Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Apiaceae is one of the biggest and most important plant families, comprising about 3700 species and 434 genera. Most of them are aromatic, flowering plants. The plants in this family are beneficial for everyday use and treating diseases. They are a rich source of nutraceuticals and secondary metabolites attributed to different pharmacological activities. Some plants under this family possess antidiabetic activity through different mechanisms, such as inhibiting carbohydrate hydrolyzing enzymes, stimulating insulin secretion, and regulating glucose transporters. Diabetes mellitus has become a chronic metabolic disorder whose management is of utmost importance in recent days. The present review aims to establish the use of Apiaceae family plants in treating diabetes mellitus. The availability of plants, their bio-constituents, mode of action, and experimental studies have also been briefly described here.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629283987240123100449
2024-02-29
2025-01-24
Loading full text...

Full text loading...

References

  1. World Health Organization, Diabetes.2020Available from: www.who.int/news- room/fact-sheets/detail/diabetes (Accessed on 8 June 2020).
  2. International Diabetes FederationIDF Diabetes Atlas, Diabetes Facts & Figures.9th ed2019Available from: https://diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf
    [Google Scholar]
  3. GuptaP.D. DeA. Diabetes mellitus and its herbal treatment.Int. J. Res. Pharm. Biomed. Sci.20123706721
    [Google Scholar]
  4. KitadaM. ZhangZ. MimaA. KingG.L. Molecular mechanisms of diabetic vascular complications.J. Diabetes Investig.201013778910.1111/j.2040‑1124.2010.00018.x24843412
    [Google Scholar]
  5. PaschouS.A. Papadopoulou-MarketouN. ChrousosG.P. Kanaka-GantenbeinC. On type 1 diabetes mellitus pathogenesis.Endocr. Connect.201871R38R4610.1530/EC‑17‑034729191919
    [Google Scholar]
  6. ChauhanA. SharmaP.K. SrivastavaP. KumarN. DudheR. Plants having potential antidiabetic activity: A review.Pharm. Lett.201023369387
    [Google Scholar]
  7. MalviyaN. JainS. MalviyaS. Antidiabetic potential of medicinal plants.Acta Pol. Pharm.201067211311820369787
    [Google Scholar]
  8. ChristensenL.P. BrandtK. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis.J. Pharm. Biomed. Anal.200641368369310.1016/j.jpba.2006.01.05716520011
    [Google Scholar]
  9. BerenbaumM.R. Evolution of specialization in insect-umbellifer associations.Annu. Rev. Entomol.199035131934310.1146/annurev.en.35.010190.001535
    [Google Scholar]
  10. (a DuncanC. Identification and Management of Three Toxic Plants in the Carrot Family.Technical Invasive Plant News2019
    [Google Scholar]
  11. (b PaeH.O. OhH. YunY.G. Imperatorin, a furanocoumarin from Angelica dahurica (Umbelliferae), induces cytochrome c-dependent apoptosis in human promyelocytic leukaemia, HL-60 cells.Pharmacol. Toxicol.2002911404810.1034/j.1600‑0773.2002.910107.x12193260
    [Google Scholar]
  12. HuangW.Y. CaiY.Z. ZhangY. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention.Nutr. Cancer200962112010.1080/0163558090319158520043255
    [Google Scholar]
  13. JiaX.L. WangG.L. XiongF. De novo assembly, transcriptome characterization, lignin accumulation and anatomic characteristics: Novel insights into lignin biosynthesis during celery leaf development.Sci. Rep.201551825910.1038/srep08259
    [Google Scholar]
  14. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.949820716914
    [Google Scholar]
  15. NajdaA. DyduchJ. BrzozowskiN. Flavonoid content and antioxidant activity of caraway roots (Carum Carvi L.).J. Fruit Ornam. Plant Res.200868112713310.2478/v10032‑008‑0011‑6
    [Google Scholar]
  16. NassarM.I. Secondary metabolites and pharmacology of Foeniculum vulgare Mill. Subsp. Piperitum.Rev Latiniamer Quem2010382103112
    [Google Scholar]
  17. RodriguesV.M. RosaP.T.V. MarquesM.O.M. PetenateA.J. MeirelesM.A.A. Supercritical extraction of essential oil from aniseed (Pimpinella anisum L.) using CO2: Solubility, kinetics, and composition data.J. Agric. Food Chem.20035161518152310.1021/jf025749312617576
    [Google Scholar]
  18. WuY.C. HsiehC.L. Pharmacological effects of radix Angelica sinensis (Danggui) on cerebral infarction.Chin. Med.2011613210.1186/1749‑8546‑6‑3221867503
    [Google Scholar]
  19. ChenJ. On effects and mechanism of Angelica sinensis polysaccharides on glucose metabolism in experiment aldiabetic rats.J Wuhan Univ Technol201099395
    [Google Scholar]
  20. WangK. TangZ. ZhengZ. Protective effects of angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin- induced type 2 diabetic BALB/c mice.Food Funct.201671248894897
    [Google Scholar]
  21. WangQ. DingF. ZhuN. HeP. FangY. Determination of the compositions of polysaccharides from Chinese herbs by capillary zone electrophoresis with amperometric detection.Biomed. Chromatogr.200317748348810.1002/bmc.26714598334
    [Google Scholar]
  22. Al-Sa’aidiJ.A. AlrodhanM.N.A. IsmaelA.K. Antioxidant activity of n-butanol extract of celery (Apium graveolens) seed in streptozotocin-induced diabetic male rats.Res Pharm Biotech2012422429
    [Google Scholar]
  23. MiddletonE.Jr KandaswamiC. TheoharidesT.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer.Pharmacol. Rev.200052467375111121513
    [Google Scholar]
  24. GutierrezR.M.P. JuarezV.A. SaucedaJ.V. SosaI.A. In vitro and in vivo antidiabetic and antiglycation properties of apium graveolens in type 1 and 2 diabetic rat.Int. J. Pharmacol.201410736837910.3923/ijp.2014.368.379
    [Google Scholar]
  25. AbozidM.M. Abd El-RahmanH.S.M. MohamedM.S. Evaluation of potential anti-diabetic effect of Apium graveolens and Brassica oleracea extractsin alloxan induced diabetic rats.Int. J. Pharm. Sci. Rev. Res.20184923944
    [Google Scholar]
  26. LiP. ZhangD. XieJ. XuX. WeiD. In vitro and in vivo antioxidant activities of a flavonoid isolated from celery (Apium graveolens L. var. dulce).Food Funct.20131724232123
    [Google Scholar]
  27. ShekhawatG.S. JanaS. Anethum graveolens: An Indian traditional medicinal herb and spice.Pharmacogn. Rev.20104817918410.4103/0973‑7847.7091522228959
    [Google Scholar]
  28. YazdanparastR. BahramikiaS. Evaluation of the effect of Anethum graveolens L. crude extracts on serum lipids and lipoproteins profile in hypercholesterolaemic rats.Daru20081628894
    [Google Scholar]
  29. MishraN. Haematological and hypoglycemic potential Anethum graveolens seeds extract in normal and diabetic Swiss albino mice.Vet. World20136850250710.5455/vetworld.2013.502‑507
    [Google Scholar]
  30. MobasseriM. PayahooL. OstadrahimiA. BishakY.K. JafarabadiM.A. MahlujiS. Anethu graveolens supplementation improves insulin sensitivity and lipid abnormality in type-2 diabetic patients.Pharm. Sci.2014204045
    [Google Scholar]
  31. OshaghiE.A. Lipid lowering effects of hydroalcoholic extract of Anethum graveolens L. and Dill tablet in high cholesterol fed hamsters.Cholesterol2015201595856010.1155/2015/95856026823981
    [Google Scholar]
  32. Al-SnafiA.E. The chemical constituents and pharmacological effects of Carum carvi: A review.Indian J Pharm Sci Res201527282
    [Google Scholar]
  33. AbouEl-SoudN.H. El-LithyN.A. El-SaeedG. Renoprotective effects of caraway (Carum carvi) essential oil in streptozotocin induced diabetic rats.J. Appl. Pharm. Sci.201442273310.7324/JAPS.2014.40205
    [Google Scholar]
  34. EddouksM. Caraway and caper: Potentialamti-hyperglycaemic plants in diabetic rats.J. Ethnopharmacol.20049414314810.1016/j.jep.2004.05.00615261975
    [Google Scholar]
  35. KumarE.K. MastanS.K. SreekanthN. ChaitanyaG. Influence of aqueous extract of Carum carvi fruits on tobutamide-induced hypoglycemia/antihyperglycemia in normal/alloxan-induced diabetic rats.Biomed. Pharmacol. J.200812365370
    [Google Scholar]
  36. EidiA. EidiM. Hypoglycemic effect of ethanolic of Carum carvi L. seeds in normal and streptozotocin-induced diabetic rats.Faslnamah-i Giyahan-i Daruyi2010935106113
    [Google Scholar]
  37. MahboubiM. Caraway as important medicinal plants in management of diseases.Nat. Prod. Bioprospect.20199111110.1007/s13659‑018‑0190‑x30374904
    [Google Scholar]
  38. BrinkhausB. LindnerM. SchuppanD. HahnE.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica.Phytomedicine20007542744810.1016/S0944‑7113(00)80065‑311081995
    [Google Scholar]
  39. GohilK. PatelJ. GajjarA. Pharmacological review on Centella asiatica: A potential herbal cure-all.Indian J. Pharm. Sci.201072554655610.4103/0250‑474X.7851921694984
    [Google Scholar]
  40. SinghB. RastogiR.P. A reinvestigation of the triterpenes of Centella asiatica.Phytochemistry19698591792110.1016/S0031‑9422(00)85884‑7
    [Google Scholar]
  41. RamaswamyA.S. PariyaswamiS.M. BasuN. Pharmacological studies on Centella asiatica Linn.Indian J. Med. Res.19704160164
    [Google Scholar]
  42. HeidariM. JamshediA.H. AkhondzadehS.H. GhaffariN.M. SadeghiM.R. KhansariG.M. Evaluating the effects of Centella asiatica on spermatogenesis in rats.Med J Reprod Infertility20077367374
    [Google Scholar]
  43. CesaroneM.R. LauroraG. De SanctisM.T. BelcaroG. Activity of Centella asiatica in venous insufficiency.Minerva Cardioangiol.19924041371431528498
    [Google Scholar]
  44. KabirA.U. SamadM.B. D’CostaN.M. AkhterF. AhmedA. HannanJ.M.A. Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding.BMC Complement. Altern. Med.20141413110.1186/1472‑6882‑14‑3124438380
    [Google Scholar]
  45. EmranT.B. DuttaM. Nasir UddinM.M. NathA. Zia UddinM. Antidiabetic potential of the leaf extract of Centella asiatica in alloxan-induced diabetic rats.J. Biosci.2015415159
    [Google Scholar]
  46. SasikalaS. LakshminarasaiahS. NaiduM.D. Antidiabetic activity of Centella asiatica on streptozotocin induced diabetic male albino rats.World J Pharm Sci20153817011705
    [Google Scholar]
  47. BhatS. KaushalP. KaurM. SharmaK. Coriander (Coriandrum sativum L.): Processing, nutritional and functional aspects.Afr. J. Plant Sci.201481253310.5897/AJPS2013.1118
    [Google Scholar]
  48. GrayA.M. FlattP.R. Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander).Br. J. Nutr.199981320320910.1017/S000711459900039210434846
    [Google Scholar]
  49. EidiM. EidiA. SaeidiA. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin‐induced diabetic rats.Phytother. Res.200923340440610.1002/ptr.264219003941
    [Google Scholar]
  50. BrindisF. Gonzalez-AndradeM. Gonzalez-TrujanoM.E. Estrada-SotoS. Postprandial glycemia and inhibition of α-glucosidase activity by aqueous extract from activity by aqueous extract from Coriandrum sativum.Nat. Prod. Res.201428222021202510.1080/14786419.2014.91741424836119
    [Google Scholar]
  51. AligitaW. SusilawatiE. SeptianiH. AtsilR. Antidiabetic activity of coriander (Coriandrum sativum L.) leaves’ ethanolic extract.Int J Pharm Phytopharm Res2018825963
    [Google Scholar]
  52. DasS. ChawareS. NarkarN. TilakA.V. RaveendranS. RaneP. Antidiabetic activity of Coriandrum sativum in streptozotocin induced diabetic rats.Int. J. Basic Clin. Pharmacol.20198592592910.18203/2319‑2003.ijbcp20191577
    [Google Scholar]
  53. Al-SnafiA.E. The Pharmacological Activities of Cuminum cyminum- A Review.IOSR J. Pharm.2016624665
    [Google Scholar]
  54. LiR. JiangZ.T. Chemical composition of the essential oil of Cuminum cyminum L. from China.Flavour Fragrance J.200419431131310.1002/ffj.1302
    [Google Scholar]
  55. HashemiP. ShamizadehM. BadieiA. GhiasvandA.R. AziziK. Study of the essential oil composition of cumin seeds by an amino ethyl-functionalized nanoporous SPME fiber.Chromatographia2009707-81147115110.1365/s10337‑009‑1269‑7
    [Google Scholar]
  56. LeeH.S. Cuminaldehyde: Aldose reductase and α-glucosidase inhibitor derived from Cuminum cyminum L. Seeds.J. Agric. Food Chem.20055372446245010.1021/jf048451g15796577
    [Google Scholar]
  57. SrivastavaR. SrivastavaS.P. JaiswalN. MishraA. MauryaR. SrivastavaA.K. Antidiabetic and antidyslipidemic activities of Cuminum cyminum L. in validated animal models.Med. Chem. Res.201020911210.1007/s00044‑010‑9483‑2
    [Google Scholar]
  58. PatilS.B. TakalikarS.S. JoglekarM.M. HaldavnekarV.S. ArvindekarA.U. Insulinotropic and β-cell protective action of cuminaldehyde, cuminol and an inhibitor isolated from Cuminum cyminum in streptozotocin-induced diabetic rats.Br. J. Nutr.201311081434144310.1017/S000711451300062723507295
    [Google Scholar]
  59. SrinivasanK. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: Traditional uses, chemical constituents, and nutraceutical effects.Food Quality and Safety20182111610.1093/fqsafe/fyx031
    [Google Scholar]
  60. AkhtarM. AliM. Study of hypoglycaemic activity of Cuminum nigrum seeds in normal and alloxan diabetic rabbits.Planta Med.1985512818510.1055/s‑2007‑9694114034738
    [Google Scholar]
  61. AhmadM. AkhtarM.S. MalikT. GilaniA.H. Hypoglycaemic action of the flavonoid fraction of Cuminum nigrum seeds.Phytother. Res.200014210310610.1002/(SICI)1099‑1573(200003)14:2<103::AID‑PTR578>3.0.CO;2‑P10685106
    [Google Scholar]
  62. BrainK.R. TurnerT.D. The Practical Evaluation of Phytopharmaceuticals.BristolJohn Wright and Sons197589107
    [Google Scholar]
  63. Al-SnafiP.D.A.E. Nutritional and therapeutic importance of Daucus carota- A review.IOSR J. Pharm.201772728810.9790/3013‑0702017288
    [Google Scholar]
  64. SivananthamS. ThangarajN. Phytochemical screening, characterization, compound identification and separation from Daucus carota L.Int. J. Curr. Res. Biosci. Plant Biol.201527168172
    [Google Scholar]
  65. DranikL.I. DolganenkoL.G. Flavonoids of the fruit of Daucus carota.Chem. Nat. Compd.19739563510.1007/BF00564395
    [Google Scholar]
  66. PoulinM.J. Bel-RhlidR. PichéY. ChênevertR. Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment.J. Chem. Ecol.199319102317232710.1007/BF0097966624248578
    [Google Scholar]
  67. KsouriA. DobT. BelkebirA. KrimatS. ChelghoumC. Chemical composition and antioxidant activity of the essential oil and the methanol extract of algerian wild carrot Daucus carota L. ssp carota (L.) thell.J. Mater. Environ. Sci.201563784791
    [Google Scholar]
  68. KhayatnouriM. NikmaneshM. SafarmasheiS. Study of the effect of gliclazide and carrot juice on blood sugar level in STZ-induced diabetic male mice.Adv. Environ. Biol.20115717421745
    [Google Scholar]
  69. SuzukiK. ItoY. NakamuraS. OchiaiJ. AokiK. Relationship between serum carotenoids and hyperglycemia: A population-based cross-sectional study.J. Epidemiol.200212535736610.2188/jea.12.35712395879
    [Google Scholar]
  70. PouraboliI. RanjbarB. The effect of Daucas carota seeds extract on lipid profile, LFT and kidney function indicators in streptozotocin- induced diabetic rats.Int. J. Plant Sci. Ecol.2015138487
    [Google Scholar]
  71. GuptaK. NiranjanG. A new flavone glycoside from seeds of Daucus carota.Planta Med.1982461224024110.1055/s‑2007‑97122317396982
    [Google Scholar]
  72. SuhK.S. OhS. WooJ.T. Apigenin attenuates 2-deoxy-D-ribose-induced oxidative cell damage in HIT-T15 pancreatic β-cells.Biol. Pharm. Bull.201235112112610.1248/bpb.35.12122223348
    [Google Scholar]
  73. KumarS. ShachiK. Kumar PrasadN. DubeyN.K. DubeyU. Anti-diabetic, haematinic and anti-cholesterolmic effects of carrot (Daucus carota Linn.) juice metabolites to cure alloxan monohydrate induced type-1 diabetes in albino rats.J. Diabetes. Metab. Disord. Control202071374010.15406/jdmdc.2020.07.00197
    [Google Scholar]
  74. RatherM.A. DarB.A. SofiS.N. BhatB.A. QurishiM.A. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety.Arab. J. Chem.20169S1574S158310.1016/j.arabjc.2012.04.011
    [Google Scholar]
  75. Díaz-MarotoM.C. Pérez-CoelloM.S. EstebanJ. SanzJ. Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill.) from central Spain.J. Agric. Food Chem.200654186814681810.1021/jf060953216939344
    [Google Scholar]
  76. NassarM.I. AboutablE.A. MakledY.A. El-KhrisyE.A. OsmanA.F. Secondary metabolites and pharmacology of Foeniculum vulgare Mill. Subsp. Pieritum.Rev. Latinoam. Quím.2010382103112
    [Google Scholar]
  77. ParejoI. ViladomatF. BastidaJ. Bioguided isolation and identification of the nonvolatile antioxidant compoundsfrom fennel (Foeniculum vulgare Mill.) waste.J. Agric. Food Chem.20045271890189710.1021/jf030717g15053525
    [Google Scholar]
  78. DongareV. KulkarniC. KondawarM. MagdumC. HaldavnekarV. ArvindekarA. Inhibition of aldose reductase and anti-cataract action of trans-anethole isolated from Foeniculum vulgare Mill. fruits.Food Chem.2012132138539010.1016/j.foodchem.2011.11.00526434305
    [Google Scholar]
  79. AnithaT. BalakumarC. IlangoK.B. JoseC.B. VetrivelD. Antidiabetic activity of the aqueous extracts of Foeniculum vulgare on streptozotocin-induced diabetic rats.Int J Adv Pharm Biol Chem201432487494
    [Google Scholar]
  80. MhaidatN.M. Abu-zaitonA.S. AlzoubiK.H. AlzoubiW. AlazabR.S. Antihyperglycemic properties of Foeniculum vulgare extract in streptozocin-induced diabetes in rats.Int. J. Pharmacol.2014111727510.3923/ijp.2015.72.75
    [Google Scholar]
  81. GodavariA. AmuthaK. MoorthiN.M. In vitro hypoglycemic effect of Foeniculum vulgare Mill. seeds on the carbohydrate hydrolyzing enzymes, α-Amylase and α- Glucosidase.Int. J. Pharm. Sci. Res.201891044414445
    [Google Scholar]
  82. ShojaiiA. FardM.A. Review of pharmacological properties and chemical constituents of Pimpinella anisum.ISRN Pharm.2012201251079510.5402/2012/510795
    [Google Scholar]
  83. Besharati-SeidaniA. JabbariA. YaminiY. Headspace solvent microextraction: A very rapid method for identification of volatile components of Iranian Pimpinella anisum seed.Anal. Chim. Acta2005530115516110.1016/j.aca.2004.09.006
    [Google Scholar]
  84. Gülçınİ. OktayM. KıreçcıE. KüfrevıoǧluÖ.İ. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts.Food Chem.200383337138210.1016/S0308‑8146(03)00098‑0
    [Google Scholar]
  85. RajeshwariU. ShobhaI. AndalluB. Comparison of aniseeds and coriander seeds for antidiabetic, hypolipidemic and antioxidant activities.Spatula DD20111191610.5455/spatula.20110106123144
    [Google Scholar]
  86. ShobhaR.I. RajeswariC.U. AndalluB. Anti-peroxidative and anti-diabetic activities of aniseeds (Pimpinella anisum L.) and identification of bioactive compounds.Am J Phytomed Clin Ther201315516527
    [Google Scholar]
  87. ShobhaR.I. AndalluB. Antioxidant, anti-diabetic and hypolipidemic effects of aniseeds (Pimpinella anisum L.): In vitro and in vivo studies.JCMAH201852112
    [Google Scholar]
  88. ZhangH. ChenF. WangX. YaoH.Y. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents.Food Res. Int.200639883383910.1016/j.foodres.2006.03.007
    [Google Scholar]
  89. FejesS. BlázovicsA. LemberkovicsE. Free radical scavenging and membrane protective effects of methanol extracts from Anthriscus cerefolium L. (Hoffm.) and Petroselinum crispum (Mill.) nym. ex A.W. Hill.Phytother. Res.200014536236510.1002/1099‑1573(200008)14:5<362::AID‑PTR554>3.0.CO;2‑G10925404
    [Google Scholar]
  90. GadiD. BnouhamM. AzizM. Flavonoids purified from parsley inhibit human blood platelet aggregation and adhesion to collagen under flow.J. Complement. Integr. Med.2012911910.1515/1553‑3840.157922944717
    [Google Scholar]
  91. BolkentS. YanardagR. Ozsoy-SacanO. Karabulut-BulanO. Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: A morphological and biochemical study.Phytother. Res.2004181299699910.1002/ptr.159815742348
    [Google Scholar]
  92. EltablawyN.A. SolimanH.A. HamedM.S. Antioxidant and antidiabetic role of Petroselinum crispum against STZ-induced diabetes in rats.J Biomed Pharm Res2015433245
    [Google Scholar]
  93. Abou-KhalilN.S. Abou-ElhamdA.S. WasfyS.I.A. El MileegyI.M.H. HamedM.Y. AgeelyH.M. Antidiabetic and antioxidant impacts of desert date (Balanites aegyptiaca) and parsley (Petroselinum sativum) aqueous extracts: Lessons from experimental rats.J. Diabetes Res.20162016840832610.1155/2016/8408326
    [Google Scholar]
/content/journals/cff/10.2174/0126668629283987240123100449
Loading
/content/journals/cff/10.2174/0126668629283987240123100449
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test