholar]
  29. PatelK. SinghG.K. PatelD.K. A review on pharmacological and analytical aspects of naringenin.Chin. J. Integr. Med.201824755156010.1007/s11655‑014‑1960‑x25501296
    [Google Scholar]
  30. PatelD.K. Potential benefits of Tricetin in medicine for the treatment of cancers and other health-related disorders: Medicinal importance and therapeutic benefit.Nat. Prod. J.20211261219
    [Google Scholar]
  31. PatelD.K. Therapeutic potential of poncirin against numerous human health complications: Medicinal uses and therapeutic benefit of an active principle of citrus species.Endocr. Metab. Immune Disord. Drug Targets202121111974198110.2174/187153032166621010812292433423654
    [Google Scholar]
  32. LiY.Y. LuX.Y. SunJ.L. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba.Chin. J. Nat. Med.201917967268110.1016/S1875‑5364(19)30081‑031526502
    [Google Scholar]
  33. WollenweberE. KrautL. MuesR. External accumulation of biflavonoids on gymnosperm leaves.Z. Naturforsch. C J. Biosci.19985311-1294695010.1515/znc‑1998‑11‑1202
    [Google Scholar]
  34. AshokP.K. SainiB. HPLC analysis and isolation of rutin from stem bark of Ginkgo biloba L.J. Pharmacogn. Phytochem.201326871
    [Google Scholar]
  35. PatelD.K. Biological importance and therapeutic benefit of sciadopitysin on Myocardial infarction: Biological application of creatine kinase and lactate dehydrogenase in the medicine.Metabolism202212815507110.1016/j.metabol.2021.155071
    [Google Scholar]
  36. ŠamecD. KaralijaE. DahijaS. HassanS.T.S. Biflavonoids: Important contributions to the health benefits of ginkgo (Ginkgo biloba L.).Plants20221110138110.3390/plants1110138135631806
    [Google Scholar]
  37. SuhK.S. ChonS. ChoiE.M. The protective effects of sciadopitysin against methylglyoxal-induced cytotoxicity in cultured pancreatic β-cells.J. Appl. Toxicol.20183881104111110.1002/jat.362029603293
    [Google Scholar]
  38. ChoiE.M. SuhK.S. RheeS.Y. KimY.S. Sciadopitysin alleviates methylglyoxal-mediated glycation in osteoblastic MC3T3-E1 cells by enhancing glyoxalase system and mitochondrial biogenesis.Free Radic. Res.201448772973910.3109/10715762.2014.90356224628445
    [Google Scholar]
  39. ZhangC. YuH. YangH. LiuB. Activation of PI3K/PKB/GSK‐3β signaling by sciadopitysin protects cardiomyocytes against high glucose‐induced oxidative stress and apoptosis.J. Biochem. Mol. Toxicol.20213510e2288710.1002/jbt.2288734392578
    [Google Scholar]
  40. CaiY. LiY. Protective effect of sciadopitysin against isoproternol-induced myocardial infarction in rats.Pharmacology20201055-627228010.1159/00050439531775147
    [Google Scholar]
  41. LinJ.L. HoY.S. Flavonoid-induced acute nephropathy.Am. J. Kidney Dis.199423343344010.1016/S0272‑6386(12)81008‑08128947
    [Google Scholar]
  42. SasakiH. KitohY. TsukadaM. Inhibitory activities of biflavonoids against amyloid-β peptide 42 cytotoxicity in PC-12 cells.Bioorg. Med. Chem. Lett.201525142831283310.1016/j.bmcl.2015.04.10626004578
    [Google Scholar]
  43. SuhK.S. ChonS. JungW.W. ChoiE.M. Protective effects of sciadopitysin against methylglyoxal‐induced degeneration in neuronal SK‐N‐MC cells.J. Appl. Toxicol.202242227428410.1002/jat.421134102705
    [Google Scholar]
  44. LiM. LiB. HouY. Anti‐inflammatory effects of chemical components from Ginkgo biloba L. male flowers on lipopolysaccharide‐stimulated RAW264.7 macrophages.Phytother. Res.201933498999710.1002/ptr.629230693991
    [Google Scholar]
  45. CaoJ. LuQ. LiuN. Sciadopitysin suppresses RANKL-mediated osteoclastogenesis and prevents bone loss in LPS-treated mice.Int. Immunopharmacol.20174910911710.1016/j.intimp.2017.05.02928575726
    [Google Scholar]
  46. SuhK.S. LeeY.S. KimY.S. ChoiE.M. Sciadopitysin protects osteoblast function via its antioxidant activity in MC3T3-E1 cells.Food Chem. Toxicol.20135822022710.1016/j.fct.2013.04.02823624148
    [Google Scholar]
  47. LeeM.K. LimS.W. YangH. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana.Bioorg. Med. Chem. Lett.200616112850285410.1016/j.bmcl.2006.03.01816574412
    [Google Scholar]
  48. KimS.J. LimM.H. ChunI.K. WonY.H. Effects of flavonoids of Ginkgo biloba on proliferation of human skin fibroblast.Skin Pharmacol. Physiol.199710420020510.1159/0002115059413894
    [Google Scholar]
  49. LeeS.J. ChoiJ.H. SonK.H. ChangH.W. kang SS, Kim HP. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids.Life Sci.199557655155810.1016/0024‑3205(95)00305‑P7623623
    [Google Scholar]
  50. Dell’AgliM. BosisioE. Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes.Planta Med.2002681767910.1055/s‑2002‑1987611842336
    [Google Scholar]
  51. XiongY. ZhuG.H. WangH.N. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening.Fitoterapia202115210490910.1016/j.fitote.2021.10490933894315
    [Google Scholar]
  52. SisakhtM. MahmoodzadehA. DarabianM. Plant‐derived chemicals as potential inhibitors of SARS‐CoV ‐2 main protease (6LU7), a virtual screening study.Phytother. Res.20213563262327410.1002/ptr.704133759279
    [Google Scholar]
  53. DeyD. HossainR. BiswasP. Amentoflavone derivatives significantly act towards the main protease (3CL(PRO)/M(PRO)) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology.Mol. Divers.2022115
    [Google Scholar]
  54. WangX.X. HouJ. NingJ. PanY.Q. HongM. GuoB. Inhibition of sciadopitysin against UDP-glucuronosyltransferases.Yao Xue Xue Bao201651574975529874021
    [Google Scholar]
  55. FriedmanF.K. WestD. SugimuraT. GelboinH.V. Flavone modulators of rat hepatic aryl hydrocarbon hydroxylase.Pharmacology198531420320710.1159/0001381164059325
    [Google Scholar]
  56. LiuPK WengZM GeGB Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism.Int J Biol Macromol2018118Pt B2216222310.1016/j.ijbiomac.2018.07.08530009906
    [Google Scholar]
  57. ChengK.T. HsuF.L. ChenS.H. New constituent from Podocarpus macrophyllus var. macrophyllus shows anti-tyrosinase effect and regulates tyrosinase-related proteins and mRNA in human epidermal melanocytes.Chem. Pharm. Bull. (Tokyo)200755575776110.1248/cpb.55.75717473463
    [Google Scholar]
  58. Dell’AgliM. GalliG.V. BosisioE. Inhibition of cGMP-phosphodiesterase-5 by biflavones of Ginkgo biloba.Planta Med.200672546847010.1055/s‑2005‑91623616557462
    [Google Scholar]
  59. SaponaraR. BosisioE. Inhibition of cAMP-phosphodiesterase by biflavones of Ginkgo biloba in rat adipose tissue.J. Nat. Prod.199861111386138710.1021/np970569m9834158
    [Google Scholar]
  60. FawzyA.A. VishwanathB.S. FransonR.C. Inhibition of human non-pancreatic phospholipases A2 by retinoids and flavonoids. Mechanism of action.Agents Actions1988253-439440010.1007/BF019650483218613
    [Google Scholar]
  61. WuB. SongH.P. ZhouX. Screening of minor bioactive compounds from herbal medicines by in silico docking and the trace peak exposure methods.J. Chromatogr. A20161436919910.1016/j.chroma.2016.01.06226852619
    [Google Scholar]
  62. KimS.J. Effect of biflavones of Ginkgo biloba against UVB-induced cytotoxicity in vitro.J. Dermatol.200128419319910.1111/j.1346‑8138.2001.tb00117.x11449670
    [Google Scholar]
  63. ChoiS.K. OhH.M. LeeS.K. Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3).Nat. Prod. Res.200620434134610.1080/1478641050046331216644528
    [Google Scholar]
  64. PangH.L. ZhuG.H. ZhouQ.H. Discovery and characterization of the key constituents in Ginkgo biloba Leaf extract with potent inhibitory effects on human UDP-Glucuronosyltransferase 1A1.Front. Pharmacol.20221381523510.3389/fphar.2022.81523535264954
    [Google Scholar]
  65. SongY.Q. HeR.J. PuD. Discovery and characterization of the biflavones from Ginkgo biloba as highly specific and potent inhibitors against human carboxylesterase 2.Front. Pharmacol.20211265565910.3389/fphar.2021.65565934084136
    [Google Scholar]
  66. BaiJ. ZhaoS. FanX. Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure–activity relationships.Toxicol. Appl. Pharmacol.2019369495910.1016/j.taap.2019.02.01030790579
    [Google Scholar]
  67. Krauze-BaranowskaM. WiwartM. Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba.Z. Naturforsch. C J. Biosci.2003581-2656910.1515/znc‑2003‑1‑21212622229
    [Google Scholar]
  68. YangS. QuR. ZhuZ. LiW. ZhaoC. LiL. Validated LC-MS/MS method for the quantification of sciadopitysin in rat plasma and its application to pharmacokinetic and bioavailability studies in vivo.Biomed. Chromatogr.2018328e424110.1002/bmc.424129575000
    [Google Scholar]
  69. ZhouG. YaoX. TangY. Two new nonacosanetriols from Ginkgo biloba sarcotesta.Chem. Phys. Lipids2012165773173610.1016/j.chemphyslip.2012.08.00322981471
    [Google Scholar]
  70. Krauze-BaranowskaM. PobłockaL. El HelabA.A. Biflavones from Chamaecyparis obtusa.Z. Naturforsch. C J. Biosci.2005609-1067968510.1515/znc‑2005‑9‑100416320608
    [Google Scholar]
  71. LiS.H. ZhangH.J. NiuX.M. YaoP. SunH.D. FongH.H.S. Chemical constituents from Amentotaxus yunnanensis and Torreyayunnanensis.J. Nat. Prod.20036671002100510.1021/np030117b12880325
    [Google Scholar]
  72. Briançon-ScheidF. Lobstein-GuthA. AntonR. HPLC separation and quantitative determination of biflavones in leaves from Ginkgo biloba.Planta Med.1983491220420710.1055/s‑2007‑96985117405053
    [Google Scholar]
  73. LiuX.Q. ZhangX.D. ZhuY.L. ShinB.Y. WuS.X. Structrue identification of biflavones and determination of Taxol from Taxus Madia.Zhong Yao Cai200831101498150119230397
    [Google Scholar]
  74. ZhangM.L. HuoC.H. DongM. LiangC.H. GuY.C.S.Q. ShiQ.W. Non-taxoid chemical constituents from leaves of Taxus mairei.Zhongguo Zhongyao Zazhi200732141421142517966356
    [Google Scholar]
  75. ChiJ.D. HeX.F. LiuA.R. XuL.X. HPLC determination of six flavonoid constituents in Ginkgo biloba leaves.Yao Xue Xue Bao199732862562811596315
    [Google Scholar]
  76. PetersenM.J. de Cássia Lemos LimaR. KjaerulffL. StaerkD. Immobilized α-amylase magnetic beads for ligand fishing: Proof of concept and identification of α-amylase inhibitors in Ginkgo biloba.Phytochemistry20191649410110.1016/j.phytochem.2019.04.01631103779
    [Google Scholar]
  77. HyunS.K. JungH.A. ChungH.Y. ChoiJ.S. In vitro peroxynitrite scavenging activity of 6-hydroxykynurenic acid and other flavonoids from Gingko biloba yellow leaves.Arch. Pharm. Res.200629121074107910.1007/BF0296929417225453
    [Google Scholar]
  78. ChoiS.R. LeeM.Y. KimS.A. Nontargeted metabolomics as a screening tool for estimating bioactive metabolites in the extracts of 50 indigenous Korean plants.Metabolites202111958510.3390/metabo1109058534564401
    [Google Scholar]
  79. PatelK. LalooD. SinghG.K. GadewarM. PatelD.K. A review on medicinal uses, analytical techniques and pharmacological activities of Strychno nuxvomica Linn.: A concise report.Chin. J. Integr. Med.201711310.1007/s11655‑016‑2514‑128120207
    [Google Scholar]
  80. RahmanM. BegS. VermaA. Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: A contemporary view point.Curr. Drug Targets201718131558157128413980
    [Google Scholar]
  81. KumadohD. Ofori-kwakyeK. Dosage forms of herbal medicinal products and their stability considerations-an overview.J Crit Rev2017418
    [Google Scholar]
  82. IndrayantoG. Recent development of quality control methods for herbal derived drug preparations.Nat. Prod. Commun.201813193457880130110.1177/1934578X1801301208
    [Google Scholar]
  83. RastogiS. PandeyM. PrakashJ. SharmaA. SinghG. Veterinary herbal medicines in India.Pharmacogn. Rev.201591815516310.4103/0973‑7847.16214026392714
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666220901122326
Loading
/content/journals/cff/10.2174/2666862901666220901122326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test